Multifractal and Gaussian Fractional Sum-Difference Models for Internet Traffic

By:

David Anderson, William S. Cleveland*, Bowei Xi †

Technical Report #15-02

David Anderson
Department of Mathematics,
Xavier University of Louisiana,
New Orleans, LA 70125, USA
e-mail: danders2@xula.edu

William S. Cleveland*
Department of Statistics,
Purdue University,
West Lafayette, IN 47907, USA
e-mail: wsc@purdue.edu

Bowei Xi †
Department of Statistics,
Purdue University,
West Lafayette, IN 47907, USA
e-mail: xbw@purdue.edu

*Communicating author. Supported by ARO MURI Award W911NF-08-1-0238, NSF FODAVA Award CCF-0937123, NSF DMS-122834.

†Supported by NSF DMS-0904548, AROMURI Award W911NF-08-1-0238, NSF DMS 1228348, ARO W911NF-12-1-0558.

Department of Statistics
Purdue University

March 2015
Multifractal and Gaussian Fractional Sum-Difference Models for Internet Traffic

David Anderson
Department of Mathematics,
Xavier University of Louisiana,
New Orleans, LA 70125, USA
e-mail: danders2@xula.edu

William S. Cleveland∗
Department of Statistics,
Purdue University,
West Lafayette, IN 47907, USA
e-mail: wsc@purdue.edu

Bowei Xi†
Department of Statistics,
Purdue University,
West Lafayette, IN 47907, USA
e-mail: xbw@purdue.edu

Abstract: A multifractal fractional sum-difference model (MFSD) is a monotone transformation of a Gaussian fractional sum-difference model (GFSD). The GFSD is the sum of two independent components: a moving sum of length two of discrete fractional Gaussian noise (fGn); and white noise. Internet traffic packet interarrival times are very well modeled by an MFSD in which the marginal distribution is Weibull; this is validated by extensive model checking for 715,665,213 measured arrival times on three Internet links. The simplicity of the model provides a mathematical tractability that results in a foundation for understanding the statistical properties of the arrival process. The current foundation is time scaling: properties of aggregate arrivals in successive equal-length time intervals and how the properties change with the interval length. This scaling is also the basis for the widely discussed multifractal wavelet models. The MFSD provides a more fundamental foundation that is based on how changes in the fGn and white noise components result in changes in the arrival process as various factors change such as the aggregation time length or the traffic packet rate. Logistic models relate the MFSD model parameters to the packet rate, so only the rate needs to be specified in using the MFSD model to generate synthetic packet arrivals for network engineering simulation studies.

Keywords and phrases: FARIMA, point process, superposition, multiplexing, self-similar, long-range dependence, synthetic traffic generation, network simulation.

∗Communicating author. Supported by ARO MURI Award W911NF-08-1-0238, NSF FODAVA Award CCF-0937123, NSF DMS-122834.
†Supported by NSF DMS-0904548, ARO MURI Award W911NF-08-1-0238, NSF DMS-1228348, ARO W911NF-12-1-0558.
1. Background

1.1. Internet Technology and Network Engineering

Internet traffic results from the transfers of information between pairs of computers, or hosts, across the Internet [Stevens, 1994; Peterson and Davie, 1999; Kesidis, 2007]. For simplicity we refer to the information as a “file”. The file is broken up into packets with sizes typically up to 1460 bytes = 11680 bits. The packets are sent from the source host over a path consisting of routers connected by transmission links, and the file is reassembled at the destination host. The two hosts establish a connection to carry out the transfer, which means each is listening for the arrival of packets from the other. Headers, typically 40 bytes in size, are added to each packet to manage the file transmission and packet routing. In addition, both hosts can send control packets with no file data, just headers, as part of the transmission management. This means that packet sizes range from 40 bytes to 1500 bytes. Each router has input links and output links; when a packet arrives on an input link, the router reads a field in the header to determine the destination host, and looks in a table to determine the output link over which the packet should be sent to get to the destination.

Each transmission link on the Internet at each point in time can be servicing many ongoing connections. The packet arrival times for transmission on the link are a superposition of the packet arrival times of the individual ongoing connections. Interestingly, the term “superposition” is used in statistics, but in network engineering, the term is “statistical multiplexing”. We use the latter here to remind us that this area of Internet research is about statistics. If a packet arrives for transmission and the link is busy transmitting, then the arriving packet is put in a queue. The interface that writes the packet to the link has a speed in bits/sec that determines the service time, the packet size in bits divided by the link speed. The queueing is a major factor in quality-of-service (QoS) for Internet connections; if queueing delay is too large, QoS degrades [Rolls et al., 2005].

This work addresses a common type of traffic being carried on most Internet links. The traffic consists of a very wide range of applications such as downloading Web pages, sending email, logging in remotely to a computer, and streaming video or audio. We name this “multi-application traffic”. We shall see from the work here that the statistical multiplexing homogenizes the traffic once there are enough connections using a link. This is just a beginning of the well known central limit theorem of point processes: they tend toward Poisson as the number of multiplexed processes increases. The detailed arrival behavior of individual applications is washed out by this, making statistical modeling possible. As we will see, this tends to happen at quite low traffic rates.

1.2. The Need for a Validated Statistical Model for the Multiplexed Arrival Process

One task in network engineering is to determine, for each link, a traffic rate and a link speed that lead to a queueing delay distribution that is commensurate with QoS needs. One might think that this would be easy. Just institute a measurement program that collects arrival times and packet sizes of each packet in many streams of packets on many
routers for different rates and types of traffic. The problem is that the Internet is not instrumented to do this. Even if it were, the complexity of finding just the right traffic conditions needed in an experiment would be quite hard, and impossible when the conditions do not yet exist. The most practical route for network engineering study is to run computer simulations with packet arrival times as inputs to a queue, and queueing delay as the output.

A simulation for network engineering requires a model for the arrival process. The queueing properties are determined by the statistical properties of the process [de Pereira et al., 2002; Belottia et al., 2008; Bogdan and Marculescu, 2011; Vieira and Lee, 2010]. We take the arrival process to be the sequence of interarrival times, t_u. The interarrivals have very complex statistical properties when studied directly, which in the past has made modeling complex. Three properties account for the complexity — long-range dependence, non-Gaussian behavior, and changing statistical properties with the packet arrival rate $\alpha = 1/E(t_u)$.

The long-range dependence was discovered in the 1990s and reported in two pioneering articles [Leland et al., 1994; Paxson and Floyd, 1995]. Here, we take long-range dependence to mean that as the frequency f goes to zero, the power spectrum increases like f^{-2d} for $0 < d < 0.5$, which means as the lag k gets large, the autocorrelation function decreases like k^{2d-1}. These statistical properties make the arrival process “bursty”, in the language of network engineering. Compared with Poisson arrivals that have the same arrival rate, the upper tail of queueing delays is longer, and the average amount of traffic that can be put on the link and maintain QoS is less [Duffield, 1996; Erramilli et al., 1996; Heyman and Lakshman, 1996; Park et al., 1997; Ribiero et al., 2006]. As one would expect, the interarrival sequence is non-Gaussian, and the statistical properties of the arrival process change with the expected number of ongoing connections. The change is not just a change in α, but rather a profound change in the multivariate distributions of any sequence of m consecutive interarrivals. This is a very general result for point processes [Cox and Miller, 1977]. The expected number of connections changes due to diurnal, weekly, and calendar effects in the usage of a link.

For a network engineering simulation study to be valid, a statistical model that generates the packet arrival times needs to be valid. Validation must be carried out in substantial detail. In addition, to be most useful for simulation, there needs to be a way to accomplish fast generation of packet arrivals, especially at high packet rates. Interestingly, while there has much past work in describing the statistical properties of the arrival process, cited in coming sections, there is still not a validated model that provides fast generation. The barrier has been the complexity due to the long-range dependence, nonlinearity, and changing statistics with the arrival rate.

1.3. Accomplishments of the Work Presented in This Article

This article presents the multifractal fractional sum-difference (MFSD) model, developed for t_u. The model is simple and very easy to understand. This arises from the discovery that a monotone nonlinear transformation, $z_u = T(t_u)$, is a long-range dependent Gaussian process that we call a Gaussian fractional sum-difference (GFSD)
model. \(z_u \) is a linear combination of a near-fGn process and white noise. Details are in Section 3. The properties of \(t_u \) — long-range dependent, non-Gaussian, changing statistical properties with the traffic rate — when addressed without benefit of the model, appear immensely complex, requiring complex summary statistics to characterize their behavior.

MFSD and GFSD models were first put forward by Cao et al. [2002]. Model parameter estimates were used as summary statistics to demonstrate changing statistical properties of the arrival process as the arrival rate increases. The work described here adds the following three additional sets of results to this initial work.

1.3.1. A New Statistical Foundation for the Arrival Process

The simple structure of the GFSD and MFSD make them readily interpretable. They are mathematically tractable. Derivations based on them in coming sections provide a new foundation for the understanding of the statistics of \(t_u \). For example, we see that as \(\alpha \) increases, the variance of the white noise relative to that of the fGn increases; \(z_u \) gets noisier in a simple way.

1.3.2. Simple and Fast Traffic Generation

One derivation provides a simple and fast mechanism for generation of arrivals for simulation. It is simple because only the traffic rate needs to be specified. It is fast, not because it is a fast algorithm, but rather an approximate model based on sums of \(m \) consecutive values of \(t_u \) in non-overlapping blocks. As we have emphasized, simple and fast generation is very important for network engineering studies. This is illustrated here by describing one simulation study using the approximation of the MFSD.

1.3.3. Validation

We carried out an extensive validation of the MFSD model using live packet traces for traffic in both directions of 3 Internet links. The total number of arrival measurements is 715,665,213. We divided the traces into segments whose time span was short enough to guarantee stationarity within the segment, that is, a constant rate \(\alpha \). Section 4 has detailed descriptions about the traffic data used in validation.

Segments whose packet rates are less than about 1000 packets/sec, which is a very low rate, are not readily modeled statistically. If there are a small number of ongoing connections, properties of the protocol that manages most of the connections can create cycles in the interarrivals at a number of frequencies of the form of \(1/k \) where \(k \) is a small integer greater than or equal to 2. So the outcome is that the MFSD model fits extremely well with Internet traffic at rates above 1000 packets/sec. Once above this rate, the statistical multiplexing erases the application footprints.

In the interest of space, we show the validation results for one of the links, for which there were 144 segments. The validation used the derived mathematical expressions described here. The MFSD has 4 parameters, including \(\alpha \), that appear in the expressions.
For each expression and each trace segment, we estimate the parameters involved, substitute the estimates in the expression, and evaluate the expression. We compare these model values of the expression with nonparametric estimates of the expression. For example, the GFSD has a formula for the power spectrum with two parameters. We compare the model power spectrum estimate with a nonparametric estimate of the power spectrum based on the periodogram.

2. Past Statistical Foundations and Modeling: Self-Similarity and fGn

In the earliest papers, packet arrival counts were described as self-similar and fractional Gaussian noise (fGn) was put forward as a model [Csabai, 1994; Leland et al., 1994; Paxson and Floyd, 1995; Willinger et al., 1995, 1996; Paxson, 1997; Taqqu et al., 1997b]. Using this fGn model, Norros [1994] derived a number of statistical properties, and investigated queueing properties as a part of network engineering study. fGn is a tractable model and allows mathematical investigations, for example, the above work of Norros [1994]. The problem, however, is that more traffic analysis resulted in subsequent articles showing that fGn is not an adequate model; the arrival process is not self-similar across all time scales, and arrival counts for small interarrival lengths are non-Gaussian [Abry et al., 2002; Riedi and Vehel, 1997; Ribeiro et al., 2005].

The inadequacy of fGn led to intensive study of time scaling properties and the development of new models based on scaling. Work focused on m-sums and m-means, defined as follows. For $u = 1, 2, \ldots$, let w_u be a time series. For positive integer m, the m-sum process consists of every m-th value of a moving sum of length m:

$$w_u^{(m)} = \sum_{i=1}^{m} w_{u+(m-1)i}, \quad v = 1, 2, \ldots$$

The m-mean process is $\bar{w}_u^{(m)} = w_u^{(m)}/m$. In a very large literature, the statistical properties of these m-statistics and how they change with m were studied in many ways [Riedi and Vehel, 1997; Taqqu et al., 1997a; Feldmann et al., 1998a; Gilbert et al., 1999; Riedi et al., 1999; Veres and Boda, 2000; Yuan et al., 2000; Hannig et al., 2001; Abry et al., 2002; Erramilli et al., 2002; Figueiredo et al., 2002; Mikosch et al., 2002; Willinger et al., 2002; Dang et al., 2003; Liu and Baras, 2003; Maulik and Resnick, 2003; Resnick et al., 2003; Karagiannis et al., 2004; Gong et al., 2005; Jiang and Dovrolis, 2005; Ribeiro et al., 2005; Stoev et al., 2005; Veitch et al., 2005; Masugi and Takuma, 2007; Roughan and Veitch, 2007; Ashoura and Le-Ngoc, 2008].

Multifractal wavelet models based on the statistics were developed [Riedi et al., 1999; Gao and Rubin, 2001a,b; Riedi, 2002; Resnick et al., 2003]. In almost all cases, w_u was taken to be arrival counts. In a few cases, the w_u were taken to be interarrivals [Riedi et al., 1999; Gao and Rubin, 2001a]. The time scaling analyses and modeling formed a foundation for intuition about the statistical properties of the arrival time process.

