A Normal Limit Theorem
For Moment Sequences
by
Fu-Chuen Chang J.H.B. Kemperman*
Purdue University Rutgers University

and

W.J. Studden**
Purdue University

Technical Report # 90-40

Department of Statistics
Purdue University

August, 1989
Revised August, 1991

* Research supported in part by NSF Grant DMS-9002856
** Research supported in part by NSF Grant DMS-9101730

*
A Normal Limit Theorem
For Moment Sequences
by
Fu-Chuen Chang J.H.B. Kemperman*
Purdue University Rutgers University
and
W.J. Studden**
Purdue University

ABSTRACT

Let Λ be the set of probability measures λ on $[0,1]$. Let $M_n = \{(c_1, \ldots, c_n) \mid \lambda \in \Lambda\}$ where $c_k = c_k(\lambda) = \int_0^1 x^k d\lambda$, $k = 1, 2, \ldots$ are the ordinary moments, and assign to the moment space M_n the uniform probability measure P_n. We show that, as $n \to \infty$, the fixed section (c_1, \ldots, c_k) properly normalized is asymptotically normally distributed. That is, $\sqrt{n}[(c_1, \ldots, c_k) - (c^0_1, \ldots, c^0_k)]$ converges to $\text{MVN}(0, \Sigma)$ where c^0_i correspond to the arcsin law λ_0 on $[0,1]$. Properties of the $k \times k$ matrix Σ are given as well as some further discussion.

1. Introduction and Main Theorem

The set of probability measures on $[0,1]$ is denoted as Λ, let further

$$M_n = \{(c_1, \ldots, c_n) \mid \lambda \in \Lambda\},$$ \hspace{1cm} (1.1)

where $c_k = c_k(\lambda) = \int_0^1 x^k \lambda(dx)$, $k = 0, 1, 2, \ldots$; $(c_0 = 1)$. This so-called moment space M_n is the convex hull of the curve $\{(x, x^2, \ldots, x^n) : 0 \leq x \leq 1\}$ in \mathbb{R}_n and is a very small compact subset of the unit cube $[0,1]^n$. For instance, it is known that

$$V_n = \text{Vol} \ M_n = \prod_{k=1}^n B(k, k) = \prod_{k=1}^n \frac{\Gamma(k)\Gamma(k)}{\Gamma(2k)};$$ \hspace{1cm} (1.2)

see Karlin and Studden 1966, p. 129, Theorem 6.2; (another proof is given below). Thus V_n is roughly of size 2^{-n^2}, more precisely, $\log V_n \approx -n^2 \log 2$ as $n \to \infty$.

*Research supported in part by NSF Grant DMS-900-2856
**Research supported in part by NSF Grant DMS-9101730
Our investigations stem from an attempt to understand more fully the shape and structure of M_n by looking, in some sense, at a typical point of M_n. Let P_n be the uniform probability measure on M_n, i.e., $dP_n = dx/V_n$ is n-dimensional Lebesgue measure on M_n normalized by the volume of M_n. In this way $(c_1, \ldots, c_n) \in M_n$ can now be viewed as a random vector. The symbol E_n will indicate expected values relative to P_n.

For example, M_2 is determined by the inequalities $c_1^2 \leq c_2 \leq c_1 \leq 1$ and has volume $V_2 = \frac{1}{6}$ thus $dP_2 = 6dc_1dc_2$ on M_2. The marginal densities of c_1, c_2 are $6(c_1 - c_2^2)$, $0 < c_1 < 1$, and $6(\sqrt{c_2} - c_2)$, $0 < c_2 < 1$, respectively. The means are $E_2[c_1] = 1/2$ and $E_2[c_2] = 2/5$ and the squared correlation is $35/38$. General closed form expressions even for, say, the means $E_n[c_k]$ seem difficult to obtain.

The so-called center (c_1^0, \ldots, c_n^0) of the moment space M_n is given by

$$c_k^0 = \int_0^1 x^k f_0(x) dx = 2^{-2k} \binom{2k}{k} \approx \frac{1}{\sqrt{\pi k}} \text{ as } k \to \infty.$$ \hspace{1cm} (1.3)

Here, $f_0(x) = \pi^{-1} x^{-1/2} (1 - x)^{-1/2}$, $0 < x < 1$, is the density of the arc-sin probability measure λ_0 on $[0,1]$. The word "center" will become clearer below. Our main result is the following.

Theorem 1.1. As $n \to \infty$, the distribution of $\sqrt{n}[(c_1, \ldots, c_k) - (c_1^0, \ldots, c_k^0)]$ relative to P_n converges to a multivariate normal distribution $\text{MVN}(0, \Sigma_k)$. Here, $\Sigma_k = \frac{1}{2} A_k A_k'$ with A_k as the lower triangular $k \times k$ matrix defined by

$$a_{ij} = 2^{-2i+1} \binom{2i}{i - j} \text{ if } 1 \leq j \leq i;$$

$$= 0 \quad \text{ if } j > i;$$

(1.4)

thus $a_{ii} = 2^{-2i+1}$. In particular, if c_k is governed by P_n and $n \to \infty$ then $c_k \to c_k^0$ in probability.

By $A = (a_{ij}; 1 \leq i, j < \infty)$ we will denote the corresponding infinite lower triangular matrix, having A_k as its left upper $k \times k$ submatrix. The proof of the theorem is, in essence, quite simple and, at the same time, illuminating. The boundary of M_n has P_n-measure zero and thus can be ignored. Note that $(c_1, \ldots, c_n) \in \text{ int } M_n$ implies that $(c_1, \ldots, c_k) \in \text{ int } M_k$ for all $k \leq n$.

*
It will be convenient to employ the canonical coordinates $p_k (k = 1, 2, \ldots)$ introduced by Skibinsky (1967). For each $k = 1, \ldots, n$, the k-th canonical coordinate p_k of a moment point $(c_1, \ldots, c_n) \in \text{int } M_n$ is well-defined, satisfies $0 < p_k < 1$, and depends only on c_1, \ldots, c_k. The associated function $p_k = f_k(c_1, \ldots, c_k)$ is independent of n. Conversely, c_k is fully determined by p_1, \ldots, p_k.

