CHARACTERIZING THE WEAK
CONVERGENCE OF STOCHASTIC INTEGRALS

by

Thomas G. Kurtz
Dept. of Math. & Statistics
University of Wisconsin-Madison
Madison, WI 53706

and

Philip Protter
Dept. of Math. & Statistics
Purdue University
West Lafayette, IN 47907-1399

Technical Report # 91-08

Department of Statistics
Purdue University

February 1991
CHARACTERIZING THE WEAK CONVERGENCE OF STOCHASTIC INTEGRALS

by

Thomas G. Kurtz¹
Dept. of Math. & Statistics
University of Wisconsin-Madison
Madison, WI 53706

and

Philip Protter²
Dept. of Math. & Statistics
Purdue University
West Lafayette, IN 47907-1399

ABSTRACT

Let \((H^n, X^n)\) be a sequence of càdlàg, adapted processes converging weakly to \((H, X)\). \(X^n\) is a good sequence of semimartingales if the above implies that \(\int H^n_u^- dX^n_u\) converges weakly to \(\int H_u^- dX_u\). We show that the known sufficient conditions for the sequence \(X^n\) to be good are also necessary. We further show that if \(X^n\) is good, then \(\int H^n_u^- dX^n_u\) is also good.

¹Supported in part by NSF grant #DMS–8901464
²Supported in part by NSF grant #DMS–8805595
For \(n = 1, 2, \ldots \), let \(\Xi_n = (\Omega^n, \mathcal{F}^n, (\mathcal{F}^n_t)_{t \geq 0}, P^n) \) be a filtered probability space, let \(H^n \) be càdlàg and adapted, and let \(X^n \) be a càdlàg semimartingale. A fundamental question is: Under what conditions does the convergence in distribution of \((H^n, X^n)\) to \((H, X)\) imply that \(X \) is a semimartingale and that \(\int_0^t H^n_{s-} \, dX^n_s \) converges in distribution to \(\int_0^t H_{s-} \, dX_s \)? A slightly more general formulation would put conditions on the sequence \(X^n \) alone such that the convergence above holds for all such sequences \(H^n \). A sequence with this property will be called good. To be precise, let \(\mathcal{M}^{km} \) denote the real-valued, \(k \times m \) matrices, and let \(\mathcal{D}_E[0, \infty) \) denote the space of càdlàg, \(E \)-valued functions with Skorohod topology.

Definition: For \(n = 1, 2, \ldots \), let \(X^n \) be an \(\mathbb{R}^k \)-valued, \((\mathcal{F}^n_t)\)-semimartingale, and let the sequence \((X^n)_{n \geq 1}\) converge in distribution in the Skorohod topology to a process \(X \). The sequence \((X^n)_{n \geq 1}\) is said to be good if for any sequence \((H^n)_{n \geq 1}\) of \(\mathcal{M}^{km} \)-valued, càdlàg processes, \(H^n(\mathcal{F}^n_t) \)-adapted, such that \((H^n, X^n)\) converges in distribution in the Skorohod topology on \(\mathcal{D}_{\mathcal{M}^{km} \times \mathbb{R}^m}[0, \infty) \) to a process \((H, X)\), there exists a filtration \((\mathcal{F}_t)\) such that \(H \) is \((\mathcal{F}_t)\)-adapted, \(X \) is an \((\mathcal{F}_t)\)-semimartingale, and

\[
\int_0^t H^n_{s-} \, dX^n_s \Rightarrow \int_0^t H_{s-} \, dX_s.
\]

Jakubowski, Mémin and Pagès [1] give a sufficient condition for a sequence \((X^n)_{n \geq 1}\) to be good called "uniform tightness" or "UT". This condition uses the characterization of a semimartingale as a good integrator (see e.g., Protter [4]), and requires that it hold uniformly in \(n \). On \(\Xi_n \), let \(\mathcal{H}^n \) denote the set of elementary predictable processes bounded by 1: that is, \(\mathcal{H}^n = \{H^n: H^n \text{ has the representation } H^n_t = H^n_0 \mathbb{1}_{\{0\}}(t) + \sum_{i=1}^{p-1} H^n_{t_i} \mathbb{1}_{(t_i, t_{i+1})}(t), \text{ with } H^n_i \in \mathcal{F}^n_{t_i}, \, p \in \mathbb{N}, \text{ and } 0 = t_0 < t_1 < \ldots < t_p < \infty, \, |H^n_t| \leq 1 \} \).