One widely-used method of scaling analysis is the variance-time plot [Leland et al., 1994; Erramilli et al., 1996; Riedi et al., 1999; Fraleigh et al., 2003; Gong et al., 2005]:
the log of the sample variance of $w^{(m)}_v$ is plotted against log m. Another example is autocorrelation-time analysis in which the standard nonparametric estimate of the autocorrelation function of the m-means is studied as a function of log m [Hannig et al., 2001].

Another method is multifractal moment analysis, a study of the moments of normalized values of $w^{(m)}_v$. This was closely associated with the multifractal wavelet models in the above citations. Observed properties of the moments of the m-sums of packet arrivals show the arrival process is multifractal [Riedi, 2002]. The multifractal concept is an enlargement of self-similar processes, which have a certain uniformity in the moments that make them monofractal.

Multifractal wavelet models reproduce the statistical properties of packet arrival times, fixing the shortcoming of fGn. However, there are drawbacks. The wavelet models are fundamentally nonparametric, based on m-sums, which formally means a description involving many parameters. This makes them complex, resulting in a mathematical tractability that does not readily facilitate derivations to study mathematically the many statistical quantities that provide insight into the arrival process. In addition, the models do not readily lead to a simple mechanism for synthetic traffic generation at a pre-specified packet arrival rate α for traffic engineering simulations.

In contrast to this previous work, the simple MFSD model is mathematically tractable, is an excellent fit to the arrival process at all traffic rates above 1000 packets/sec, and leads to a fast traffic generator that needs only the packet rate to be specified in carrying out simulations for traffic engineering.

2.1. Section Contents

The contents of the next sections are the following: Section 3 introduces the MFSD and GFSD models. Section 4 describes the live and multiplexed packet trace segments that were used for validating the models. Section 5 provides validation for the marginal distribution of the MFSD. Section 6 examines the power spectrum of the GFSD and provides validation for the GFSD. Section 7 provides validation for the MFSD through the m-sum moment-statistics. Section 8 derives equations for the parameters $\lambda(\alpha)$ and $\theta(\alpha)$ in terms of α. Section 9 examines the autocorrelation function of the GFSD and provides validation for the GFSD. Section 10 examines the autocorrelation functions of h_u, s_u and their m-scaled-sums, and discusses the near-self-similarity of h_u and s_u. Section 11 conducts a rate-time analysis of variance and autocorrelation for the GFSD. Section 12 examines the autocorrelation function of the MFSD and shows the second moment properties of the GFSD apply to the MFSD as well. Section 13 introduces a fast traffic generation method. Section 14 contains a VoIP queueing study which illustrates how the traffic generated using the MFSD model can be used in such studies. Section 15 concludes the paper.
3. GFSD and MFSD Models

3.1. h_u and s_u

Let h_u be fractionally differenced white noise, the Hosking discrete analog of fractional Gaussian noise (fGn) [Hosking, 1981],

$$(I - B)^d h_u = \epsilon_u.$$

B is the backward shift operator, $Bh_u = h_{u-1}; 0 < d < 0.5$ is the fractional exponent; $(I - B)^d$ is defined by expanding in a power series in B; and ϵ_u is Gaussian white noise with mean 0, and variance σ^2_ϵ. We take

$$\sigma^2_\epsilon = \frac{(1-d)\Gamma^2(1-d)}{2\Gamma(1-2d)}$$

for purposes stated below; the resulting variance of h_u is $\sigma^2_h = (1 - d)/2$.

Let s_u be a moving sum of length 2 of h_u.

$$s_u = h_u + h_{u-1}.$$

s_u can be written in another form,

$$(I - B)^d s_u = \epsilon_u + \epsilon_{u-1},$$

so s_u is a fractional moving-average process [Hosking, 1981]. The above value of σ^2_ϵ makes the variance of s_u equal to 1.

3.2. z_u, the GFSD, and t_u, the MFSD

Let n_u be Gaussian white noise with variance 1. A Gaussian fractional sum-difference (GFSD) model for a time series z_u has the form

$$z_u = \sqrt{(1-\theta)}s_u + \sqrt{\theta}n_u,$$

where s_u and n_u are independent processes and $0 \leq \theta \leq 1$. θ is the mixture coefficient of the GFSD. The mean of z_u is 0. The variance is 1 for notational convenience, and does not limit modeling.

A multifractal fractional sum-difference model (MFSD), t_u, is a stationary discrete-time series that is a nonlinear strictly monotone transformation of a GFSD, z_u. Let the cdf of t_u be $T(t)$. Let $Z(z)$ be the cdf of a Gaussian distribution with mean 0 and variance 1. Then

$$t_u = T^{-1}(Z(z_u)),$$

and

$$z_u = Z^{-1}(T(t_u)).$$

z_u is the Gaussian image of t_u, and t_u is the multifractal image of z_u.
Suppose the marginal distribution of t_u is a Weibull with shape parameter λ. Let the arrival rate be $\alpha = 1/E(t_u)$, measured in packets/sec (p/s). Our parameterization of the Weibull is somewhat different than usual, replacing the usual scale parameter with the rate α, which is more meaningful for packet interarrivals. The cdf for this parameterization is

$$T(t_u) = W(t_u; \lambda, \alpha) = 1 - e^{-\left(\frac{\alpha}{\Gamma(1+\lambda^{-1})}t_u\right)^\lambda}.$$

The transformation to the multifractal image is

$$t_u = W^{-1}(Z(z_u); \lambda, \alpha) = \frac{-\log(1 - Z(z_u))}{\alpha\Gamma(1 + \lambda^{-1})^{1/\lambda}}.$$

t_u is a Weibull MFSD.

For a multiplicative MFSD, the Weibull marginal is replaced by the log normal. μ is the mean of $\log(t_u)$ and τ^2 is its variance. The cdf is $T(t_u) = L(t_u; \mu, \tau^2)$. The transformation to the multifractal image,

$$t_u = L^{-1}(Z(z_u); \mu, \tau^2) = e^{\tau\sqrt{1-\theta}n_u} e^{\tau\sqrt{\theta}n_u} e^{\mu},$$

has a simple multiplicative form.

It is the Weibull MFSD that is the validated model for t_u. Section 5 discusses the observed marginal distribution of the interarrival process of the Internet traffic data, and the estimates of the Weibull parameter λ. However, for certain problems the log normal MFSD is used as an approximation because its simpler structure enables closed-form derivations. The approximation is the log normal whose first two moments match those of the Weibull.

4. Model Validation: Live Packet Trace Segments

Validation was carried out by analyzing live packet traces for traffic in both directions of 3 Internet links: Auckland, Leipzig, and Bell. The total number of arrivals is 715,665,213. Bell was the Internet gateway link for a Bell Labs research location with about 500 users. Leipzig was the gateway link for the University of Leipzig campus. Auckland was a link near the edge of the University of Auckland network. All collection used Endace cards [http://www.endace.com/] to provide highly accurate, hardware timestamps, which is essential to the modeling. The collected data consist of network and transport headers, and timestamps of packet arrivals, but our analysis used only the packet size field and the timestamp.

The Bell live traces were obtained as a result of one author of this article being a part of the collection operation. The Leipzig live traces were obtained from the Center for Applied Internet Data Analysis (CAIDA) [http://caida.org/tools]. The Auckland live traces were obtained from the Waikato Internet Traffic Storage [http://www.wand.net.nz/wits/catalogue.php].

In coming sections, in the interest of space, we use just Auckland traces in our visual displays and numeric information. However, statistical properties and modeling conclusions were the same for all links. The Auckland traces available for these links
were broken into trace segments of 15 min or 1 hr, and each segment analyzed individually. Not all available segments were appropriate for analysis for reasons given below. Table 1, discussed in more detail later in this section, gives information about the analyzed Auckland segments.

<table>
<thead>
<tr>
<th>Factor</th>
<th>Auckland 15-min</th>
<th>Auckland 1-hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>link speed (megabits/sec)</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>transmission technology</td>
<td>Ethernet</td>
<td>Ethernet</td>
</tr>
<tr>
<td>lab timestamp accuracy (µ sec)</td>
<td>0.030</td>
<td>0.030</td>
</tr>
<tr>
<td>collection duration (days)</td>
<td>2.25</td>
<td>2.25</td>
</tr>
<tr>
<td>collection date</td>
<td>March 2008</td>
<td>March 2008</td>
</tr>
<tr>
<td>number live</td>
<td>96</td>
<td>24</td>
</tr>
<tr>
<td>number live-multiplexed</td>
<td>24</td>
<td>0</td>
</tr>
<tr>
<td>max utilization live</td>
<td>5.24%</td>
<td>4.95%</td>
</tr>
<tr>
<td>min packet rate live (p/s)</td>
<td>1193</td>
<td>1268</td>
</tr>
<tr>
<td>max packet rate live (p/s)</td>
<td>7674</td>
<td>7712</td>
</tr>
<tr>
<td>min packet rate live-multiplexed (p/s)</td>
<td>2537</td>
<td>NA</td>
</tr>
<tr>
<td>max packet rate live-multiplexed (p/s)</td>
<td>137884</td>
<td>NA</td>
</tr>
</tbody>
</table>

4.1. Stationarity

To accurately study changes in statistical properties with α, we need each trace segment to have a nearly constant expected rate for the duration of the segment. We insure this, first, by taking segments with small lengths, and second, by checking each segment for stationarity by visualization of measures of the packet rate such as the number of packets in 10 sec intervals. We found that 15 min segments were typically quite close to stationary, and discarded any segments that showed more than minor nonstationarity. We also found that certain 1 hr traces were close to stationary.

4.2. Packet Rate Above 1000 packets/sec (p/s)

Segments whose packets rates are too small, less than about 1000 p/s, are not readily modeled statistically. If there are a small number of ongoing connections, properties of the TCP protocol that manages the communications on each of the two hosts of the large majority of Internet connections can create cycles in the interarrivals at a number of frequencies of the form of $1/k$ where k is a small integer greater than or equal to 2. These peaks are readily seen in estimates of the power spectrum; their frequencies change across the trace segments, likely due to changes in the Internet application that is dominant. If modeling is needed for very small rates, then a better strategy is to use simulation models that run TCP. This means the MFSD model is not appropriate for packet rates less than about 1000 p/s. We do not model directly trace segments less than this rate, but as discussed below, we can use them in other ways for modeling.
4.3. Modeled Arrivals, Measured Arrivals, and Timestamps

The MFSD model applies to $t_u = a_u - a_{u-1}$ where a_u is the arrival time at the queue of an output link of a router. The measured arrival a'_u is the exit time from the queue, and $t'_u = a'_u - a'_{u-1}$ are the measured interarrivals.

If packet u arrives when there is no packet in service, then $a'_u = a_u$. If packet u arrives when packet $u-1$ is in the queue or in service, its transmission begins as soon as packet $u-1$ has finished, so t'_u is the service time of packet $u-1$. Let p_u be the size of packet u (bits), and let ℓ be the speed (bits/sec) with which the router writes a packet to the link. Then we have $t'_u = p_u - 1/\ell$. We refer to the t'_u as a “back-to-back interarrival”. It is the smallest possible t'_u when packet $u-1$ has size p_{u-1}. The timestamps, \tilde{a}_u, are the a'_u plus measurement error, and the timestamp interarrivals are $\tilde{t}_u = \tilde{a}_u - \tilde{a}_{u-1}$.

4.4. Timestamp Accuracy and Identifying Packets with Queuing Delay

The accuracy of timestamps is critical to the validity of the MFSD modeling. The prediction of timestamp accuracy from laboratory tests of the Endace card used for the Auckland trace segments is $\pm \phi$ where $\phi = 15$ nanosec. This is excellent if it is valid. We investigate ϕ empirically.

Identifying queued packets is also important for the trace segment selection upon which modeling is based. We selected live trace segments for analysis that have a small percent of delayed packets, less than about 10%, because modeling is for the t_u and not the t'_u. We need trace segments where the t'_u reflect the properties of the t_u. These segments are those with lower packet rates. We determine empirically the percent of queued packets as part of the same method that investigates accuracy.

For all delayed packets u, we have $t'_u = p_{u-1}/\ell$. Measurement errors, however result in timestamps \tilde{t}_u of these delayed packets that lie in the interval $p/\ell \pm \phi$. Furthermore, we expect that the density of the \tilde{t}_u will have a noticeable drop just above $t'_u + 2\phi$. This can lead to a revision in the value of ϕ, and allows identification of packets that experience delay.

An accuracy and delay-identification plot is shown in Figure 1 for the Auckland live trace segment that has the largest bitrate, 33.5 megabits/sec. On the plot, $\tilde{t}_u - p_{u-1}/\ell$ is graphed against p_{u-1}/ℓ for u with \tilde{t}_u less than 100 nanosec. Because there are 690,239 such u, just a sample of the values are plotted. The horizontal lines above and below 0 are drawn at ± 30 nanosec, the laboratory values of $\pm 2\phi$. There is a dense band of points contained within the accuracy limits, and a sharp cutoff in density above the band. This verifies $\phi = 15$ nanosec, and packets within the band can be taken as the queued packets.

4.5. Numerical Multiplexing

To study the changing statistical properties with the packet arrival rate α, we need trace segments with a wide range of observed traffic rates, not just the live 15-min and 1-hr traces whose rates are kept small to ensure a low percent of delayed packets. To
achieve larger-rate segments, we multiplexed on the computer 15-min live trace segments to produce numerically-multiplexed 15-min trace segments (as opposed to physically multiplexed). The numerically multiplexed trace segments are actually somewhat more realistic than our raw segments in that the former have interarrivals that are arbitrarily small as the actual interarrivals at the queue, but the latter have interarrivals with lower bounds varying by packet size. Table 1 gives information about the Auckland segments, 120 live and 24 numerically-multiplexed. Figure 2 graphs the log packet rates of the segments.