Given $(c_1, \ldots, c_{k-1}) \in M_{k-1}$, let $c_k^+ = c_k^+(c_1, \ldots, c_{k-1})$ and $c_k^- = c_k^-(c_1, \ldots, c_{k-1})$, respectively, denote the largest and smallest possible value of c_k which is compatible with $(c_1, \ldots, c_{k-1}, c_k) \in M_k$. Thus, $c_k^- \leq c_k \leq c_k^+$ when $(c_1, \ldots, c_k) \in M_k$. In particular, $c_1^- = 0$; $c_1^+ = 1$ and $c_2^- = c_2^2$; $c_2^+ = c_1$. As is easily seen, $(c_1, \ldots, c_k) \in \text{int } M_k$ if and only if $c_j^- < c_j < c_j^+(j = 1, \ldots, k)$. Put

$$\Delta_k = \Delta_k(c_1, \ldots, c_{k-1}) = c_k^+(c_1, \ldots, c_{k-1}) - c_k^-(c_1, \ldots, c_{k-1}).$$

Here, $\Delta_k > 0$ for all $(c_1, \ldots, c_{k-1}) \in \text{int } M_{k-1}$. For $k = 1, \ldots, n$, the k-th canonical coordinate (or moment) of a moment point $(c_1, \ldots, c_n) \in \text{int } M_n$ is defined by

$$p_k = \frac{c_k - c_k^-}{c_k^+ - c_k^-} \text{ thus } c_k = c_k^-(c_1, \ldots, c_{k-1}) + \Delta_k(c_1, \ldots, c_{k-1})p_k. \quad (1.5)$$

Note that $0 < p_k < 1$. It follows by induction that, for all $k \geq 1$, there is a 1:1 correspondence between points $(c_1, \ldots, c_k) \in \text{int } M_k$ and points $(p_1, \ldots, p_k) \in (0, 1)^k$. Thus c_k^-, c_k^+ and $\Delta_k = c_k^+ - c_k^-$ can also be regarded as functions of p_1, \ldots, p_{k-1}; these functions happen to be polynomial, (as is clear from (3.6) or (3.19)). Similarly, c_k is a polynomial in p_1, \ldots, p_k which is linear in the variable p_k with coefficient Δ_k, (see (1.5)). The canonical moments p_k for the Beta(α, β) distribution on $[0, 1]$ are given in Skibinsky (1969) p. 1759.

The above arc–sin distribution λ_0 corresponds to $\alpha = \beta = 1/2$ and has canonical moments $p_k^0 = 1/2$ for all $k \geq 1$. This partially explains why the corresponding moment point (c_1^0, \ldots, c_n^0) may be regarded to be the center of M_n. Here, the c_k^0 are as in (1.3).

Remark. The canonical coordinates p_k admit a more general interpretation and as such are quite robust. Namely, consider any non–degenerate compact interval $[a,b]$ and let $\{W_j(x)\}_{j=1}^\infty$ be a given system of polynomials of the form $W_j(x) = \sum_{m=0}^j d_{jm} x^m$ with $d_{jj} > 0$. For example, $W_j(x) = x^j$. Next consider all moment sequences $\{w_j\}_{j=1}^\infty$ of the
form \(w_j = \int W_j(x) \lambda(dx) \) \((j = 1, 2, \ldots)\) with \(\lambda \) as a probability measure on \([a,b]\). Given the moments \(w_1, \ldots, w_{n-1} \), let \(w_n^- \), \(w_n^+ \) denote the smallest and largest possible value of \(w_n \). Provided \(\Delta_n = w_n^+ - w_n^- > 0 \), define \(p_n = (w_n - w_n^-)/\Delta_n \); thus \(0 \leq p_n \leq 1 \). As is easily seen, the resulting sequence \(\{p_n\} \) of (generalized) canonical coordinates is independent of the particular choice of the system of polynomials \(\{W_j(x)\} \). In addition, as was already observed by Skibinsky (1969) p.1763 Theorem 5, if the probability measure \(\lambda \) on \([a,b]\) is linearly transformed (with positive slope) to a measure \(\mu \) on another interval \([\alpha, \beta]\) then \(\lambda \) and \(\mu \) have exactly the same canonical coordinates \(p_n(n \geq 1) \). Here, \(\mu(F) = \lambda(g^{-1}F) \) where \(g(x) = \alpha + (\beta - \alpha)(x - a)/(b - a) \).

Let us return to the above (Hausdorff) sequences \(\{c_n\} \) of the special form \(c_n = \int x^n \lambda(dx) \), with \(\lambda \) as a probability measure on \([0,1]\). Using (1.5), one finds that

\[
\frac{\partial c_k}{\partial p_j} = 0 \quad \text{if } j > k;
\]

\[
\Delta_k = c_k^+ - c_k^- = \prod_{r=1}^{k-1} p_rq_r \quad \text{if } j = k;
\]

(1.6)

Here and from now on, \(q_r = 1 - p_r \). The latter elegant formula for \(\Delta_k \) was established by Skibinsky (1967). A different proof is given below, see (3.4). It follows from (1.6) that

\[
\frac{\partial (c_1, \ldots, c_n)}{\partial (p_1, \ldots, p_n)} = \prod_{k=1}^{n} \frac{\partial c_k}{\partial p_k} = \prod_{r=1}^{n-1} (p_rq_r)^{n-r}.
\]

(1.7)

Transforming the integral \(V_n = \int_{M_n} dc_1 \ldots dc_n \) to an integral over \((0,1)^n\) relative to the \(p_j \), we see that formula (1.2) above is an immediate consequence of (1.7). Both (1.2) and (1.7) are special cases of the following result, (namely, with \(m = 0 \) and \(m = n - 1 \), respectively).

Theorem 1.2. Let \(0 \leq m < n \) and \((c_1, \ldots, c_m) \in \text{ int } M_m \). Then the set \(M_n(c_1, \ldots, c_m) \) of all \((c_{m+1}, \ldots, c_n)\) such that \((c_1, \ldots, c_n) \in M_n\) has \((n-m)\)-dimensional volume

\[
\text{Vol } M_n(c_1, \ldots, c_m) = \prod_{r=1}^{m} (p_rq_r)^{n-m} \prod_{k=2}^{n-m} \frac{\Gamma(k)\Gamma(k)}{\Gamma(2k)}.
\]

(1.8)

The latter is maximal when \(p_r = 1/2 \) \((r = 1, \ldots, m)\). Note that, under \(P_n \) the conditional distribution of \((c_{m+1}, \ldots, c_n)\) given \((c_1, \ldots, c_m)\) is the uniform distribution \(dc_{m+1} \ldots dc_n / \text{Vol } M_n(c_1, \ldots, c_m) \) on \(M_n(c_1, \ldots, c_m) \).