Definition: A sequence of semimartingales \((X^n)_{n \geq 1}\), \(X^n \) defined on \(\Xi_n \), satisfies the condition UT if for each \(t > 0 \) the set \(\{ \int_0^t H^n_s dX^n_s, \, H^n \in \mathcal{H}^n, \, n \in \mathbb{N} \} \) is stochastically bounded.

Theorem 1. (Jakubowski–Mémin–Pagès). If \((H^n, X^n)\) on \(\Xi_n \) converges in distribution to \((H, X)\) in the Skorohod topology and if \((X^n)_{n \geq 1}\) satisfies UT, then there exists a filtration
such that X is an (F_t)-semimartingale and $\int H^u_{s-} \, dX^u_s$ converges in distribution in the Skorohod topology to $\int H_{s-} \, dX_s$. That is, the sequence $(X^n)_{n \geq 1}$ is good.

The condition UT is sometimes difficult to verify in practice. An alternative condition is given in Kurtz and Protter [2]. To “subtract off” the large jumps in a Skorohod continuous manner, define $h_\delta: [0, \infty) \to [0, \infty)$ by $h_\delta(r) = (1 - \delta/r)^+$, and $J_\delta: D_{R^m}[0, \infty) \to D_{R^m}[0, \infty)$ by

$$J_\delta(x)(t) = \sum_{0 \leq s \leq t} h_\delta(|\Delta x_s|) \Delta x_s,$$

where $\Delta x_s = x(s) - x(s-)$. Let $\int_0^t |dA_s|$ denote the total variation of the process A from 0 to t (ω by ω).

Theorem 2. (Kurtz–Protter). Let (H^n, X^n) on Ξ_n converge in distribution to (H, X) on Ξ in the Skorohod topology on $D_{M^{n,m} \times R^m}[0, \infty)$. Fix $\delta > 0$ (allowing $\delta = \infty$) and let $X^{n,\delta} = X^n - J_\delta(X^n)$. Then $X^{n,\delta}$ is a semimartingale and let $X^{n,\delta} = M^{n,\delta} + A^{n,\delta}$ be a decomposition of $X^{n,\delta}$ into an (F^n_t)-local martingale and an adapted process of finite variation on compacts. Suppose

$$(*) \text{ For each } \alpha > 0, \text{ there exist stopping times } T^{n,\alpha} \text{ such that } P(T^{n,\alpha} \leq \alpha) \leq \frac{1}{\alpha} \text{ and }$$

$$\sup_n E\{[M^{n,\delta}, M^{n,\delta}]_{t \wedge T^{n,\alpha}} + \int_0^{t \wedge T^{n,\alpha}} |dA^{n,\delta}_s|\} < \infty.$$

Then there exists a filtration (F_t) on Ξ such that H is (F_t)-adapted and X is an (F_t)-semimartingale, and $(H^n, X^n, \int H^n_{s-} \, dX^n_s)$ converges in distribution to $(H, X, \int H_{s-} \, dX_s)$ in the Skorohod topology on $D_{M^{n,m} \times R^m \times R^s}[0, \infty)$. That is, $(X^n)_{n \geq 1}$ is good.

It is shown in Kurtz and Protter [2] and also in Mémin and Slominski [3] that UT and $(*)$ are equivalent sufficient conditions for the sequence (X^n) of (vector–valued) semimartingales to be good.

The next theorem, which is the principal result of this note, shows that the sufficient conditions of Jakubowski–Mémin–Pagès and Kurtz–Protter are also necessary.

Theorem 3. Let X^n be a sequence of vector–valued semimartingales on filtered probability spaces Ξ_n. If X^n is a good sequence, then X^n satisfies the condition UT and the condition $(*)$ of Theorem 2.
Proof: Since UT and (*) are equivalent, it suffices to show that UT holds. We treat the case \(k = m = 1 \) for notational simplicity.