4.6. Visual Displays of 4 Traces

Data visualization played a critical role in the validation process. There were many types of displays and each was applied to each analyzed trace segment. A number of these display types are shown in coming sections for 4 15-min Auckland trace segments to convey results. The packet rates of the 4 segments range from small to large, and are as close to equally spaced on a log scale as possible. The 2 with the smallest rates are live segments, and the 2 with the largest rates are numerically-multiplexed segments. The packet rates in packets/sec (p/s) are

\[1771 = 2^{10.79}, \quad 5634 = 2^{12.46}, \quad 17928 = 2^{14.13}, \quad \text{and} \quad 66913 = 2^{16.03}. \]
5. MFSD Model Validation and Properties: Marginal Distribution

5.1. Validation of the Marginal Distribution

Visualization methods were a critical part of modeling the marginal distribution of the interarrival process \(t_u \). Quantile plots were used to check how well standard parametric distributions — Weibull, log-normal, and gamma — fitted the observed marginal distributions of the trace segments. The segments are well approximated by a marginal Weibull distribution, as illustrated below.

Let \(\alpha \) be the packet arrival rate, the inverse of the mean of \(t_u \), and let \(\lambda \) be the shape parameter. Note that rather than using the usual scale parameter for the Weibull distribution, we are using one that works well for modeling Internet traffic. For each trace segment, \(\lambda \) and \(\alpha \) were estimated by the method of moments. \(\hat{\alpha} \) is the inverse of the sample mean of the \(t_u \). \(\hat{\lambda} \) is the value for which a Weibull with rate \(\hat{\alpha} \) has a variance equal to the sample variance of the \(t_u \).

The Weibull quantile plot is illustrated in Figure 3 for the 4 Auckland trace segments described in Section 4.6. For each segment, the fourth root of the quantiles of the observed \(t_u \) at frequencies 0.00005 to 0.99995 in steps of 0.0001 are plotted against the fourth root of the quantiles of a fitted Weibull using the above estimates. Fourth roots are taken because the resulting transformed distribution is close to symmetric for values of \(\hat{\lambda} \) in the range of the trace segments. The vertical lines are drawn at the quantiles with probabilities 0.01, 0.05, 0.25, 0.75, and 0.95, and 0.99. The oblique line has slope 1 and intercept 0.

If the observed \(t_u \) are well approximated by a Weibull, then the pattern of the points on the plot follows the oblique line. In Figure 3, and for almost all other analyzed trace segments, the Weibull provides an excellent fit, taking sampling variability and queueing artifacts into account.

There are small departures, atoms in the observed sample distributions of the live segments in the top 2 panels. The artifacts result from a small fraction of back-to-back measured interarrivals, \(\tilde{t}_u \), which are not the same as the modeled interarrivals,
5.2. The Change in λ with α

Let $\hat{\lambda}_k$, $k = 1, \ldots, 144$, be the estimate of the shape λ for the kth Auckland trace segment, and let $\hat{\alpha}_k$ be the estimate of the packet arrival rate α. Figure 4 graphs $\hat{\lambda}_k$ against $\log_2(\hat{\alpha}_k)$ where \log_2 is log base 2. The smallest values of $\hat{\lambda}_k$ are close to 0.6; they tend to 1 as $\log_2(\hat{\alpha}_k)$ increases, which means the marginal distribution tends to exponential.

t_u, because of queueing delay; this is discussed in Section 4. The artifacts are nearly eliminated in the bottom two panels due to the numerical multiplexing, which tends to break up atoms.
Section 8 presents a derivation of λ as a function of α using the MFSD model. Equations are solved that yield numeric values, leading to a model $\lambda(\alpha)$ for the dependence of λ on α. The theoretical model agrees with the empirical pattern in Figure 4. This dependence of λ on α is a critical aspect of the statistical properties of the packet arrival process, so we switch notation from λ to $\lambda(\alpha)$ in coming sections.

6. GFSD Model Validation and Properties: Power Spectrum

The four time series considered in the GFSD, which are defined in Section 3, are h_u, s_u, n_u, and z_u. This section presents formulas for their power spectra, which provides insight into statistical properties. Validation study is also carried out for the observed z_u of each trace segment by comparing nonparametric estimates of the power spectrum with that of a GFSD model fitted to the z_u.

![Diagram of Log Packet Rate vs. Estimates of Shape Parameter](image)
6.1. Formulas and Statistical Properties

Let $0 < f \leq 0.5$ denote frequency in units of cycles/interarrival. The power spectra are

\[
\begin{align*}
 p_h(f) &= \frac{(1 - d)\Gamma^2(1 - d)}{2\Gamma(1 - 2d)[2\sin(\pi f)]^{2d}} \\
 p_s(f) &= 4\cos^2(\pi f)p_h(f) \\
 p_n(f) &= 1 \\
 p_z(f) &= (1 - \theta)p_s(f) + \theta.
\end{align*}
\]

$p_h(f)$, $p_s(f)$, and $p_z(f)$ decrease strictly monotonically as f increases, and all go to infinity to order f^{-2d} at the origin, a signature property of the long-range dependence amply observed empirically in many previous studies. Let $\ell_z(f) = 10\log_{10}\{p_z(f)\}$ where \log_{10} is log base 10. In visual displays of the power spectra, we use this decibel scale because it shows properties more effectively.

There are an infinite number of ways of decomposing z_u into a long-range dependent component plus a white noise component. The decomposition of the GFSD,

\[z_u = \sqrt{1 - \theta} s_u + \sqrt{\theta} n_u,
\]

is the one that maximizes the variance of the white noise because $p_s(0.5) = 0$. This means $p_z(0.5) = \theta$, which is used below in the estimation of θ.

Figure 5 graphs 3 power spectra, $\ell_z(f)$, on the decibel scale. For each of the 3, $d = 0.31$. The values of θ are different: 0.6 (---), 0.8 (----), 0.975 (----). They span the range of the estimates of θ. $\ell_z(f)$ is evaluated at equally-spaced values of f from 2^{-16} to 1/2. The vertical line on each panel is drawn at frequency $f_0 = 0.129$ cycles/interarrival for reasons we explain next.

For fixed f and d, $p_z(f)$ is linear in θ with derivative $1 - p_s(f)$. Let f_0 be the frequency where $1 - p_s(f_0) = 0$, which means $p_z(f_0)$ and $\ell_z(f_0)$ do not change with θ. f_0 depends only on d, and for $d = 0.31$, $f_0 = 0.129$ cycles/interarrival, which has a period of 7.75 interarrivals. This is the value at which the vertical line is drawn in Figure 5, illustrating the constancy at f_0. It is easy to see that $p_z(f)$ and $\ell_z(f)$ decrease with θ for $f > f_0$, and increase for $f < f_0$; this is also illustrated in Figure 5.

6.2. Estimation of Parameters d and θ

To carry out estimation and model checking for the GFSD model for each trace segment, the observed t_u for each segment were transformed to observed z_u by the function $z_u = Z^{-1}\{\hat{T}(t_u)\}$, where \hat{T} is the empirical cumulative distribution function of the t_u, and Z is the normal cumulative distribution function with mean 0 and variance 1. Let n be the number of t_u in the segment. Let $r(u)$ be the rank of t_u. Then $z_u = Z^{-1}\{(r(u) - 0.5)/n\}$.

The reason for using the empirical function, rather than a Weibull distribution function fitted to the t_u, was to have a portion of the model checking methods for z_u not
depend on the validity of the specification of the marginal distribution of \(t_u \). In Section 5, model checking of the marginal of \(t_u \) does not depend on the validity of the specifications for \(z_u \). In a number of other sections, model checking depends jointly on specifications for the GFSD and the MFSD.

Estimation of the parameters \(d \) and \(\theta \) of the GFSD are based on the periodogram of the observed \(z_u \). In addition, the periodogram and the estimate of the power spectrum using the estimated parameters are a part of our model checking for validation of the GFSD. To enable subsequent study of the \(m \)-means and \(m \)-sums with exactly the same observations, we use just the first \(2^b \) observations of each trace segment where \(b \) is the greatest integer in log base 2 of the number of \(z_u \) in the segment. For the 144 Auckland trace segments, the minimum value of \(b \) is 20 and the maximum is 26. The periodogram is computed at the Fourier frequencies \(f_i = i/2^b \) for \(i = 1, 2, 3, \ldots 2^{b-1} \). These frequencies are divided into \(2^{15} \) non-overlapping blocks of equal length, so each has \(2^{b-16} \) values. For \(j = 1, \ldots, 2^{15} \), let \(\bar{f}_j \) be the mean of the frequencies in block \(j \), and let \(\bar{I}(\bar{f}_j) \) be the mean of the periodogram values in the block. Estimation and model checking proceed with \(\bar{f}_j \) and \(\bar{I}(\bar{f}_j) \).

Our parameter estimation method for each trace segment is designed to be robust to minor departures of the patterns in the \(\bar{I}(\bar{f}_j) \) from the general form of the GFSD power spectrum. Some departures can adversely affect the estimation of \(d \) [Hurvich et al., 2002]. For example, minor low-frequency trends can remain because the detrending methods described in Section 4 cannot entirely remove the diurnal variation in the packet rate \(\alpha \).

Because \(p_z(0.5) = \theta \), the estimate \(\hat{\theta} \) of \(\theta \) is taken to be the mean of the \(\bar{I}(\bar{f}_j) \) for \(f_j \geq 0.48 \). This insures that the estimated power spectrum fits the pattern of the \(\bar{I}(\bar{f}_j) \) for the highest frequencies. \(d \) is estimated from another frequency band: \(0.01 \leq f_j \leq 0.06 \). \(\hat{d} \) is the estimate arising from a nonlinear least squares fit of \(10 \log_{10}(p_z(\bar{f}_j)) \)

![Log power spectra \(\ell_z(f) \) for \(d = 0.31 \) and 3 values of \(\theta \).](image-url)
with \(\theta = \hat{\theta} \) to \(10 \log_{10}(\bar{f}(\tilde{f}_j)) \) for \(f_j \) in the band. This is a variation of the method of [Geweke and Porter-Hudak, 1983] where the frequency band is \(0 < f < a \) for a small \(a \). The averaging of the periodogram before taking the log in the least-squares estimation falls in the category of an ATS method [Cleveland et al., 1993]; averaging before moving to a log scale results in efficient least-squares estimation.

6.3. The Change in \(\theta \) and \(d \) with \(\alpha \)

For the 144 Auckland trace segments and \(k = 1, \ldots, 144 \), let \(\hat{\theta}_k \) be the estimates of the mixture coefficient \(\theta \), let \(\hat{d}_k \) be the estimates of the fractional exponent \(d \), and let \(\hat{\alpha}_k \) be the estimates of the packet rate \(\alpha \) described in Section 3, the inverse of the sample mean of the interarrivals. Figure 6 graphs \(\hat{\theta}_k \) and \(\hat{d}_k \) against \(\log_2(\hat{\alpha}_k) \) where \(\log_2 \) is log base 2. The smallest values of \(\hat{\theta}_k \) are close to 0.6; they tend to 1 as \(\log_2(\hat{\alpha}_k) \) increases, which means that \(z_n \) tends to white noise. Except for two large outliers, values of \(\hat{d}_k \) vary from about 0.28 to 0.35, a narrow range. The median, shown by the horizontal line, is 0.31. This suggests that \(d \) does not change appreciably with \(\alpha \) so that a fixed \(d \) of 0.31 is reasonable in our mathematical study of traffic statistics based on the MFSD model.

Section 8 presents a derivation of \(\theta \) as a function of \(\alpha \) using the MFSD model. Equations are solved that yield numeric values, leading to a model \(\theta(\alpha) \) for the dependence of \(\theta \) on \(\alpha \). The theoretical model agrees with the empirical pattern in Figure 6. This dependence of \(\theta \) on \(\alpha \) is a critical aspect of the statistical properties of the packet arrival process, so we switch to the notation \(\theta(\alpha) \) in coming sections.

Figure 6. Estimates of the GFSD mixture coefficient \(\theta \) and fractional exponent \(d \) for the 144 Auckland traces. \(\hat{\theta}_k \) (left panel) and \(\hat{d}_k \) (right panel) are plotted against \(\log_2(\hat{\alpha}_k) \), the log base 2 estimates of the packet rates. The horizontal line in the right panel show the median, 0.31, of the \(\hat{d}_k \).
6.4. Model Validation: Properties of the Power Spectrum

The validity of the GFSD model — its ability to account for the statistical time-series properties of \(z_u \) — was explored by studying power spectra, one description of the properties. Other descriptions are studied in later sections.

We study validity by comparing \(10 \log_{10}(\hat{I}(f_j)) \), which is a (noisy) nonparametric estimate of the log power spectrum, and \(10 \log_{10}(\hat{p}_z(f_j)) \) the GFSD model estimate with \(\theta(\alpha) = \hat{\theta}_k \) and \(d = \hat{d}_k \). Figure 7 shows the results for the 4 Auckland traces described in Section 4.6. Each panel of the top row graphs \(10 \log_{10}(\hat{I}(f_j)) \) (●) and \(10 \log_{10}(\hat{p}_z(f_j)) \) (—) against \(f_j \). The bottom row is similar, except that values are graphed against \(10 \log_{10}(f_j) \). Performance of the model fits is excellent; their departures from the nonparametric estimates are minor. This was the case for almost all of the packet trace segments of our validation study.