*
In the sequel, for each fixed \(n \), when we assign to \(M_n \) the uniform distribution \(P_n \), functions on \(M_n \) such as \(c_1, \ldots, c_k \) or \(p_1, \ldots, p_k \) \((k \leq n)\) can be regarded as random variables. But note that the resulting joint distribution will depend on \(n \).

Proof. Prescribing \((c_1, \ldots, c_m) \in \text{int} \ M_m\) is the same as prescribing the parameters \(0 < p_r < 1(r = 1, \ldots, m)\). Further note, using (1.6), that

\[
\frac{\partial (c_{m+1}, \ldots, c_n)}{\partial (p_{m+1}, \ldots, p_n)} = \prod_{s=m+1}^{n} \prod_{r=1}^{s-1} p_r q_r = \prod_{r=1}^{m} (p_r q_r)^{n-m} \prod_{r=m+1}^{n-1} (p_r q_r)^{n-r}.
\]

The volume on hand is equal to the integral of \(dc_{m+1} \ldots dc_n\) over \(M_n(c_1, \ldots, c_m)\). Transforming that integral to an integral with respect to the variables \(p_{m+1}, \ldots, p_n\) over the unit cube \((0,1)^{n-m}\), one obtains (1.8).

Theorem 1.3. The uniform probability measure \(P_n \) on \(M_n \) is equivalent to the first \(n \) canonical coordinates \(p_1, \ldots, p_n \) being independent random variables in such a way that \(p_k \) has a symmetric Beta\((\alpha_k, \alpha_k)\) distribution with \(\alpha_k = n - k + 1, \ k = 1, \ldots, n \).

Proof. Simply transform the integral

\[
E_n f(p_1, \ldots, p_n) = \int_{M_n} f(p_1, \ldots, p_n) dc_1 \ldots dc_n / V_n
\]

where \(f \) is arbitrary, to the variables \(p_1, \ldots, p_n \), again using (1.7).

The symmetric distribution Beta\((\alpha, \alpha)\) \((\alpha > 0)\) has mean 1/2 and variance \(1/(8\alpha + 4)\). Hence, for \(k = 1, \ldots, n \), letting \(\alpha = n - k + 1 \),

\[
E_n[p_k] = \frac{1}{2}; \ Var[p_k] = \frac{1}{8(n-k+3/2)} = \frac{1}{8n} + O \left(\frac{1}{n^2} \right), \tag{1.9}
\]

as \(n \to \infty \). Moreover, as is well known and easily seen, \(\sqrt{n} \ [p_k - 1/2] \to N(0, 1/8) \) in distribution, under \(P_n \) as \(n \to \infty \). Two proofs of the following central Lemma are given in Section 3.

Lemma 1.4. The first order Taylor expansion of \(c_k = c_k(p_1, \ldots, p_k) \) about the center \((p_1^0, \ldots, p_k^0)\) with \(p_j^0 = 1/2 \) is given by

\[
c_k = c_k^0 + 2 \sum_{m=1}^{k} a_{km}(p_m - \frac{1}{2}) + O \left(\sum_{m=1}^{k} | p_m - \frac{1}{2} |^2 \right). \tag{1.10}
\]
Here, the a_{km} are as in (1.4). In particular $a_{km} = 2^{-2k+1} \binom{2k}{k-m}$ if $m \leq k$.

Proof of Theorem 1.1. Let k be fixed and $j, m = 1, \ldots, k$. With $n \geq k$ and relative to P_n as the underlying measure, consider the random variables $X_{nj} = \sqrt{n} \ (c_j - c_j^0)$ and $Z_{nm} = 2\sqrt{n}(p_m - 1/2)$. Here, Z_{n1}, \ldots, Z_{nk} are independent, for each fixed n, while $Z_{nm} \rightarrow N(0, 1/2)$ when m is fixed and $n \rightarrow \infty$. Writing (1.10) as

$$X_{nj} = \sum_{m=1}^{k} a_{jm} Z_{nm} + O \left(\frac{1}{\sqrt{n}} \sum_{m=1}^{k} Z_{nm}^2 \right), \quad (j = 1, \ldots, k),$$

Theorem 1.1 becomes an immediate consequence.

2. **Further Discussion**

Let Σ be the infinite symmetric matrix $\Sigma = (\sigma_{ij}) = \frac{1}{2} AA'$ having $\Sigma_k = \frac{1}{2} A_k A_k'$ as its left upper $k \times k$ submatrix. Recall that Σ_k is the covariance matrix of the asymptotic $\text{MVN}(0, \Sigma_k)$ distribution as $n \rightarrow \infty$ of $\sqrt{n} \ [(c_1, \ldots, c_k) - (c_1^0, \ldots, c_k^0)]$, when the latter is governed by the uniform measure P_n on M_n. Thus asymptotically, as $n \rightarrow \infty$, the c_i have means $c_i^0 + o(1)$ and covariances $(\sigma_{ij}/n)(1 + o(1))$. Let further

$$\rho_{ij} = \sigma_{ij} / \sigma_{ii}^{1/2} \sigma_{jj}^{1/2}.$$

Thus ρ_{ij} is the limiting value as $n \rightarrow \infty$ of the correlation coefficient under P_n between the moments c_i and c_j. The following result is proved in Section 4.