Suppose that \((X^n)_{n \geq 1}\) is a good sequence but that UT does not hold. Then there exists a sequence \((H^n)_{n \geq 1}\), \(H^n \in \mathcal{H}_n\), and a sequence \(c_n\) tending to \(\infty\) such that for some \(\varepsilon > 0\),

\[
\liminf_{n \to \infty} P^n\{ \int H^n_s^- \, dX^n_s \geq c_n \} \geq \varepsilon.
\]

But this implies

\[
(1) \quad \liminf_{n \to \infty} P^n\{ \int \frac{1}{c_n} H^n_s^- \, dX^n_s \geq 1 \} \geq \varepsilon
\]

as well. Since \(|H^n| \leq 1\), we have that \(\frac{1}{c_n} H^n\) converges in distribution (uniformly) to the zero process. Since \(X^n\) is good by hypothesis, then \(\int \frac{1}{c_n} H^n_s^- \, dX^n_s\) converges in distribution to \(\int 0 \, dX_s = 0\). This contradicts (1), and we have the result. \(\square\)

We can employ the argument in the previous proof to show that the property of goodness is inherited through stochastic integration.

Theorem 4. Let \((X^n)_{n \geq 1}\) be a sequence of \(\mathbb{R}^m\)-valued semimartingales, \(X^n\) defined on \(\Xi_n\), with \((X^n)_{n \geq 1}\) being good. If \(H^n\) defined on \(\Xi_n\) are càdlàg, adapted, \(\mathcal{M}^{km}\)-valued processes, and \((H^n, X^n)\) converges in distribution in the Skorohod topology on \(\mathcal{D}_{\mathcal{M}^{km} \times \mathbb{R}^m}[0, \infty)\), then \(Y^n_t = \int_0^t H^n_s^- \, dX^n_s\) is also a good sequence of semimartingales.

Proof: Let \(k = m = 1\). By Theorem 1, it is sufficient to show that \((Y^n)\) satisfies UT. Suppose not. Then, as in the proof of Theorem 3, there exists a sequence \((\tilde{H}^n)\) with \(\tilde{H}^n \in \mathcal{H}^n\), a sequence \(c_n\) tending to \(\infty\), and \(\varepsilon > 0\) such that

\[
\liminf_{n \to \infty} P^n\{ \int \tilde{H}^n_s^- \, dY^n_s \geq c_n \} \geq \varepsilon.
\]

and equivalently

\[
\liminf_{n \to \infty} P^n\{ \int \tilde{H}^n_s^- H^n_s^- \, dX^n_s \geq c_n \} \geq \varepsilon.
\]

which implies
\(\liminf_{n \to \infty} P^n \left\{ \frac{1}{c_n} \tilde{H}_{\pi}^n - H_{\pi}^n \ dX^n \geq 1 \right\} \geq \varepsilon \)

But, as before, the goodness of \(X^n \) implies that the stochastic integral in (2) converges to zero contradicting (2) and verifying UT for \(Y^n \).

As an application of the preceding, we consider stochastic differential equations. Suppose that for each \(n \), \(U^n \) is adapted, càdlàg and \(X^n \) is a semimartingale on \(\Xi_n \), \((U^n, X^n) \Rightarrow (U, X) \), and \(X^n \) is a good sequence. Let \(F^n, F \) be, for example, Lipschitz continuous such that \(F^n \to F \) uniformly on compacts, and let \(Z^n, Z \) be the unique solutions of
\[
Z^n_t = U^n_t + \int_0^t F^n(Z^n_s) dX^n_s
\]
\[
Z_t = U_t + \int_0^t F(Z_s) dX_s.
\]

Then combining Theorem 4 with Theorem 5.4 of [2] (or similar results in [3] or [5]) yields that \(Z^n \) is also a good sequence converging of course to \(Z \). The preceding holds as well for much more general \(F^n, F \); see [2]. In particular by taking \(F^n(x) = F(x) = x \), we have that \(X^n \) a good sequence implies that \(Z^n = \mathcal{E}(X^n) \) is a good sequence, where \(\mathcal{E}(\mathcal{Y}) \) denotes the stochastic exponential of a semimartingale \(Y \).

REFERENCES