7. MFSD Model Validation: \(m \)-Sum Moment-Statistics

This section addresses the nonlinearity of \(t_u \) through a moment-statistic study of the \(m \)-sum process \(t_u^{(m)} \) as defined in Section 2. Normalized estimates of \(E\{(t_u^{(m)})^{q}\} \) are studied as a function of \(q \) and \(m \), which is a time scaling study for each \(q \). This multifractal analysis is a standard in the Internet traffic literature [Riedi and Vehel, 1997; Feldman et al., 1998b; Riedi et al., 1999; Gao and Rubin, 2001a; Abry et al., 2002; Maulik and Resnick, 2003; Masugi and Takuma, 2007; Shanga et al., 2008; Vieira and Lee, 2010]. For each trace segment we compared nonparametric moment-statistics of the \(t_u \) with the theoretical moment-statistics from both the Weibull and multiplicative MFSD models fitted to the \(t_u \). This provides an important look at nonlinear properties to aid validation, which very much justifies the analysis. However, it does not provide the foundational insights that arise from analyses in other sections.

For each trace segment, we estimated moments using the first \(n = 2^b \) observations of \(t_u \) where \(b \) is the largest integer in the log base 2 of the number of interarrivals. This was the same data selection method used in Section 6. Let \(t_u = \sum_{u=1}^n t_u \). The nonparametric \(q \)-th sample moment for the \(m \)-sum is

\[
S_q^{(m)} = \sum_{i=1}^{2^b - n} \left(\frac{t_u^{(m)}}{t_u} \right)^q.
\]

Values of \(m \) were \(m_r = 2^r \) for \(r = 0, \ldots, b - 1 \), and the moments were \(q = -10, -5, -2, 2, 5, 10 \).

The Weibull MFSD \(t_u \) has 4 parameters. Two are for the Weibull marginal of \(t_u \): the shape \(\lambda(\alpha) \) and the packet rate \(\alpha \). Two are for the associated Gaussian image \(z_u \): the fractional exponent \(\theta(\alpha) \) and the mixture coefficient \(\theta(\lambda) \). The fitted Weibull MFSD for each trace segment is the MFSD with parameter values equal to the estimates described in Sections 5 and 6: \(\hat{\alpha}, \hat{\lambda}, \hat{d}, \hat{\theta} \). The multiplicative MFSD \(t_u \) has 4 parameters. Two are for the log normal marginal: the mean \(\mu(\alpha) \) and variance \(\tau^2(\alpha) \) of \(\log(t_u) \). Their estimates \(\hat{\mu} \) and \(\hat{\tau} \) are the values for which the first and second moments of the log normal match the two moments of the Weibull with parameters \(\hat{\alpha} \) and \(\hat{\lambda} \). Two are for the
associated Gaussian image z_α: d and $\theta(\alpha)$. Their estimates are also those of Section 6: \hat{d} and $\hat{\theta}$, which are the same as those for the Weibull MFSD. We proceed with these estimates as if they were the true values.

We are unable to mathematically derive MFSD moment-statistics for the Weibull and multiplicative MFSD models, so simulation "derivations" were carried out for each
trace segment. Each run for a trace segment consisted of generation of 2^b values of the interarrivals from the fitted model, which is the same number of values used for the nonparametric moment-statistics. Moment statistics for the run are computed using Equation 1. Final values, $S_q^{(m)}$, are means across 100 runs.

Figure 8 is a moment-statistic m-plot for one Auckland trace.

For $r = 0, \ldots, b - 2$, let

$$
\kappa_{r,r+1}(q) = \frac{\log_2 \{ \hat{S}_q^{(m_{r+1})} \} - \log_2 \{ \hat{S}_q^{(m_r)} \}}{\log_2 \{ m_{r+1} \} - \log_2 \{ m_r \}} = \log_2 \{ \hat{S}_q^{(m_{r+1})} \} - \log_2 \{ \hat{S}_q^{(m_r)} \},
$$

the slopes of the line segments shown in Figure 8. Figure 9 is a moment-statistic m-slopeplot. Each panel of the figure plots the following: $\kappa_{r,r+1}(q)$ against q for the case shown in the upper strip label of the panel and for the $[r, r + 1]$ values shown in the
lower strip label. This is done just for $r = 0$ to 7. The line on each panel goes through the first two points to help judge linearity.

The most important aspect of Figures 8 and 9 is that the patterns for the nonparametric, Weibull MFSD, and multiplicative MFSD moment-statistics are similar, and agree with patterns of nonparametric moment-statistics seen in previous publications [Feldmann et al., 1998a; Riedi et al., 1999; Gao and Rubin, 2001a]. The two MFSD models are consistent with the data for this model checking method.

The nonlinearity of $\kappa_{r,r+1}(q)$ as a function of q shown in the panels of Figure 9 is an indicator of multifractal behavior [Riedi et al., 1999; Gilbert et al., 1999]. The patterns are concave for $[0, 1]$ and tend toward linear as $[r, r + 1]$ increases. Patterns for $[8, 9]$ and above, not shown, are very close to linear.

8. Modeling the Changing Statistical Properties with the Packet Rate

We have seen in Sections 5 and 6 that $\lambda(\alpha)$ and $\theta(\alpha)$ increase toward 1 with increasing α. The statistical properties of t_u change in a profound way with an increase in the traffic rate α because the expected number of active connections tends to increase with α. The parameters of the Weibull MFSD — the Weibull shape parameter $\lambda(\alpha)$ and the Gaussian image mixture parameter $\theta(\alpha)$ — reflect this change. Sections 5 and 6 show that each tends to 1 with α; the fractional exponent d does not change appreciably with α and is taken to be 0.31. The limit of $\lambda(\alpha)$ means that the marginal distribution of the Weibull MFSD t_u tends to exponential. The limit of $\theta(\alpha)$ means the z_u tend to Gaussian white noise. So the t_u tend to the interarrivals of a Poisson process. This is a
critical property that has an immense impact on queueing delay, and therefore on the network engineering.

Using the Weibull MFSD model, we can also study theoretically the change in $\lambda(\alpha)$ and $\theta(\alpha)$ with α. We do this in two ways. The first is a derivation by simulation in which traffic is generated using the Weibull MFSD model. The second is a heuristic mathematical derivation whose detail is described in the Appendix (Section 16). For both, we fix $d = 0.31$ and use initial values $\lambda_0 = 0.70$ and $\theta_0 = 0.55$ at the traffic rate $\alpha_0 = 2^{10.22}$ p/s, the smallest rate for the Auckland trace segments. The initial values were chosen so that the derivations provide the best fit to the estimates $\hat{\lambda}_k$ and $\hat{\theta}_k$ of Sections 5 and 6 as functions of the packet rate estimates $\hat{\alpha}_k$.

For the simulation, we generated 2 Weibull MFSD series, each with parameters λ_0 and θ_0 for the rate α_0. The two MFSD series were then numerically multiplexed, forming a series with rate $2^{11.22}$ p/s. $\lambda(\alpha)$ and $\theta(\alpha)$ were estimated using the methods employed in Sections 5 and 6 for the live and numerically multiplexed data, but with d fixed at 0.31. Then two series were generated at rate $2^{11.22}$ p/s using the estimated parameters, these two series were multiplexed, and then the parameters again estimated. This process continued up to rate $2^{17.22}$ p/s. The result is 8 values of $\lambda(\alpha)$ and $\theta(\alpha)$ including the initial values, and 8 associated values of α.

For the mathematical derivation, the process proceeds in a similar way, but with a different multiplexing method. r Weibull MFSD series with rates α_0 and parameters λ_0 and θ_0 were assumed to be multiplexed. Then values of $\lambda(\alpha)$ and $\theta(\alpha)$ for the multiplexed series were derived. The values of r were 2, 3, 4, 5, 7, 10, 14, 20, 28, 39, 55, 78, 110, 155. The rates for the derived parameters range from $2^{10.22}$ p/s to $2^{17.5}$ p/s. The result is 15 values of $\lambda(\alpha)$ and $\theta(\alpha)$ including the initial values, and 15 associated values of α.

Figure 10 graphs logit transformations of the derived values of the parameters, $\text{logit}_2(\lambda(\alpha)) = \log_2\{\lambda(\alpha)/(1 - \lambda(\alpha))\}$ and $\text{logit}_2(\theta(\alpha)) = \log_2\{\theta(\alpha)/(1 - \theta(\alpha))\}$, against $\log_2(\alpha)$. Each panel shows the simulation derived values (+) and the mathematically derived values (o) for one parameter. For both parameters, the two derivations are very close. This provides a necessary validation of the mathematically derived values because they use certain assumptions that are not true for a Weibull MFSD model, but that are believed not to affect the results. The logit transformation results in a nearly linear dependence on $\log_2(\alpha)$. The line on each panel is the least squares fit to the simulated values. The equations are

$$\text{logit}_2(\lambda(\alpha)) = -5.36 + 0.63 \log_2(\alpha)$$
$$\text{logit}_2(\theta(\alpha)) = -7.21 + 0.75 \log_2(\alpha).$$

The equations on the scales of the parameters are

$$\lambda(\alpha) = \frac{2^{-5.36} \alpha^{0.63}}{1 + 2^{-5.36} \alpha^{0.63}}. \quad (2)$$
$$\theta(\alpha) = \frac{2^{-7.21} \alpha^{0.75}}{1 + 2^{-7.21} \alpha^{0.75}}. \quad (3)$$

For arrival process generation for simulation, all parameters are now accounted for. α is specified as part of the simulation, $\lambda(\alpha)$ and $\theta(\alpha)$ are computed by the above models, and $d = 0.31$.

D. Anderson et al./MFSD and GFSD Models
Figure 11 graphs $\hat{\lambda}_k$ and $\hat{\theta}_k$ against $\hat{\alpha}_k$ for the 144 Auckland traces. The curves are an evaluation of Equations 2 and 3 plotted against $\log_2(\alpha)$. There is substantial statistical variability in $\hat{\lambda}_k$, $\hat{\theta}_k$, and $\hat{\alpha}_k$; the reason is that measured segments must be short to insure stationarity. The curves do a reasonable job of fitting the patterns of the estimates considering this variability.

9. GFSD Model Validation and Properties: Autocorrelation

The four time series considered in the GFSD, which are defined in Section 3, are h_u, s_u, n_u, and z_u. This section presents formulas for their autocorrelations, which sets the stage for Sections 10 and 12, where approximations of the autocorrelations are derived for both z_u and t_u that provide important insight about statistical properties.
This section also describes results of the validation study carried out for the observed z_u of each trace segment by comparing the standard nonparametric estimates of the autocorrelation function with that of a GFSD model fitted to the z_u. This parallels the analysis of Section 6 that used the power spectrum for model checking. Mathematically, the autocorrelation function is equivalent to the power spectrum in that each is a Fourier transform of the other, but both are used for validation since a small consistent departure across lags or frequencies of one can translate to a large departure locally at certain frequencies or lags of the other.

The autocorrelation function for n_u for $k \geq 1$ is $\rho_n(k) = 0$. The 3 other series, which are long-range dependent, have formulas that are easily derived from results of

![Graphical representation of the autocorrelation function and mixture parameter estimates.](image-url)
Hosking [1981]. The autocorrelation at lag $k \geq 1$ for h_{α}, s_{α} and z_{α}, respectively, are

$$\rho_h(k) = \frac{\Gamma(1-d) \Gamma(k + d)}{\Gamma(d) \Gamma(k - d + 1)} \prod_{i=1}^{k} \frac{(d+i-1)}{i-d}$$

(4)

$$\rho_s(k) = \rho_h(k) \frac{2(1-d)k^2 - (1-d)^2}{k^2 - (1-d)^2}$$

(5)

$$\rho_z(k) = (1 - \theta(\alpha))\rho_s(k).$$

(6)

$\rho_z(k) > 0$ and $\rho_z(k)$ goes to 0 with k to order k^{2d-1}, a signature property of the long-range dependence amply observed empirically in many studies.

The validation process for each trace segment begins, as described in Section 6, with a transformation to the observed Gaussian image z_u from the observed multifractal image t_u for $i = 1, \ldots, n$. The nonparametric estimate of autocorrelation at lag k for a segment is

$$n^{-1} \sum_{u=1}^{n-k} z_{u-k} z_u.$$

The GFSD model estimates of the autocorrelations are an evaluation of Equation 6 with d and $\theta(\alpha)$ equal to the estimates d_k and θ_k from Section 6.

Figure 12 graphs the nonparametric estimates (●) and the fitted GFSD estimates (—) against \sqrt{k} for the 4 Auckland trace segments described in Section 4. The square-root
lag is used because it allows better assessment of the autocorrelations for small lags. The fitted GFSD estimates provide an excellent fit to the nonparametric estimates. This is the case for almost all trace segments.

10. GFSD Model Properties: Near-Self-Similarity of h_u and s_u

The continuous time fGn process, which is the stationary increment of self-similar fBm, has an autocorrelation function approaching $d(2d + 1)k^{2d-1}$ as $k \to \infty$, a simple mathematical form that allows much insight and tractable mathematics [Norros, 1994]. It has the attractive property that the log of the autocorrelation is linear in the log of the lag. Hosking proposed h_u as a discrete-time analog of continuous-time fGn [Hosking, 1981].

The two independent components of the GFSD, s_u and n_u, are dependence extremes. One is white noise and the other is long-range dependent. The properties of n_u are easy to understand. The question is how we conceive of the long-range dependence of s_u as an aid to our foundational understanding of the properties of z_u. How close is s_u, a moving two-sum of h_u, to self-similar? This depends on how close h_u is to self-similar.