Lemma 2.1. One has

$$\sigma_{ij} = c_i^0 c_j^0 - c_i^0 c_j^0,$$

where the c_i^0 are as in (1.3). Hence, $\sigma_{ij} \rightarrow 0$ as $i, j \rightarrow \infty$. If s is fixed then $\rho_{s,s+r} \rightarrow 0$ as $r \rightarrow \infty$. If r is fixed then $\rho_{s,s+r} \rightarrow 1$ as $s \rightarrow \infty$. More generally, for any fixed $\theta \in [0,1]$,

$$\rho_{ij} \rightarrow \left(\frac{4K}{(K+1)^2} \right)^{1/4} \text{ when } i, j \rightarrow \infty; \; \frac{j}{i} \rightarrow K.$$

Let $k \geq 1$ be fixed. It is natural to inquire into the diagonalization of the symmetric $k \times k$ matrix Σ_k and corresponding linear transformations of (c_1, \ldots, c_k). In view of the
usual Gram–Schmidt orthogonalization procedure, it suffices to determine the essentially unique linear combinations \(t_i = b_{i1}c_1 + \ldots + b_{ik}c_k \) \((1 \leq i \leq k)\) with \(b_{ii} \neq 0 \) that are asymptotically uncorrelated, under \(P_n \) as \(n \to \infty \). Equivalently, letting \(b_{im} = 0 \) when \(m > i \), we want \(B_k = (b_{im}; i, m = 1, \ldots, k) \) to be a non-singular lower triangular \(k \times k \) matrix such that \(D_k = B_k \Sigma_k B_k' \) is diagonal. Adding suitable constants \(b_{io} \), one can further achieve that
\[
t_i = \sum_{m=0}^{i} b_{im} c_m \quad (i = 1, \ldots, k; \ c_0 = 1)
\]
are asymptotically uncorrelated and of mean 0. Equivalently, letting \(t_0 = c_0 = 1 \), we want \(t_0, t_1, \ldots, t_k \) to be asymptotically orthogonal, under \(P_n \) as \(n \to \infty \).

The above diagonalization process happens to be intimately connected with the usual Chebyshev polynomials. Namely, consider the probability space \(\Omega_0 \) consisting of the interval \([0, 1]\) together with the arc–sin measure \(\lambda_0 \) as the underlying probability measure. The functions \(x \to x^i \) on \(\Omega_0 \) can then be regarded as random variables \(Z_i \). We see from (1.3) that \(EZ_i = c_i^0 \) and \(EZ_i Z_j = c_{i+j}^0 \). Therefore,
\[
\text{Cov}(Z_i, Z_j) = \sigma_{ij} \text{ for all } i, j \geq 1,
\]
with \(\sigma_{ij} \) exactly as in (2.1). Hence, the means and covariances, of \(\sqrt{n}(c_i - c_i^0)(i = 1, \ldots, k) \) under \(P_n \), coincide asymptotically (as \(n \to \infty \)) with the means and covariances of \(Z_i - c_i^0 \) \((i = 1, \ldots, k)\). Thus the above diagonalization is equivalent to finding \(k + 1 \) linear combinations of the form \(T_i^\# = \sum_{m=0}^{i} b_{im} Z_m \) \((i = 0, 1, \ldots, k)\), with \(b_{ii} \neq 0; \ b_{00} = 1 \), that are orthogonal as random variables on \(\Omega_0 \). But that simply means that the corresponding polynomials
\[
T_i^*(x) = \sum_{m=0}^{i} b_{im} x^m, \quad (i = 0, 1, 2, \ldots),
\]
one of each degree, are orthogonal with respect to the arc–sin measure \(\lambda_0 \). Choosing the leading coefficient \(b_{ii} \) appropriately, we may as well assume that the \(T_i^*(x) \) are precisely the Chebyshev polynomials, adapted to the interval \([0, 1]\). And then the resulting coefficients \(b_{im} \) are independent of \(k \), (where \(k \geq \max(i, m) \)).

The functions \(\cos i\theta \) \((i = 0, 1, 2, \ldots)\) are clearly orthogonal with respect to the uniform measure on \([0, \pi]\). Letting \(y = \cos \theta \), \(\cos i\theta = T_i(y) \) one arrives at the system \(\{T_i(y)\}_{i=0}^{\infty} \)
of ordinary Chebyshev polynomials, orthogonal with respect to the measure \(dy/\sqrt{1-y^2}\) on \((-1,1)\). Letting \(x = (1+y)/2 = (1+\cos \theta)/2 = (\cos \theta/2)^2\), leads to the desired system

\[
T_i^*(x) = T_i(2x - 1), \quad (i = 0, 1, \ldots)
\]

(2.6)

as in (2.5) of orthogonal polynomials with respect to the measure \(\lambda_0\) on \((0, 1)\). Here, \(T_i^*(x)\) is of exact degree \(i\), while \(T_0^*(x) \equiv 1\). The coefficients in (2.5) are given by \(b_{i0} = (-1)^i\) and

\[
\begin{align*}
b_{im} &= (-1)^{i+m} 2^{m-1} \frac{i}{m} \binom{i+m-1}{i-m} \\
&= (-1)^{i+m} 2^{m} \frac{i}{i+m} \binom{i+m}{i-m} \quad \text{if } 1 \leq m \leq i.
\end{align*}
\]

(2.7)

Thus \(b_{ii} = 2^{i-1}\) if \(i \geq 1\). Further, from now on, \(b_{im} = 0\) if \(m > i\). Formula (2.7) easily follows from the known result that \(T_n(2x - 1) = (-1)^n F(-n, n; \frac{1}{2}, x)\), see Abramowitz and Stegun (1965) p. 795 and Henrici (1977) p. 176. For the sake of completeness, an independent proof of (2.7) is included in Section 4. Further note that

\[
\int_0^1 T_j^*(x)^2 \lambda_0(dx) = \int_0^\pi (\cos j\theta)^2 d\theta = \frac{1}{2}.
\]

(2.8)

Theorem 2.2. Consider the linear combinations

\[
t_i = \sum_{m=0}^{i} b_{im} c_m = \sum_{m=1}^{i} b_{im} (c_m - c_m^0), \quad (i = 1, 2, \ldots; c_0 = 1).
\]

(2.9)

Here the \(b_{im}\) are as in (2.5) and (2.7). Then, for any fixed \(k \geq 1\) and \(n \to \infty\), the distribution of \(\sqrt{n} (t_1, \ldots, t_k)\) relative to \(P_n\) converges in distribution to the multivariate normal distribution \(\text{MVN}(0, \frac{1}{2}I_k)\). Here, \(I_k\) denotes the \(k \times k\) identity matrix.