Following the notation of Section 2, the m-sums of s_u and h_u are $s_u^{(m)}$ and $h_u^{(m)}$. The m-scaled-sums are these m-sums divided by $m^{d+0.5}$,

$$
\tilde{s}_u^{(m)} = m^{-d-0.5}s_u^{(m)}, \\
\tilde{h}_u^{(m)} = m^{-d-0.5}h_u^{(m)}.
$$

The m-scaled-sums of a self-similar process are identical processes. We study closeness to self-similarity by studying how close the m-scaled-sums of s_u and h_u are to being identical processes. Since h_u and s_u are Gaussian processes, closeness is determined by the closeness across values of m of the autocovariance function of each m-sum.

Throughout this section we denote the fractional exponent as d. However, as in previous sections, we take $d = 0.31$ when the values of expressions including d are enumerated to check approximations. Of course this means the results apply only to $d = 0.31$, sufficient for our purposes here.

10.1. Approximating the Autocorrelation Functions of h_u and s_u

A first question is whether the autocorrelation function of h_u,

$$
\rho_h(k) = \frac{\Gamma(1-d)}{\Gamma(d)} \frac{\Gamma(k+d)}{\Gamma(k-d+1)},
$$

is well approximated by a constant times k^{2d-1}. From Stirling’s formula,

$$
\lim_{k \to \infty} \frac{\Gamma(k+d)}{\Gamma(k-d+1)} k^{2d-1} = 1,
$$
so we approximate by

\[\tilde{\rho}_h(k) = \frac{\Gamma(1-d)}{\Gamma(d)} k^{2d-1}. \]

This is not the only possibility; for example, we could attempt an approximation in which the constant is chosen so that \(\tilde{\rho}_h(1) = \rho_h(1) \).

The left panel of Figure 13 plots \(\log_2(\rho_h(k)) (\circ) \) and \(\log_2(\tilde{\rho}_h(k)) (\longrightarrow) \), both with \(d = 0.31 \). Against \(\log_2(k) \) for \(k = 1, \ldots, 8 \), \(\tilde{\rho}_h(k) \) is an excellent approximation for these 8 lags. The largest discrepancy is at \(k = 1 \): \(\rho_h(1)/\tilde{\rho}_h(1) = 1.012 \), which is very small. For \(k = 2, \ldots, 8 \), the discrepancy decreases, and continues decreasing for \(k > 8 \).

For \(s_u \), the approximation of \(\rho_s(k) \) uses that for \(\rho_h(k) \) and then takes another step. Since \(s_u = h_u + h_{u-1} \),

\[\rho_s(k) = \frac{1-d}{2} \{ \rho_h(k - 1) + 2\rho_h(k) + \rho_h(k + 1) \}. \]

The first step approximates by substituting \(\tilde{\rho}_h(k) \) for \(\rho_h(k) \),

\[\frac{(1-d)\Gamma(1-d)}{2\Gamma(d)} \{ (1 - 1/k)^{2d-1} + 2 + (1 + 1/k)^{2d-1} \} k^{2d-1}. \]

The second approximation simplifies by replacing each of the two terms \((1 - 1/k)^{2d-1} \) and \((1 + 1/k)^{2d-1} \) by 1 to get

\[\tilde{\rho}_s(k) = \frac{2\Gamma(2-d)}{\Gamma(d)} k^{2d-1} = 2(1-d)\tilde{\rho}_h(k). \]

The approximation is exact in the limit,

\[\lim_{k \to \infty} \tilde{\rho}_s(k) = 1. \]
In the right panel of Figure 13, \(\log_2(\rho_s(k)) \) (○) and \(\log_2(\tilde{\rho}_s(k)) \) (—), again with \(d = 0.31 \) are plotted against \(\log_2(k) \) for \(k = 1, \ldots, 8 \). For \(k = 1, \ldots, 4 \), values of \(\rho_s(k)/\tilde{\rho}_s(k) \) are 1.235, 1.034, 1.014, and 1.007. For \(k > 4 \), the differences are negligible. \(\tilde{\rho}_s(k) \) as an approximation is reasonably close at lag \(k = 1 \) and excellent for \(k \geq 2 \).

10.2. Autocovariances of \(m \)-Sums

This section examines how close the autocovariance functions of \(\tilde{s}_v^{(m)} \) are to one another across \(m \), and similarly for \(\tilde{h}_v^{(m)} \). We first determine an \(m \) beyond which the autocovariance functions are nearly the same. The smaller this value of \(m \), the closer \(h_u \) or \(s_u \) is to self-similar. Variances are treated first and then autocovariances at positive lags. The approximations \(\tilde{\rho}_h(k) \) and \(\tilde{\rho}_s(k) \) are used in formulas for the autocovariances in place of \(\rho_h(k) \) and \(\rho_s(k) \) for two reasons. First, it aids the assessment of self-similarity. Second, it provides simplification of formulas, both here and in later sections, which aids mathematical investigations.

10.2.1. Variances

For \(m \geq 1 \), the variance of \(\tilde{s}_v^{(m)} \) is

\[
V_{\tilde{s}_v^{(m)}} = \frac{1}{m^{2d+1}} \left(m + 2 \sum_{k=1}^{m} (m - k) \rho_s(k) \right). \tag{7}
\]

Replacing \(\rho_s(k) \) with \(\tilde{\rho}_s(k) \) in the right side of this equation, we have

\[
\frac{1}{m^{2d+1}} \left(m + \frac{4 \Gamma(2 - d)}{\Gamma(d)} \sum_{k=1}^{m} (m - k) k^{2d-1} \right).
\]

Replacing the summation by an integral in this last expression we get

\[
\frac{2\Gamma(2 - d)}{\Gamma(d+1)(2d+1)} + \left(1 - \frac{2\Gamma(2 - d)/\Gamma(d)}{d} \right) m^{-2d} + \frac{4\Gamma(2 - d)/\Gamma(d)}{2d+1} m^{-2d-1}.
\]

For \(d = 0.31 \), the first term dominates quickly as \(m \) increases, so we drop the other two terms, which results in the final approximation

\[
\tilde{V}_{\tilde{s}_v^{(m)}} = \frac{2\Gamma(2 - d)}{\Gamma(d+1)(2d+1)}, \tag{8}
\]

Following the same line of reasoning for \(h_u \) results in an approximation for the variance of \(\tilde{h}_v^{(m)} \),

\[
\tilde{V}_{\tilde{h}_v^{(m)}} = \frac{\sigma^2_h \Gamma(1 - d)}{\Gamma(d+1)(2d+1)} = \frac{\sigma^2_h \tilde{V}_{\tilde{s}_v^{(m)}}}{2(1 - d)}, \tag{9}
\]

where \(\sigma^2_h = (1 - d)/2 \) is the variance of \(h_u \).
The approximations of $V^{(m)}_h$ and $V^{(m)}_s$ in Equations 8 and 9 are constants for all m, the result for a self-similar process. So we judge the self-similarity of h_u and s_u by the closeness of the approximations. Figure 14 graphs both the true (○) and the approximate (—) variances against m for $d = 0.31$. For $\tilde{V}^{(m)}_h / \sigma^2_h$, the true variances are very close to constant. The largest deviation of the approximation, at $m = 1$, is 8%; the remaining deviations fall quickly toward 0 as m increases. Thus h_u is very close to satisfying the variance property of self-similarity. For $\tilde{V}^{(m)}_s / \sigma^2_s$, the deviation of the approximation is a moderate 25% at $m = 1$, but falls quickly to 8% at $m = 2$ and 4% at $m = 3$. Thus s_u is very close to satisfying the variance property of self-similarity for $m \geq 2$.

The results of Equations 8 and 9 are consistent with Theorem 2.2 of Beran [1994] on asymptotic behavior, derived using the power spectrum. The theorem states that if the autocorrelation function of a long-range dependent series with fractional exponent d converges to ck^{2d-1} as k gets large, then the m-scaled-sum variance converges to $c(d(2d+1))^{-1}$. In our case, $c = 2\Gamma(2-d)/\Gamma(d)$ for s_u and $c = \sigma^2_h \Gamma(1-d)/\Gamma(d)$ for h_u.

![Figure 14](image-url)
10.2.2. Autocovariances for Lags Greater Than 0

For \(k \geq 1 \), the autocovariance function of \(\tilde{s}_v^{(m)} \) is

\[
C_{\tilde{s}_v^{(m)}}(k) = \frac{1}{m^{2d+1}} \left(\sum_{j=-m}^{m} (m - |j|) \rho_s(km + j) \right).
\]

We approximate using an approach similar to that for the variance. \(\tilde{\rho}_s(k) \) approximates \(\rho_s(k) \), and an integral from \(-m\) to \(m\) approximates the resulting summation. This results in the final approximation of \(C_{\tilde{s}_v^{(m)}}(k) \) for \(k \geq 1 \),

\[
\tilde{C}_{\tilde{s}_v^{(m)}}(k) = \frac{2\Gamma(2 - d)}{\Gamma(d)} k^{2d-1} = \tilde{\rho}_s(k). \tag{10}
\]

The same line of reasoning is used for approximating \(C_{\tilde{h}_v^{(m)}}(k) \),

\[
\tilde{C}_{\tilde{h}_v^{(m)}}(k) = \frac{\sigma_h^2 \Gamma(1 - d)}{\Gamma(d)} k^{2d-1} = \sigma_h^2 \tilde{\rho}_h(k). \tag{11}
\]

The approximations of \(C_{\tilde{s}_v^{(m)}} \) and \(C_{\tilde{h}_v^{(m)}} \) in Equations 10 and 11 are constants for all \(m \), the result for a self-similar process. So we judge the self-similarity of \(h_u \) and \(s_u \) by the closeness of the approximations. The top row of Figure 15 graphs \(C_{\tilde{s}_v^{(m)}}(k) \) (○) and \(\tilde{C}_{\tilde{s}_v^{(m)}}(k) \) (—) against \(m \) for \(d = 0.31 \) and 6 values of lag: \(k = 1, 2, 3, 10, 30, 100 \). The bottom row does the same for \(C_{\tilde{h}_v^{(m)}}(k)/\sigma_h^2 \) and \(\tilde{C}_{\tilde{h}_v^{(m)}}(k)/\sigma_h^2 \). For \(\tilde{h}_v^{(m)} \), the approximation is excellent for all values of \(m \) and \(k \) shown, becomes more accurate as either \(m \) or \(k \) increase. The same is true of \(\tilde{s}_v^{(m)} \) for \(k \geq 2 \); for \(k = 1 \) the approximation deviates somewhat for \(m \leq 5 \).

10.3. Near-Self-Similarity of \(h_u \) and \(s_u \)

The above results show \(h_u \) is very close to self-similar for \(d = 0.31 \). The term “discrete fGn” is certainly appropriate. \(s_u \) is not as close to self-similar, but is not far off; this would be expected since \(s_u \) is a moving 2-sum of \(h_u \). However, \(s_u \) is certainly close enough to self-similar to allow it be thought of as such for the purpose of foundational, intuitive reasoning for the Gaussian image, \(z_u \). \(z_u \) is a mixture of a near-self-similar series and a white noise series where the mixture parameter \(\theta(\alpha) \) increases toward 1 as \(\alpha \to \infty \). As we will see in later sections, we can also apply this intuition for the second moment properties of the multifractal image \(t_u \).

11. GFSD Model Properties: Rate-Time Analysis of Variance and Autocorrelation

This section treats the variances of the \(m \)-statistics of \(z_u \), and how they change with increasing \(m \), which is time scaling.
An m-statistic study is a time scaling analysis that has been widely used as a basis for understanding traffic statistical properties. The variance time plot is one of most used methods of such study. It consists of a display of the log m-mean variance against log m [Paxson and Floyd, 1995; Leland et al., 1994; Crovella and Bestavros, 1997; Riedi et al., 1999; Fraleigh et al., 2003; Karagiannis et al., 2004; Gong et al., 2005; Tutsch et al., 2008; Park et al., 2011]. The common pattern of the log variance with increasing log m is decreasing, convex, and a slope tending to $2d - 1$.

Time scaling analysis is at its base, a frequency domain concept. The m-mean is a digital low-pass filter whose pass-band becomes more concentrated near zero as m increases. However, analyses have stayed in the time domain through a study of the variances and autocorrelation properties. This classical study has been almost exclusively empirical using nonparametric estimates of autocovariances, and with little guidance from theory. In this section, with the benefit of the structure of the GFSD model for z_u, we add much insight into the statistical properties of m-statistics. The model provides more fundamental drivers of the properties.
11.1. Variance

11.1.1. GFSD Model Validation

We use a variance time plot for validation of the GFSD model as done using the power spectrum in Section 6 and the autocorrelation function in Section 9. This follows the same initial procedures as in Section 6. The first 2^b values of the n observations of t_u are analyzed, where b is the greatest integer in $\log_2(n)$, and \log_2 is log base 2. The 2^b values are transformed to observed z_u using the empirical cumulative distribution function of the selected t_u. The values of m are taken to be $m_r = 2^r$ for $r = 0, \ldots, b - 5$.

The classical nonparametric estimate of the variance for the variance time plot for each m_r is the sample variance, $\hat{V}_{z_u}^{(m)}$, of the values of $z_u^{(m)}$, $v = 1, \ldots, 2^b/m_r$. Figure 16 is a variance rate-time plot that compares the nonparametric and model values. On each panel, $\log_2 \{ V_{z_u}^{(m_r)} \}$ (—) and $\log_2 \{ \hat{V}_{z_u}^{(m_r)} \}$ (●) are plotted against $\log_2(m_r)$ for each one of the 4 Auckland trace segments described in Section 4. The packet rates of the segments are shown in the strip labels at the tops of the panels. The model variances are very close to the nonparametric variances for the 4 segments, as they are for almost all trace segments, providing another validation of the GFSD modeling of z_u.