Proof. The second equality sign in (2.9) follows from \(c_0 = c_0^0 = 1\) and

\[
t_i^0 = \sum_{m=0}^{i} b_{im} c_m^0 = \int_0^1 T_i^*(x) \lambda_0(dx) = 0 \quad \text{if } i \geq 1.
\]

(2.10)

In view of Theorem 1.1, it suffices to show that \(B_k \Sigma_k B_k^T = \frac{1}{2}I_k\). In some sense this already follows from the previous discussion. As a direct proof, if \(1 \leq i, j \leq k\) then

\[
\sum_{r=0}^{k} \sum_{s=0}^{k} b_{ir} b_{js} (c_{i+j}^0 - c_i^0 c_j^0) = \sum_{r=0}^{k} \sum_{s=0}^{k} b_{ir} b_{js} c_{i+j}^0 = \int_0^1 T_i^*(x) T_j^*(x) \lambda_0(dx) = \frac{1}{2} \delta_{ij}.
\]

*
Here, we used (2.5), (2.8), (2.10) as well as the orthogonality of the \(T_i^*(x) \) with respect to \(\lambda_0 \). Note that \(c^0_{i+j} - c^0_i c^0_j = 0 \) when either \(i = 0 \) or \(j = 0 \). In view of (2.1), it follows that
\[
B_k \Sigma_k B_k' = \frac{1}{2} I_k.
\]

Theorem 2.3. The lower triangular matrices \(A = (a_{ij}; \ i, j \geq 1) \) and \(B = (b_{ij}; \ i, j \geq 1) \) are each others inverse. Similarly for \(A_k \) and \(B_k \), (any \(k \geq 1 \)). Moreover, for \(m \geq 1 \),
\[
x^m = c^0_m + \sum_{r=1}^{m} a_{mr} T_r^*(x); \tag{2.11}
\]

Corollary 2.4. We have for all \(m, \ r \geq 1 \) that
\[
\int_0^1 x^m T_r^*(x) \lambda_0(dx) = \frac{1}{2} a_{mr}. \tag{2.12}
\]
Moreover,
\[
c_m = c_m^0 + \sum_{r=1}^{m} a_{mr} t_r. \tag{2.13}
\]
Here, the \(t_r \) are as in (2.3) thus \(t_r = \int T_r^*(x) \lambda(dx) \).

We will present several proofs. Note that (2.12) is an immediate consequence of (2.8), (2.11) and the orthogonality of the \(T_r^*(x) \) with respect to \(\lambda_0 \). Further, (2.13) follows from (2.11) from an integration relative to any \(\lambda \in \Lambda \) having the moments \(c_0 = 1, \ c_1, \ldots, c_m \).

Choosing \(\lambda = \lambda_0 \), one has \(c_m = c_m^0 (m \geq 0) \) and \(t_r = 0, \ (r \geq 1; \ t_0 = 1) \). This explains the constant term \(c_m^0 \) in (2.11), (2.13). Finally observe that (2.11) is actually equivalent to \(A, B \) being each others inverse, as can be seen by substituting formula (2.5) for the \(T_r^*(x) \) into (2.11), and equating coefficients.

A first proof of Theorem 2.3 amounts to a direct verification of (2.11), see Section 4. A second proof is to directly verify the property \(AB = I \), see Section 4. As still another demonstration, recall that, in the above proof of Theorem 2.2, we already established that \(B \Sigma B' = \frac{1}{2} I \) where \(\Sigma = \frac{1}{2} AA' \). Hence, the lower triangular matrix \(C = BA \) satisfies \(CC' = I \), in particular, the rows of \(C \) are mutually orthogonal. Also using that \(c_{ii} = a_{ii} b_{ii} = (2^{-2i+1})(2^{2i-1}) = 1 \), we conclude that \(C \) must be the identity matrix.

*
3. Proof of Lemma 1.4.

We will present two different proofs. The first one exploits an important relation between the Hausdorff moment problem and a certain random walk. This relation, which one of us plans to discuss in more detail in a subsequent paper, is implicit in the work of Karlin and McGregor (1959).

Let $\{X_n\}_{n=0}^{\infty}$ be a stationary discrete time Markov chain (also called random walk) on the nonnegative integers \mathbb{Z}_+ which is determined by the transition probabilities

$$
P(X_{n+1} = j \mid X_n = i) = p_i \quad \text{if } j = i - 1;
$$

$$
= q_i \quad \text{if } j = i + 1;
$$

$$
= 0, \quad \text{otherwise.}
$$

(3.1)

Here, $q_i = 1 - p_i$. Further $0 < p_i < 1$ for $i \geq 1$, while $p_0 = 0$; $q_0 = 1$. The corresponding n-step probabilities are denoted as $P^{(n)}_{ij} = P(X_n = j \mid X_0 = i)$. It was shown by Karlin and McGregor (1959) p. 69 that there exists a necessarily unique probability measure λ of infinite support on $[0,1]$ such that

$$
P^{(2n)}_{00} = P(X_{2n} = 0 \mid X_0 = 0) = \int_0^1 x^n \lambda(dx), \quad \text{for all } n \geq 0.
$$

(3.2)

In other words,

$$
c_n = P^{(2n)}_{00} \quad (n = 0, 1, \ldots)
$$

(3.3)

always defines a Hausdorff moment sequence having $c_0 = 1$; $(c_1, \ldots, c_n) \in \text{int } M_n$ for all $n \geq 1$. In fact, (3.2) establishes a 1:1 correspondence between all such Hausdorff moment sequences $\{c_n\}$ on the one hand and all random walks $\{X_n\}$ on the other hand, each random walk being determined as above by a sequence $\{p_n\}_{n=1}^{\infty}$ of canonical coordinates, $0 < p_n < 1$.

Consider a random walk $\{X_n\}$ as above and define c_n as in (3.3). Conditional on $X_0 = 0$, the conditional probability $c_k = P^{(2k)}_{00}$ (to be back in state 0 after $2k$ steps, not necessarily for the first time), obviously depends only on the parameters p_1, \ldots, p_k. Fixing c_1, \ldots, c_k is equivalent to fixing p_1, \ldots, p_k. Hence, for given c_1, \ldots, c_{n-1}, the smallest and largest possible value c^n_- and c^n_+ of $c_n = P^{(2n)}_{00}$ is realized by choosing $p_n = 0$ or $p_n = 1,$
respectively. In fact, c_n^- represents the (common) part of the return probability $c_n = P_{00}^{(2n)}$ arising from paths of length $2n$ (from 0 back to 0 in $2n$ steps) which never reach state n, and thus have their probability as a function of p_1, \ldots, p_{n-1}, independent of p_n. Similarly, $c_n^+ - c_n^-$ is equal to the probability $q_1 q_2 \cdots q_{n-1} p_n p_{n-1} \cdots p_1$ of the single path which leads from 0 to 0 in $2n$ steps which does reach state n. Maximizing c_n given p_1, \ldots, p_{n-1}, that is, choosing $p_n = 1$, this reduces to

$$
\Delta_n := c_n^+ - c_n^- = q_1 q_2 \cdots q_{n-1} p_{n-1} p_{n-2} \cdots p_1 = \prod_{r=1}^{n-1} p_r q_r > 0. \quad (3.4)
$$

Finally note that $c_n = P_{00}^{(2n)} = c_n^- + p_n (c_n^+ - c_n^-)$. Comparing the latter with (1.5), we conclude that, for all $n \geq 1$, the random walk parameter p_n coincides with the n-th canonical coordinate of the moment point $(c_1, \ldots, c_n) \in \text{int} (M_n)$.

First proof of Lemma 1.4. Let $\{c_n\}_{n=0}^\infty$ be a Hausdorff moment sequence and $\{p_r\}_{r=1}^\infty$ be the associated sequence of canonical coordinates. Let $r \geq 1$ be fixed and

$$
C_n(r) = \left[\frac{\partial}{\partial p_r} c_n \right]_0 = \left[\frac{\partial}{\partial p_r} P_{00}^{(2n)} \right]_0. \quad (3.5)
$$

The subscript zero here indicates that $p_k = p_k^0 = 1/2$, for all $k \geq 1$. We want to show that $C_n(r) = 2a_{nr}$ with a_{nr} as in (1.4). In the present proof, we exploit the above random walk interpretation. Hence,

$$
c_n = P_{00}^{(2n)} = \sum p_1^{m_1} p_2^{m_2} \cdots q_0^{n_0} q_1^{n_1} \cdots, \quad (3.6)
$$

where we sum over all paths $x = (x_0, x_1, \ldots, x_{2n})$ with $x_k - x_{k-1} = \pm 1 (k = 1, \ldots, 2n)$ and such that $x_0 = 0; x_{2n} = 0$; (thus c_n is a polynomial of degree $2n - 1$ in terms of p_1, \ldots, p_n). Further, for each such path, $m_j(j \geq 1)$ and $n_j(j \geq 0)$, respectively, will denote the number of transitions $x_{k-1} \to x_k (k = 1, \ldots, 2n)$ of type $j \to j - 1$ and $j \to j + 1$, respectively. Differentiating the latter sum with respect to p_r causes an extra factor $\frac{m_k}{p_r} - \frac{n_k}{q_r}$. (fitting afterwards $p_k = \frac{1}{2}$ for all $k \geq 1$, we find that

$$
C_n(r) = 2E((m_r - n_r) I_0 (X_{2n}) \mid X_0 = 0). \quad (3.7)
$$

where $I_0 (x)$ is the indicator function on the set $\{0\}$. Here, and from now on in the present proof, $\{X_n\}$ will be the simple random walk on Z_+ having 1-step probabilities $p_k = q_k = \frac{1}{2}$.
for all \(k \geq 1 \), (while \(p_0 = 0; \ q_0 = 1 \)). Moreover, since the path \(\{X_0, X_1, \ldots, X_{2n}\} \) is random so are the associated transition numbers \(m_j \) and \(n_j \).

Let further \(\{Y_n\}_{n=0}^{\infty} \) be the classical random walk on \(Z = \{0, \pm1, \pm2, \ldots\} \) with independent increments such that \(P(Y_n - Y_{n-1} = -1) = P(Y_n - Y_{n-1} = +1) = \frac{1}{2} \). For each \(s \in Z \), let

\[
D_n(s) = E[(m_s - n_s)I_0(Y_{2n}) \mid Y_0 = 0].
\]

(3.8)

Here, \(m_s \) and \(n_s \), respectively, denote the (random) number of transitions \(Y_{k-1} \rightarrow Y_k(k = 1, \ldots, 2n) \) of the form \(s \rightarrow s - 1 \) and \(s \rightarrow s + 1 \), respectively.

Identifying the states \(j \) and \(-j \) (for all \(j \)), the process \(\{Y_n\} \) reduces precisely to the above simple random walk \(\{X_n\} \). And it easily follows from (3.7) that

\[
\frac{1}{2}C_n(r) = D_n(r) - D_n(-r) = 2D_n(r).
\]

(3.9)

We further claim that

\[
D_n(r) = P(Y_{2n} = 0; \ Y_k = r \text{ for some } 0 \leq k \leq 2n \mid Y_0 = 0).
\]

(3.10)

After all, consider any fixed path \(y = (y_0, y_1, \ldots, y_{2n}) \) with \(y_k - y_{k-1} = \pm1(k = 1, \ldots, 2n) \) and \(y_0 = 0; \ y_{2n} = 0 \). Since \(r \geq 1 \) such a path \(y \) can contribute to \(D_n(r) \) only when \(y_k = r \) for some \(0 \leq k \leq n \). Let \(k_1 \) and \(k_2 \) be the minimal and maximal such index \(k \). Thus, \(0 < k_1 \leq k_2 < 2n \) and further \(y_{k_1} = y_{k_2} = r; \ y_{k_1-1} = y_{k_2+1} = r - 1 \). Given such a path \(y \), consider the associated (partially reflected) path \(y^* \) obtained from \(y \) by replacing \(y_k \) by \(y_k^* = 2r - y_k \) for all \(k_1 < k < k_2 \), (leaving the other coordinates \(y_k \) unchanged). Thus \((y^*)^* = y \), while \(y^* = y \) if and only if \(k_1 = k_2 \).

For each fixed index \(k \) with \(k_1 \leq k < k_2 \), a possible contribution \(\pm1 \) to the value \((m_r - n_r)(y^*) \) (for the reflected path \(y^* \)), due to a pair \(y_k = r, \ y_{k+1} = r \pm 1 \), is exactly opposite in sign to the corresponding contribution to the value \((m_r - n_r)(y) \) (for the original path \(y \)). Hence, since \(y \) and \(y^* \) have the same probability \(2^{-2n} \), one may as well ignore all such contributions, in which case there only remains the single contribution \(+1 \) to \((m_r - n_r)(y) \) due to the single pair \(y_{k_2} = r; \ y_{k_2+1} = r - 1 \). This completes the proof of (3.10).