11.1.2. Time and Rate Scaling Analysis of Variance

The driver of the effects of m and α on $V_{z_u}^{(m)}$ is the changing relative contributions of the independent Gaussian components of z_u, $\sqrt{\theta}n_u$ and $\sqrt{1 - \theta}s_u$, to $V_{z_u}^{(m)}$ as m and α change. The two components are dependence extremes, white noise and near-self-
similar, respectively.

\[z_v^{(m)} = \sqrt{(1 - \theta(\alpha))s_v^{(m)}} + \sqrt{\theta(\alpha)n_v^{(m)}} , \]

\[V_{z_v^{(m)}} = (1 - \theta(\alpha))V_{s_v^{(m)}} + \theta(\alpha)V_{n_v^{(m)}} \]

\[= (1 - \theta(\alpha))V_{s_v^{(m)}} + \theta(\alpha)m^{-1} . \] (12)

We see that \(m \) and \(\alpha \) influence the variance by changing the relative importance of the first and second terms. Figure 16 is close to the classic plotting method. It becomes a rate-time plot simply because four traces are displayed with different rates. This was fine for validation purposes. While we can see certain properties as \(\alpha \) and \(m \) change, other alterations in methodology increase substantially the effectiveness of the analysis.

The form of the GFSD makes clear that it is not sufficient to study just time scaling in isolation. Time scaling and the packet rate, \(\alpha \), interact. So we replace the classical method with a time-rate analysis method, taking both \(m \) and \(\alpha \) into account. In addition, we change the classical \(m \)-statistic, the \(m \)-mean, replacing it by the \(m \)-scaled-sum, \(\tilde{z}_v^{(m)} = m^{-d-0.5}z_v^{(m)} \), which is used in Section 10. This change, while it might seem minor, has a very big impact on the effectiveness of visual assessment of the patterns on the time-rate visual display because a self-similar process now has constant variance and autocorrelation across \(m \) for fixed rate \(\alpha \).

The \(m \)-scaled-sums of \(z_u \), \(s_u \), and \(n_u \) are related by

\[z_v^{(m)} = \sqrt{(1 - \theta(\alpha))s_v^{(m)}} + \sqrt{\theta(\alpha)n_v^{(m)}} , \]

so their variances are related by

\[V_{z_v^{(m)}} = (1 - \theta(\alpha))V_{s_v^{(m)}} + \theta(\alpha)V_{n_v^{(m)}} = (1 - \theta(\alpha))V_{s_v^{(m)}} + \theta(\alpha)m^{-1} . \]

The effects of \(m \) and \(\alpha \) are determined by the changing relative contributions of \(\theta(\alpha)m^{-1} \) and \((1 - \theta(\alpha))V_{z_v^{(m)}} \) to \(V_{z_v^{(m)}} \). In other words, the simple structure of the GFSD leads to a straightforward assessment.

We approximate \(V_{z_v^{(m)}} \) using the approximation of \(V_{z_v^{(m)}} \) given in Equation 8, which results in

\[\hat{V}_{z_v^{(m)}} = (1 - \theta(\alpha)) \frac{2\Gamma(2 - d)}{(2d + 1)\Gamma(d + 1)} + \theta(\alpha)m^{-2d} . \] (13)

For \(d = 0.31 \), the estimate of \(d \) described in Section 8, Equation 13 becomes

\[\hat{V}_{z_v^{(m)}} = 1.25(1 - \theta(\alpha)) + \theta(\alpha)m^{-0.62} . \] (14)

We do not, as in the classical approach, take the log of \(\hat{V}_{z_v^{(m)}} \) since it would make the simple additive structure non-additive and thus harder to assess. Instead, assessment is aided by letting \(m = 2r \) and studying the variance as a function of \(r \) and \(\alpha \).

Overall, the accuracy of the approximation is excellent. For \(m = 1 \), \(V_{z_v^{(m)}} = 1 \), but \(\hat{V}_{z_v^{(m)}} = 1 + 0.25(1 - \theta(\alpha)) \). At \(\theta(\alpha) = 0.6 \), close to the smallest value observed in the data, the error is 0.1, off by only 10%; as \(\theta(\alpha) \) goes to 1 from 0.6, the error
decreases to 0. As \(r \) increases, the error for fixed \(\theta(\alpha) \) monotonically decreases with \(r \). The approximation is, in fact, the asymptotic value

\[
\lim_{m \to \infty} \frac{\hat{V}_v(m)}{\hat{V}_v(0)} = 1.
\]

The high accuracy is illustrated in Figure 17. \(\hat{V}_v(m) \) and \(\hat{\hat{V}}_v(m) \) are plotted against 16 values of \(r \) from 0 to 15 for 3 values of \(\log_2(\alpha) \): 10.5, 13.5, and 16.5 \(\log_2(\text{packets/sec}) \). 10.5 and 16.5 are close to the minimum and maximum log rates of the Auckland trace segments. The horizontal lines show the asymptotic values. The accuracy is certainly good enough to use \(\hat{\hat{V}}_v(m) \) for study of general properties of time and rate scaling.

So far, the discussion has shown the rate effect through \(\theta(\alpha) \), which increases to 1 with increasing \(\alpha \). However, Section 8 derives a logistic model for \(\theta(\alpha) \). We substitute the expression for \(\theta(\alpha) \), Equation 3, into Equation 14 to relate \(\hat{\hat{V}}_v(m) \) directly to \(\alpha \). We could study the relative contributions of the two additive terms in Equation 14 through the ratio of the second term to the sum, which is the fraction of variance due to the white noise component. Instead, because of the logistic model for \(\theta(\alpha) \), we study the “log odds”,

\[
\zeta(\alpha, m) = \log_2 \left\{ \frac{\theta(\alpha)m^{-0.62}}{1.25(1 - \theta(\alpha))} \right\}.
\]

Substituting for \(\theta(\alpha) \) yields a very simple equation,

\[
\zeta(\alpha, m) = -7.53 + 0.75 \log_2(\alpha) - 0.62 \log_2(m).
\] (15)
Equation 15 gives much insight into the time-rate scaling of \(z_u \). If \(\log_2(\alpha) \) increases by 1 for fixed \(m \), which means the packet rate doubles, then \(\zeta(\alpha, m) \) increases by 0.75 and the variance ratio by a factor of \(2^{0.75} = 1.68 \). For a given \(m = m_0 \), let \(m'_0 > m_0 \) be the value of \(m \) that makes up for the increase in the variance of the white noise term and brings the ratio back to the original value, that is \(\zeta(\alpha, m'_0) = \zeta(2\alpha, m_0) \). This achieved by \(m'_0 = 2.31 m_0 \), which means a time scale increase must “over-compensate” to equalize the effect of rate scale increase. This is a different instance of the concept of “multiplexing gains” from rate increase discussed in the literature [Sriram and Whitt, 1986; Duffield, 1996; Erramilli et al., 1996; Krishnan, 1996; Cao et al., 2002; Karagiannis et al., 2004], but just qualitatively, without the form and quantification of Equation 15.

Equation 15 also shows quantitatively the progression of \(\tilde{z}_v^{(m)} \) to white noise as \(\alpha \) increases for any fixed value of \(m \), and the progression of \(\tilde{z}_v^{(m)} \) to near-self-similar as \(m \) increases for any fixed value of \(\alpha \). This is illustrated in Figure 18. \(\zeta(\alpha, m) \) is plotted against \(\log_2(m) \) for each of four values of \(\log_2(\alpha) \): 10.5, 13.5, 16.5, and 19.5 log base 2 p/s. The points for each value of \(\log_2(\alpha) \) lie on a line; the intercepts of the lines increase with \(\log_2(\alpha) \). The lowest rate is close to the value of 1000 p/s below which the MFSD model is not valid, as discussed in Section 1. To help the interpretation of the quantitative information on the display, the horizontal dashed lines show values of \(\zeta(\alpha, m) \) for which the percentages of the variances of the white noise term are, from top to bottom, 99%, 95%, 5%, and 1%.

For \(\log_2(m) = 0 \) and \(\log_2(\alpha) = 19.5 \), \(\sqrt{\theta(\alpha)n_v(0)} = \sqrt{\theta(\alpha)n_v} \) accounts for a little more than 99% of the variance of \(\tilde{z}_v^{(0)} = z_v \), so \(z_v \) is very close to white noise. It takes an \(m \) of \(2^{22} \) to get to a point where \(\sqrt{(1 - \theta(\alpha))\tilde{s}_v^{(m)}} \) is about 99% of the variance of \(\tilde{z}_v^{(m)} \), making \(\tilde{z}_v^{(m)} \) very close to self-similar. By contrast, for \(\log_2(m) = 0 \) and \(\log_2(\alpha) = 10.5 \), \(\sqrt{\theta(\alpha)n_v} \) accounts for just 56% of the variance of \(z_v \). In this case, an \(m \) of only \(2^{11} \) is sufficient to get to a point where \(\sqrt{(1 - \theta(\alpha))\tilde{s}_v^{(m)}} \) is about 99% of the variance of \(\tilde{z}_v^{(m)} \), because the initial \(z_v \) is closer to self-similar than when the rate \(\alpha \) is larger.

11.2. Autocorrelation

In the past, little time scaling analysis of autocorrelation has been carried out directly, compared with that for variance. In one instance, a very informative work, Hannig et al. [2001] observed empirically that the autocorrelations of \(m \)-means of arrival counts in fixed intervals increase with increasing \(m \). Next we carry out rate-time analysis of the autocorrelation function, \(\rho_{\tilde{z}_v^{(m)}}(k) \). The analysis proceeds in a manner very similar to that of the above analysis of the variance, so we proceed quickly to the approximate formulas that provide the insight.

First,

\[
\rho_{\tilde{z}_v^{(m)}}(k) = \frac{C_{\tilde{z}_v^{(m)}}(k)}{\tilde{V}_{\tilde{z}_v^{(m)}}} = \frac{(1 - \theta(\alpha))C_{\tilde{z}_v^{(m)}}(k)}{\tilde{V}_{\tilde{z}_v^{(m)}}}.
\]
Using approximations in Equations 10 and 13 leads to the $\hat{\rho}_{\tilde{z}(m)}(k)$ approximation

$$
\hat{\rho}_{\tilde{z}(m)}(k) = \frac{(1 - \theta(\alpha))2\Gamma(2 - d)/\Gamma(d)}{\theta(\alpha)m^{-2d} + (1 - \theta(\alpha))2\Gamma(2 - d)/[\Gamma(d + 1)(2d + 1)]}k^{2d-1}.
$$

Taking $d = 0.31$, the overall estimate of d from our trace segments, and using Equations 14 and 15, results in

$$
\hat{\rho}_{\tilde{z}(m)}(k) = \frac{0.50}{1 + 2\zeta(\alpha,m)}k^{2d-1} = \frac{0.50}{1 + 2^{-7.53+0.75\log_2(\alpha)-0.62\log_2(m)}}k^{2d-1}.
$$

Equation 17 shows the driver for the rate and time properties, and our understanding of them, is $\zeta(\alpha, m)$. This makes conclusions for the autocorrelations remarkably similar to those for the variance. The equation shows quantitatively the progression of $\rho_{\tilde{z}(m)}(k)$ to the zero autocorrelations of white noise as the rate α increases for any fixed value of m, and the progression to the near-self-similar autocorrelations $0.5k^{2d-1}$ as m increases for any fixed value of α. Note that for m, this is in agreement with the above results of Hannig et al. [2001]. As with the variance, the greater the value of α, the greater m must be to bring the autocorrelation function close to that of near-self-similar. In addition, the increase in m must “overcompensate”, a part of the concept of multiplexing gains.
12. MFSD Autocorrelation

In previous sections we have studied extensively the properties of z_u, the Gaussian image of t_u, as a prelude to understanding t_u. In this and coming sections we address the MFSD model for t_u. In doing this, however, we use the multiplicative MFSD in place of the Weibull MFSD. The increased tractability leads to important results, and our validation process shows the approximation is excellent.

The log normal parameters are the mean and variance, $\mu(\alpha)$ and $\tau^2(\alpha)$, of $\log(t_u)$, the notation reflecting the fact that the mean and variance change with α. The chosen log normal is that whose first two moments match those of the Weibull. The resulting values are

$$\tau^2(\alpha) = \log(\Gamma(1 + 2/\lambda(\alpha))) - 2\log(\Gamma(1 + 1/\lambda(\alpha)))$$

$$\mu(\alpha) = -\tau^2(\alpha)/2 - \log(\alpha)$$

$$\sigma^2(\alpha) = \frac{\Gamma(1 + \frac{1}{\alpha^2})}{\alpha^2\Gamma^2(1 + \frac{1}{\lambda(\alpha)})} - \frac{1}{\alpha^2}$$

As $\alpha \to \infty$, $\lambda(\alpha) \to 1$, so $\mu(\alpha) \to -\infty$ and $\tau^2(\alpha) \to \log(2) = 0.693$. The minimum value of $\lambda(\alpha)$ observed in our data is about 0.6 for which $\tau^2(\alpha) = \log(4.09) = 1.41$. $\tau(\alpha)^2$ decreases monotonically as α increases.

In this section we consider the autocorrelation function of t_u and its approximation. Because $t_u t_{u-k}$ is also log normal, $L(2\mu(\alpha), 2\tau(\alpha)^2(1 + \rho_z(k)))$, the autocorrelations have a simple formula

$$\rho_t(k) = \frac{\exp(\tau^2(\alpha)\rho_z(k) - 1)}{\exp(\tau^2(\alpha) - 1)}.$$

There is also strong empirical validation. The log normal MFSD $\rho_t(k)$ with $d = 0.31$ and $\mu(\alpha)$ and $\tau(\alpha)^2$ estimated from each of the trace segments, almost always provides a good fit to the standard nonparametric estimate of autocorrelation for the segment. This is illustrated in Figure 19. The nonparametric estimates (●) and the estimates from the log normal MFSD $\rho_t(k)$ (—) are plotted against square root of lag for the 4 Auckland trace segments used in previous sections. Taking statistical variability into account, which includes correlation in the estimates across the lags, the fit is good.

The autocorrelations of z_u, $\rho_z(k)$, while highly persistent, are not large; almost all values are below 0.25, and beyond the first few lags, are below 0.10. The values of $\tau^2(\alpha)$ for α above about 1000 packets/sec, range from about 1.41 to 0.693 as α increases. The resulting values of $\tau(\alpha)^2\rho_z(k)$ are small enough that the term $\exp\{\tau(\alpha)^2\rho_z(k)\}$ in Equation 21 is very well approximated by a first order power series approximation, $1 + \tau^2(\alpha)\rho_z(k)$. Let

$$\phi(\alpha) = \frac{\tau^2(\alpha)}{\exp(\tau^2(\alpha) - 1)}.$$

The above first order approximation results in an even simpler autocorrelation approximation of $\rho_t(k)$ for lag $k \geq 1$

$$\hat{\rho}_t(k) = \phi(\alpha)\rho_z(k) = \phi(\alpha)(1 - \theta(\alpha))\rho_s(k) = (1 - \hat{\theta}(\alpha))\rho_s(k).$$
The astonishing result is that the autocorrelations of the multiplicative MFSD are.

where

\[\hat{\theta}(\alpha) = 1 - \phi(\alpha)(1 - \theta(\alpha)). \]

For \(d = 0.31 \), Figure 20 graphs the values of the log normal MFSD \(\rho_k(k) \) from Figure 19 for lags 1 to 64 (○) and the values of \(\hat{\rho}_k(k) \) (–). Except for lag 1, which has a minor departure, the approximation is very close. Figures 19 and 20 provide an important validation for the autocorrelation structure of the MFSD model.

The astonishing result is that the autocorrelations of the multiplicative MFSD are
very well approximated by those of a GFSD, not the Gaussian image of the MFSD with the value $\bar{\theta}(\alpha)$, but rather with $\hat{\theta}(\alpha)$. We have

$$\hat{\theta}(\alpha) - \theta(\alpha) = (1 - \phi(\alpha))(1 - \theta(\alpha)),$$

so $\hat{\theta}(\alpha)$ is larger, which means the approximating GFSD has a larger white noise component than the Gaussian image. For α increasing, starting at about 1000 packets/sec, the lower limit of validity of the MFSD and GFSD models, we have $\theta(\alpha)$ goes from 0.60 to 1, $\tau^2(\alpha)$ go from 1.41 to 0.693, $\phi(\alpha)$ goes from 0.456 to 0.693, $\theta'(\alpha)$ goes from 0.818 to 1, and $\theta'(\alpha) - \theta(\alpha)$ goes from 0.218 to 0. What this means is that the second moment results for z_u in Sections 9, 10, and 11 hold for t_u as well.

Simulation studies of network designs are critical to network traffic engineering. This has been discussed in Section 1. We need a fast traffic generation method for simulations, especially for those with large traffic rates α. We have developed a fast generation method. The method uses the multiplicative MFSD. Next we describe the method and the heuristic reasoning behind it.

Consider the $t_v^{(m)}$ of a multiplicative MFSD. So long as m is not too large and α is large enough, arrivals within $t_v^{(m)}$ are approximately Poisson. The reason is that for the generating GFSD, the component s_u does not contribute as much to the variation in $t_v^{(m)}$ if m is not too big because the $(1 - \theta(\alpha))s_u$ component has most of its power at low frequencies, while the $\theta(\alpha)n_u$ component is white noise. This means that, conditional on $t_v^{(m)}$, the arrival process within the interval is approximately uniform over the interval.

So we generate an MFSD series that serves as $t_v^{(m)}$, and then simply generate $m - 1$ random uniforms for each interval to get the interarrivals. This makes traffic generation faster by a factor of about m. $m = 100$ is a big saving, but yet m qualifies for all but small α. In fact, the smallest m that works increases with increasing α because the influence of $\theta(\alpha)n_u$ increases and the contribution of $(1 - \theta(\alpha))s_u$ decreases. A full quantitative study of m and α for this matter is beyond the scope of the paper.

The first step in a generation is to choose α. Next we generate $t_v^{(m)}$ as a multiplicative MFSD, $\exp\{\tau^*(\alpha)z_u^* + \mu^*(\alpha)\}$, where z_u^* is a GFSD with parameters $\theta^*(\alpha)$ and d, $d = 0.31$ based on results from Section 6. Next we describe how we get the parameters $\tau^*(\alpha), \mu^*(\alpha)$, and $\theta^*(\alpha)$.

We need $\theta(\alpha)$ and $\lambda(\alpha)$, calculated from the logistic models described in Section 11. We need $\mu(\alpha)$ and $\tau^2(\alpha)$, calculated from $\lambda(\alpha)$ and α using Equations 18 and 19. We then compute $\hat{\theta}(\alpha)$ from Equations 22 and 24), which is larger than $\theta(\alpha)$. In addition, we compute the variance of t_u, $\sigma_t(u)$ from Equation 20.

We derive an approximation of the mean, variance and autocovariance of $t_v^{(m)}$. The derivation brings together results of Sections 10, 11 and 12. One derivation is for the variance $V_u(t_v^{(m)})$, and the other for the autocovariance $C_u(t_v^{(m)}(k))$ for $k \geq 1$. The success depends on the result of Section 12 that the autocorrelations of t_u are very well approximated by those of a GFSD (Equation 23). This allows us to apply the results in
Section 10 for \(z_v^{(m)} \) to obtain results for \(t_v^{(m)} \). It was convenient in that section to work with \(m \)-scaled-sums, \(z_v^{(m)} \), but results hold also for \(z_v^{(m)} \) with obvious changes in formulas to take account of the scaling factor \(m^{d+0.5} \) and the variance \(\sigma^2_t(\alpha) \) not being equal to 1.

To get the approximate variance \(\hat{V}_{t_v^{(m)}}(\alpha) \) and approximate autocovariance \(\hat{C}_{t_v^{(m)}}(k) \), we simply apply the results of the approximations in Section 10 for a GFSD model (Equations 8 and 10) with \(d \) and mixture parameter \(\bar{\theta}(\alpha) \), and multiply the results by the factors \(m^{2d+1} \) and \(\sigma^2_t(\alpha) \). We then have the approximate variance and autocovariance

\[
\hat{V}_{t_v^{(m)}} = \sigma^2_t(\alpha) \left(\bar{\theta}(\alpha) m + (1 - \bar{\theta}(\alpha)) \frac{2\Gamma(2 - d)}{(2d + 1)\Gamma(d + 1)} m^{2d+1} \right)
\]

\[
\hat{C}_{t_v^{(m)}}(k) = \sigma^2_t(\alpha)(1 - \bar{\theta}(\alpha)) \frac{2\Gamma(2 - d)}{\Gamma(d)} m^{2d+1} k^{2d-1}.
\]

Furthermore it is straightforward to obtain the exact mean of \(t_v^{(m)} \),

\[
E(t_v^{(m)}) = \frac{m}{\alpha}.
\]

We obtain \(\theta^*(\alpha), \tau^*(\alpha), \) and \(\mu^*(\alpha) \) by matching the mean, variance, and autocovariance of \(\exp\{\tau^*(\alpha) z_v^{*} + \mu^*(\alpha)\} \) using Equations 25, 26, and 27.

\[
\tau^{*2}(\alpha) = \log \left(1 + \frac{\hat{V}_{t_v^{(m)}}}{(m/\alpha)^2} \right)
\]

\[
\mu^*(\alpha) = \log \left(\frac{m}{\alpha} \right) + \frac{1}{2} \log \left(1 + \frac{\hat{V}_{t_v^{(m)}}}{(m/\alpha)^2} \right)
\]

\[
\theta^*(\alpha) = 1 - \frac{d(2d + 1)\Gamma(d) \exp(\tau^{*2}(\alpha)) - 1}{2\Gamma(2 - d) \tau^{*2}(\alpha)}
\]

The results in Equations 25 and 26 are validated using live trace segments. For validation, we compared the approximate variances and autocovariances from Equations 25 and 26 to standard nonparametric estimates of the variances and autocovariances. We are interested in reasonable values of \(m \), since these \(m \) values achieve a significant reduction in the number of values that describe the traffic.

We found that Equations 25 and 26 did an excellent job of fitting the nonparametric estimates. Figures 21 and 22 illustrate the results for the 4 Auckland traces described in Section 4. The standard nonparametric sample variances and autocovariances of \(t_v^{(m)} \) (●) are normalized by dividing by the sample variance of the \(t_v \). The approximate variances and autocovariances (—) are normalized by dividing by the variance \(\sigma^2_t(\alpha) \). As we have done in all validation studies discussed in the paper, the base model parameters are taken to be the estimates \(\lambda, \theta, \) and \(\bar{\theta} \) described in Sections 5 and 6.
Fig 21. The log base 2 of normalized nonparametric estimates of variances (●), and the log base 2 of normalized approximate variances (—) for $t_{c}^{(m)}$, are plotted against $\log_{2}(m)$ for the 4 Auckland trace segments.

Fig 22. For $m = 128$, normalized nonparametric estimates of autocovariances (●), and normalized approximate autocovariances (—) for $t_{v}^{(m)}$ are plotted against \sqrt{k} for the 4 Auckland trace segments.

In Figure 21, the log base 2 of the normalized approximate variances and nonparametric variances are plotted against $\log_{2}(m)$. The approximation is excellent consid-
ering that variance estimates from long-range dependent time series have large variability. In Figure 22 the normalized approximate and nonparametric autocovariances are plotted against square root lag for \(n = 128 \). The fits are excellent, again given the variability due to long-range dependence.

14. VoIP Traffic Engineering

14.1. Background

The MFSD model in this article applies to the superposed packet arrival process of the many different types of applications on commodity Internet links. For example, a core link on the Comcast or Verizon or AT&T network. One part of traffic engineering addresses this aggregate traffic.

However, contained within this traffic are applications that need special attention because they have more stringent QoS requirements than most applications. This is true of certain real-time applications. VoIP, voice over the Internet is one of them. Service providers often give priority queueing to VoIP packets. An arriving VoIP packet is moved forward in the queue to be in front of all packets with no priority queueing.

Among the handful of studies that report on VoIP packet traces, Birke et al. [2007] and Ciullo et al. [2008] study VoIP packet traces collected on FastWeb, where VoIP did not get priority queueing. Xi et al. [2010] analyzed live VoIP data collected on the Global Crossing international network, where VoIP calls received priority queueing. They studied the statistical properties of the VoIP traffic as it enters the network on VoIP gateways. They built a generation model for this “offered load”. It operates quite differently from the MFSD. Each call consists of two semi-calls, caller-to-callee and callee-to-caller. Individual semi-calls are modeled. To carry out generation for a simulation, semi-calls are generated through time and multiplexed on the computer, resulting in a single stream for simulation.

VoIP packets need to reach the destination quickly, no more than about 150 ms from end-to-end. VoIP packets have 20 ms spacing, which must be maintained to a degree at the destination so the codec can receive them and assemble them to provide real-time continuous speech. Deviations from 20 ms are jitter; absolute jitter must achieve an upper bound of 30 ms with very high probability.

One question is whether priority queueing is needed. We ran a small simulation to illustrate one way to answer the question. A real simulation would need to be much more expansive in investigating a very wide range of traffic rates. In our illustrative simulation the VoIP packets are multiplexed with MFSD packets but are not given priority queueing. We investigate how much MFSD traffic can be mixed with the VoIP traffic before VoIP QoS problems arise.

For this simulation, we do not need to use valid VoIP traffic, for example, generated by the above VoIP model. Simple test VoIP traffic will do because the result is dominated by the queueing properties of the MFSD traffic because, as in real life, in our simulation the VoIP traffic has a much smaller bit rate.
14.2. Illustrative Simulation

We generated commodity multi-application traffic using our MFSD model and the fast method of Section 13. We need packet sizes, too, for this simulation. The packet sizes were generated independently using the empirical distribution of sizes from the traffic collection of Section 4. We set the packet rate as $\alpha = 2^{12}$ packets/sec. The average packet size is 772.22 bytes/packet. So the mean bit-rate of the synthetic multi-application traffic is 25.3 megabits/sec.

We take the VoIP packets to be 200 bytes each, the value for the commonly used 64 kilobits/sec capture rate, take the 20 ms accumulation interval, as in [Xi et al., 2010]. We generate a constant stream of VoIP packets arriving at the queue at a rate of one per ms. This represents a stream for multiple semi-calls. Note the VoIP traffic rate of 1.6 megabits/sec is small compared with α, that of the other traffic. The synthetic multi-application traffic and the synthetic VoIP traffic are superposed to form the input stream to a FIFO queue. Simulation run time was 1 hour.

We describe the three simulation runs of our study. For each, we first choose the utilization U, the average traffic rate divided by the link speed. The three runs have values $U = 0.1, 0.3,$ and 0.5 respectively. The traffic packet rate is $\alpha = 2^{12}$ packets/sec = 25.3 megabits/sec, so the corresponding link speeds are $L = 25.3/U$ megabits/sec.