*
It now follows from (3.9), (3.10) and (1.4) that

\[C_n(r) = 4D_n(r) = 4P(Y_{2n} = 2r \mid Y_0 = 0) = 4 \left(\frac{2n}{n - r} \right)^{2 - 2n} = 2a_{nr}. \]

Here, we also used the standard André reflection principle. Namely, associate to each path \(y \) as above, of length \(2n \) which begins and ends at \(0 \) and meets state \(r \) at least once, the path \(y^* \) having \(y^*_k = 2r - y_k \) when \(k \geq k_1 \) while \(y^*_k = y_k \), otherwise. This sets up a 1:1 correspondence with the set of paths \(y^* \) of length \(2n \) which begin at \(0 \) and end at \(2r \). This completes the proof of Lemma 1.4.

Second proof of Lemma 1.4. Skibinsky (1968); (1969) showed that the mapping from the canonical moments \(p_i \) to the power moments \(c_i \) is given by the following formulae.

Here \(q_i = 1 - p_i(i \geq 1) \), \(\zeta_i = p_i q_{i-1}(i \geq 1) \) thus \(\zeta_1 = p_1 \). Define \(S_{ij} = 0 \) unless \(0 \leq i \leq j \). Further \(S_{ij}(0 \leq i \leq j) \) is recursively defined by \(S_{0j} = 1(j \geq 0) \) and

\[S_{ij} = S_{i,j-1} + \zeta_{j-i+1} S_{i-1,j} \text{ if } 1 \leq i \leq j. \]

(3.11)

Thus the case \(j = i \) reduces to \(S_{ii} = \zeta_i S_{i-1,i} \). The moments \(c_n \) themselves are finally given by \(c_n = S_{nn}(n \geq 0) \). Note that \(S_{ij} \) is independent of the \(p_r \) with \(r > j \).

For \(j \) and \(n \) as integers and \(n \geq 0 \), define

\[Q_j^n = 2^{-n} \left(\frac{n}{m} \right) \text{ if } n = |j| + 2m \text{ with } m = 0, 1, 2, \ldots, \]

(3.12)

and \(Q_j^n = 0 \) in all other cases. Note from (1.4) that \(a_{nr} = 2Q_{2r}^{2n} \). As is easily seen,

\[Q_j^n = \frac{1}{2}(Q_{j-1}^{n-1} + Q_{j+1}^{n-1}) \quad \text{and} \quad Q_{n-j}^n = Q_j^n \text{ thus } Q_0^n = Q_1^n - 1. \]

(3.13)

Let further \(S_{ij}^0 \) denote the value \(S_{ij} \) in the special case that \(p_k = \frac{1}{2} \) for all \(k \geq 1 \). Using (3.13), it follows from (3.11) by induction that

\[S_{ij}^0 = 2^{j-i} Q_{j-i}^{i+j} \quad \text{if } 0 \leq i \leq j. \]

(3.14)

For instance \(S_{ii}^0 = Q_{0}^{2i} = Q_{1}^{2i-1} = \zeta_i S_{i-1,i}^0 \) with \(\zeta_1 = p_1 = 1/2 \).

Let \(r \geq 1 \) be fixed, and introduce

\[U_{ij} = 2^{i-j-1} \frac{\partial}{\partial p_r} S_{ij} \mid p_k = 1/2 \text{ for } k \geq 1. \]
Thus $U_{ij} = 0$ unless $0 \leq i \leq j$ and $r \leq j$. Moreover, $U_{0j} \equiv 0$ since $S_{0j} \equiv 1$. We want to show that $\left[\frac{\partial}{\partial p_r} c_n \right]_0 = 2a_{nr}$. In view of $c_n = S_{nn}$ and $a_{nr} = 2Q_{2r}^n$, this is equivalent to $U_{nn} = 2Q_{2r}^2$. More generally, we will show that, for all $0 \leq i \leq j$,

$$
U_{ij} = Q_i^i + j \quad \text{if } j - i \geq r \geq 1;
$$

$$
= Q_{j-i+2r-i}^i + Q_{i-j+2r}^i \quad \text{if } 0 \leq j - i < r.
$$

(3.15)

For instance $U_{ii} = 2Q_{2r}^i$ and $U_{i-1,i} = Q_{2r+1}^i + Q_{2r-1}^i (r \geq 2)$; $U_{i-1,i} = Q_{3}^2 - 1$ if $r = 1$.

Differentiating the recursion formula (3.11) with respect to p_r at $p_k = 1/2$ (all $k \geq 1$) and using (3.14), one finds that the U_{ij} satisfy the recursion relation

$$
U_{ij} - \frac{1}{2}(U_{i,j+1} + U_{i-1,j}) = \frac{1}{2}Q_{r+1}^i - 1 \quad \text{if } j - i = r;
$$

$$
= \frac{1}{2}Q_r^i - 1 \quad \text{if } j - i = r - 1;
$$

$$
= 0 \quad \text{otherwise},
$$

(3.16a)

as long as $1 \leq i < j$. The case $j = i$ is of the form

$$
U_{i,i} = U_{i-1,i} + \delta_i^1 Q_{i}^2 - 1.
$$

(3.16b)

The recursion (3.16) and boundary condition $U_{0j} \equiv 0$ together completely determine the U_{ij}. Using (3.13), one easily verifies that $U_{ij}(0 \leq i \leq j)$ as defined by the right hand side of (3.15), does indeed satisfy (3.16) and $U_{0j} \equiv 0$. This establishes (3.15) and completes the second proof of Lemma 1.4.

Remarks. Formula (3.11) for the S_{ij}, which furnishes a recursive calculation of $c_n = S_{nn}$ from the canonical coordinates p_i, also follows from a simple random walk argument. In fact, the S_{ij} have the simple probabilistic interpretation (3.18) below.