Let A_i be the arrival time of the ith packet and B_i its packet size. The queueing delay of the ith packet in the multiplexed packet stream is calculated as

$$D_i = [D_{i-1} + B_{i-1}/L - (A_i - A_{i-1})]^+.$$

In each run, we study the distribution of the delays of the VoIP packets V_k. Jitter is computed from the delays of the VoIP packets that are 20ms apart,

$$J_k = V_k - V_{k-20}.$$

We study the distribution of the absolute jitter values $|J_k|$.

For each of the three utilizations — $U = 0.1, 0.3, 0.5$ — we compute the sample quantiles of the two distributions, delay and absolute jitter, at frequencies 0.00005 to 0.99995 in steps of 0.0001. Figures 23 and 24 graph the quantiles against the frequencies. Both delay and absolute jitter increase significantly as U increases. VoIP QoS criteria specify upper bounds, so the upper tails are of particular interest. Table 2 shows the 0.99, 0.999, 0.9999 quantiles.

Now the simulation study is for one hop which means one queue. The criteria — 150 ms for delay and 30 ms for absolute jitter — are end-to-end, which means many

<table>
<thead>
<tr>
<th>Quantile</th>
<th>Utilization 0.1</th>
<th>Utilization 0.3</th>
<th>Utilization 0.5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Absolute Jitter</td>
<td>Delay</td>
<td>Absolute Jitter</td>
</tr>
<tr>
<td>0.99</td>
<td>0.0456</td>
<td>0.0431</td>
<td>0.2305</td>
</tr>
<tr>
<td>0.999</td>
<td>0.0729</td>
<td>0.0642</td>
<td>0.3486</td>
</tr>
<tr>
<td>0.9999</td>
<td>0.0932</td>
<td>0.0884</td>
<td>0.4742</td>
</tr>
</tbody>
</table>
queues. Other studies show that the number of hops has a limit of about 30. To be conservative we use this for planning. We simply divide the end-to-end criteria to get single hop criteria of 5 ms for delay and 1 ms for absolute jitter. Table 2 shows that a utilization between 0.3 and 0.5 would satisfy criteria for a traffic rate of 25.3 megabits/sec. Simulation runs at other utilizations can, of course, find exact values. Just these values alone are encouraging. Elimination of VoIP priority queuing might in fact be feasible. The traffic rate of 25.3 megabits/sec is not large, and a U in the range suggested for this rate is not unreasonable. Furthermore, higher traffic rates can be expected to give even better results.

15. Discussion

Following the discovery of long-range dependence of Internet traffic in 1994-1995, there was a very active 15-year period of empirical study that provided much understanding of the properties of the packet arrival process. However, what was not achieved was the development of a mathematical, statistical model for the interarrival process that achieved three important goals: (1) extensive validation; (2) mathematical tractability; (3) a useable synthetic generation of packet arrivals for studies in network engineering. Work declined over the 15-year period in model development. However, the need for such a model for mathematical study and simulation study is as strong as in 1994. Network traffic engineering depends heavily on both. Network traffic engineering is still critical for optimal Internet performance.

The work presented here provides such a demonstration for the MFSD model. There
are a number of surprises. One is that the model is very simple, but yet does an excellent job of describing the statistical properties of the interarrivals, as the extensive validation shows. The MFSD for t_u has a Weibull marginal, and is a nonlinear transformation of a Gaussian GFSD, which is a mixture of a near-self-similar process and white noise. The GFSD provides a simple foundation for understanding, and leads to straightforward synthetic generation.

Another surprise is that while the nonlinear transformation certainly changes dramatically the statistical properties of the MFSD, the second moment properties of the MFSD are those of a GFSD; the transformation changes the second moments somewhat, but leaves their fundamental structure the same.

The GFSD and MFSD models capture the important properties of the Internet traffic. As the traffic rate increases, the packet arrival process tends toward Poisson.

It might seem surprising that a model satisfying the above three goals did not appear much earlier. One reason is that the vast majority of traffic studies analyzed packet counts in fixed intervals such as 10 ms, instead of the packet interarrivals. This represents a data reduction that makes computation easier through having a much smaller dataset. However, it is not possible to discover and investigate the MFSD by analyzing just counts. The work here addresses directly the arrival process because that is what the routers see, and what must be addressed in studies of network engineering, and because it is mathematically, the foundational process.

The understanding that the MFSD model brings is important in and of itself. But more importantly, the understanding leads to a very practical result: a mechanism for fast valid generation of the packet arrival process for simulations to aid network engi-
16. Appendix: Derivations of λ and θ for Changing α

16.1. Heuristic Derivation of λ

We present a heuristic derivation for λ in this section, under the simplified assumption of renewal processes. Assume there are r i.i.d renewal processes, where r is a positive integer. Each renewal process has a Weibull marginal distribution with parameters α and λ. From the analysis of the trace segments in the previous sections, we notice the marginal distribution for the live traffic statistical multiplexing process (superposition process) is Weibull with parameters $\lambda(r)$ and $\alpha(r)$, where the increasing traffic rate is $\alpha(r) = r\alpha$.

Based on the Weibull marginal distribution for the individual renewal processes, we have the marginal density of their statistical multiplexing process [Cox, 1962]:

$$g^r(t) = -\frac{d}{dt} \left(e^{-\left(\alpha \Gamma(1+\frac{1}{\lambda})\right)^\lambda} \left(\int_t^\infty \alpha e^{-\left(x \alpha \Gamma(1+\frac{1}{\lambda})\right)^\lambda} dx \right)^{r-1} \right).$$

The median β^r of the distribution with density $g^r(t)$ is found by solving the following equation:

$$e^{-\left(\beta^r \alpha \Gamma(1+\frac{1}{\lambda})\right)^\lambda} \left(1 - \alpha \int_0^{\beta^r} e^{-\left(x \alpha \Gamma(1+\frac{1}{\lambda})\right)^\lambda} dx \right)^{r-1} = 0.5. \quad (31)$$

We approximate the distribution with density $g^r(t)$ by a Weibull distribution with parameters $\lambda(r)$ and $\alpha(r)$ whose median matches β^r.

$$\beta^r = \left(\frac{\log 2}{r \alpha \Gamma(1 + 1/\lambda(r))} \right). \quad (32)$$

We solve Equation 32 for $\lambda(r)$. The right hand side of Equation 32 changes monotonically with $\lambda(r)$. Hence there is a unique solution for $\lambda(r)$.

16.2. Heuristic Derivation of θ

Assume there are r i.i.d MFSD source processes t_u. Each has a Weibull marginal distribution with parameters α and λ. The corresponding Gaussian image z_u of a source process t_u follows a GFSD model with parameters θ and d. From the analysis of trace segments in the previous sections, we observe the values of the fractional difference parameter d do not change appreciably under different traffic rates. We then fix the value of d to be the median of the estimates in Section 6. Let

$$d(r) = d = 0.31.$$
For the Weibull marginal distribution of the statistical multiplexing process \(t_u \), we have the estimates \(\hat{\alpha}(r) = r \alpha \), and \(\hat{\lambda}(r) \) obtained from Equation 32.

\(\theta(r) \) can be obtained from the autocorrelation at lag 1 for the Gaussian image \(z_u \) of the statistical multiplexing process \(t_u \) as follows:

\[
\theta(r) = 1 - \frac{\rho_u^{\alpha}(1)(2 - d)}{d + 1}.
\]

To estimate \(\theta(r) \), we first compute \(\rho_u^{\alpha}(1) \) for the statistical multiplexing process \(t_u \), then obtain \(\rho_u^{\alpha}(1) \) from \(\rho_i^{(1)}(1) \), and apply Equation 33.

In order to obtain \(\rho_i^{(1)}(1) \), first we examine the sources of the arrivals that lead to the two consecutive interarrival times in the superposition process, \(t_u \) and \(t_{u+1} \). Assume the \(u \)-th arrival \(a_u \) in the statistical multiplexing process is the \(j \)-th arrival from source 1. Note \(t_u = a_u - a_{u-1} \). Let \(t_{i,j} \) be the \(j \)-th interarrival time from source \(i \), and \(V_i \) be a forward recurrence time (the time from an arbitrary time point until the next arrival) for source \(i \). To find the autocorrelation between \(t_u \) and \(t_{u+1} \), we examine the following five cases:

1. The arrivals \(a_{u-1} \) and \(a_{u+1} \) both come from source 1. Then \(t_u \) and \(t_{u+1} \) are two consecutive interarrival times from source 1. We have \(\rho_u(1) = \rho_i(1) \).
2. The arrival \(a_{u+1} \) comes from source 1, but the arrival \(a_{u-1} \) comes from a different source \(i \). We have \(t_u = t_{1,j+1} \) and \(t_{u+1} = V_i - \eta \), where \(\eta \) is the sum of interarrival times and forward recurrence times from sources other than source 1. Then as in Case 1, \(\rho_u(1) = \rho_i(1) \).
3. The arrival \(a_{u-1} \) comes from source 1, but the arrival \(a_{u+1} \) comes from a different source \(i \). Then \(t_u = t_{1,j} \) and \(t_{u+1} = V_i \). Since the individual source processes are independent, \(\rho_u(1) = 0 \).
4. The arrivals \(a_{u-1} \) and \(a_{u+1} \) come from different sources, and neither comes from source 1. Assume arrival \(a_u \) come from source \(i \), \(i \neq 1 \). Then \(t_u = V_i \) and \(t_{u+1} = V_i \). We have \(\rho_u(1) = \text{Corr}(V_i, V_i) = 0 \).
5. The arrivals \(a_{u-1} \) and \(a_{u+1} \) both come from the same source \(i \), \(i \neq 1 \). This is exactly the same as Case 4. Again \(t_u = V_i \) and \(t_{u+1} = V_i \). \(\rho_u(1) = 0 \).

Hence under the first two cases \(\rho_u(1) = \rho_i(1) \), while under the last three cases \(\rho_u(1) = 0 \). Let the minimum forward recurrence time from all other sources be \(V_{min} = \min_{i=2,...,r} V_i \). Case 1 and 2 occur when \(a_u \) and \(a_{u+1} \) both come from source 1. This implies \(t_{1,j+1} < V_{min} \). Therefore,

\[
\Pr(\text{Case 1 or 2}) = \Pr(t_{1,j+1} < V_{min}).
\]

Thus, we have

\[
\rho_u(1) = \Pr(t_{1,j+1} < V_{min}) \text{Corr}(t_{1,j}, t_{1,j+1}|t_{1,j+1} < V_{min}).
\]

It remains to solve for both terms on the right hand side of Equation 34. Based on the density of a forward recurrence time from one source process [Cox, 1962], we obtain the density for \(V_{min} \), the minimum of \(r - 1 \) forward recurrence times. Since \(t_{1,j+1} \) is Weibull with parameters \(\lambda \) and \(\alpha \), and independent of \(V_{min} \), we have

\[
P(t_{1,j+1} < V_{min}) = 1 - (r - 1)\alpha \int_0^\infty e^{-2y^\lambda/\psi} \left(1 - \alpha \int_0^y e^{-x^\lambda/\psi} dx\right)^{r-2} dy,
\]
where $\psi = (\alpha \Gamma(1 + \frac{1}{\lambda}))^{-\lambda}$.

Next we approximate the joint density of two consecutive interarrival times from the same source process, t_j and t_{j+1}, by converting the joint density of their Gaussian images z_j and z_{j+1}, $z_j = Z^{-1}(W(t_j))$, and ignoring the correlation between t_j and t_{j+1} in the Jacobian matrix. Let $\rho = \rho_z(1) = \text{Corr}(z_j, z_{j+1})$. We have the following approximate density, up to a normalizing factor:

$$f_W(t_j, t_{j+1}) \propto \frac{1}{\sqrt{1 - \rho^2}} \exp\left\{ -\frac{1}{2} \frac{1}{1 - \rho^2} \left\{ \rho^2 (Z^{-1}(W(t_j)) + Z^{-1}(W(t_{j+1})))^2
+ 2(\rho^2 - \rho)Z^{-1}(W(t_j))Z^{-1}(T(t_{j+1})) \right\} \right\}
\times \frac{\lambda^2}{\psi^2} (t_j t_{j+1})^{\lambda-1} \exp\left\{ -\left(t_j^\lambda + t_{j+1}^\lambda \right)/\psi \right\}. $$

Using $f_W(t_j, t_{j+1})$ combined with $P(t_{1,j+1} < V_{\text{min}})$, $\text{Corr}(t_{1,j}, t_{1,j+1}|t_{1,j+1} < V_{\text{min}})$ can be calculated.

There are two ways to compute $\rho^*_z(1)$, either using Equation 34 or directly using the approximate joint density $f_W(t_j, t_{j+1})$, because $f_W(t_j, t_{j+1})$ can be applied to two consecutive interarrival times t_u^+ and t_{u+1}^+ in the superposition process as well. This provides a numerical method for us to find $\rho_z^*(1)$ from a given $\rho_z^*(1)$.

We first obtain the estimate $\hat{\rho}_z^*(1)$ using Equation 34. With $\lambda(r)$ obtained using Equation 32 and $\rho_z^*(1) = r \alpha$, we evaluate $f_W(t_j, t_{j+1})$ over a grid of potential $\rho_z^*(1)$ values. For each $\rho_z^*(1)$ value we compute the corresponding $\rho_z^*(1)$ directly using $f_W(t_j, t_{j+1})$. The estimate $\hat{\rho}_z^*(1)$ is the one that provides the closest match to $\rho_z^*(1)$ obtained from Equation 34. Then we apply Equation 33 to have an estimate of $\hat{\theta}(r)$.

References

http://www.endace.com/. Endace DAG.