Namely, let $\{X_n\}$ be the random walk on Z_+ described by (3.1), with the p_j as the usual canonical coordinates. We know that $c_n = P_{00}^{(2n)}$, for all $n \geq 0$. Clearly, $P_{0j}^{(n)} = P(X_n = j \mid X_0 = 0)$ satisfy $P_{0j}^{(0)} = \delta_j^0$ and

$$
P_{0k}^{(n)} = P_{0,k-1}^{(n-1)} q_{k-1} + P_{0,k+1}^{(n-1)} p_{k+1},
$$

(3.17)

($n \geq 1; \; k \geq 0; \; q_{-1} = 0$). This allows us to calculate the $P_{0k}^{(n)}$ in a recursive manner. For instance, $c_n = P_{00}^{(2n)} = p_1 P_{01}^{(2n-1)}$. Since $P_{0k}^{(n)} = 0$ if $n < k$, (3.17) is trivially satisfied when

*
\(n < k \). Also note that \(P_{0k}^{(k)} = q_0 q_1 \ldots q_{k-1} \). All terms in (3.17) vanish unless \(n = k + 2i \) with \(i \in \mathbb{Z}_+ \), in which case \(n = i + j; \ k = j - i \) with \(0 \leq i \leq j \) as integers. It follows from (3.17) that the \(S_{ij} \) defined by

\[
S_{ij} = \frac{1}{q_0 q_1 q_2 \ldots q_{j-i-1}} P_{0j-i}^{(i+j)} \text{ for } 0 \leq i \leq j,
\] (3.18)

\((q_0 = 1)\) satisfy the recursion relation (3.11). Moreover, \(S_{0k} = P_{0k}^{(k)}/q_0 q_1 \ldots q_{k-1} = 1\), for all \(k \geq 0 \). Finally, \(c_n = P_{00}^{(2n)} = S_{nn} \).

In view of the interpretation (3.18) of the \(S_{ij} \), formula (3.15) can also be regarded as an explicit formula for the quantities \(\left[\frac{\partial}{\partial \nu} P_{0j}^{(n)} \right]_0 \), equivalently, as an explicit formula for \(E[(m_r - n_r)(X_n = j) \mid X_0 = 0] \), with \(m_r, n_r \) as in (3.7).

Theorem 2 in Skibinsky (1968) also has a simple probabilistic proof. It states that

\[
c_n = \sum_{0 \leq i \leq n/2} (S_{i,n-i})^2 \prod_{j=1}^{n-2i} \zeta_j.
\] (3.19)

In fact, paying attention to the value \(X_n = k \) (say),

\[
c_n = P(X_{2n} = 0 \mid X_0 = 0) = \sum_k P_{0k}^{(n)} P_{k0}^{(n)} = \sum_k \frac{1}{\pi_k (P_{0k}^{(n)})^2}.
\] (3.20)

Here, \(\pi_k = q_0 q_1 \ldots q_{k-1}/p_1 p_2 \ldots p_k \), \((\pi_0 = 1) \). We also used the well known relation \(\pi_i P_{ij}^{(n)} = \pi_j P_{ji}^{(n)} \), (all \(i, j, n \); see for instance Karlin and McGregor (1959) p. 68). Noting that \(P_{0k}^{(n)} \) vanishes unless \(k = n - 2i \) with \(0 \leq i \leq n/2 \), and using (3.18), one easily verifies that (3.19), (3.20) are equivalent.

4. Further proofs

Proof of Lemma 2.1. Let \(i, j \geq 1 \). From \(\Sigma = \frac{1}{2} AA' \) and \(a_{kr} = 0 \) for \(r > k \), one has

\[
\sigma_{ij} = \frac{1}{2} \sum_{r=1}^{\min(i,j)} a_{ir} a_{jr} = 2^{-2i-2j+1} \sum_{r=1}^{\min(i,j)} \binom{2i}{i-r} \binom{2j}{j-r}
\]

\[= -c_i^0 c_j^0 + \sum_{r=\min(i,j)}^{\min(i,j)} 2^{-2i} \binom{2i}{i-r} 2^{-2j} \binom{2j}{j+r} = -c_i^0 c_j^0 + c_{i+j}^0, \]

*
proving (2.1). After all, the latter sum is equal to the coefficient of \(z^{i+j} \) in the expansion of \(\left(\frac{1 + z}{2} \right)^{2i} \left(\frac{1 + z}{2} \right)^{2j} \).

Recall that \(c_k^0 \approx 1/\sqrt{\pi k} \) as \(k \to \infty \). Hence, \(\sigma_{jj} = c_{2j}^0 - (c_j^0)^2 \approx (2\pi j)^{-1/2} \) and \(\sigma_{ij} = c_{i+j}^0 - c_i^0 c_j^0 \approx (1 - c_i^0)(\pi j)^{-1/2} \) as \(j \to \infty \). Thus, for \(i \) fixed and \(j \to \infty \),

\[
\rho_{ij} = \frac{\sigma_{ij}}{\sqrt{\sigma_{ii} \sigma_{jj}}} \approx D_i j^{-1/4}, \text{ where } D_i = (\pi/2)^{-1/4}(1 - c_i^0)(\sigma_{ii}^{-1})^{-1/2}.
\]

In particular \(\rho_{s(s+r)} \to 0 \) as \(r \to \infty \). If both \(i \) and \(j \) tend to infinity then

\[
\sigma_{ij} = c_{i+j}^0(1 - c_i^0 c_j^0/c_{i+j}^0) \approx c_{i+j}^0 \approx 1/\sqrt{\pi (i+j)}.
\]

Here we used that \(c_i^0 c_j^0/c_{i+j}^0 \approx \left[\frac{1}{\pi} \left(\frac{1}{i} + \frac{1}{j} \right) \right]^{1/2} \to 0 \). Hence, if \(i, j \to \infty \) in such a way that \(j/i \to K \) then

\[
\rho_{ij} \approx \left[\frac{4ij}{(i+j)^2} \right]^{1/4} \to \left(\frac{4K}{(K+1)^2} \right)^{1/4}.
\]

Proof of (2.7). We want to prove that the coefficients \(b_{im} \) in (2.5) are given by (2.7). Letting \(y = \cos \theta = 2x - 1 \), one has \(\cos n\theta = T_n(y) = T_n^*(x) \) thus

\[
\sum_{n=0}^{\infty} T_n^*(x) u^n = \sum_{n=0}^{\infty} \cos n\theta u^n = Re \left[\sum_{n=0}^{\infty} (e^{i\theta} u)^n \right] = Re \frac{1}{1 - u e^{i\theta}} = \frac{1 - u \cos \theta}{1 + u^2 - 2u \cos \theta} = \frac{1 + u - 2ux}{(1 + u)^2 - 4ux} = (1 + u - 2ux) \sum_{r=0}^{\infty} (4ux)^r (1 + u)^{-2r-2}.
\]

The coefficient of \(x^n \) is found to be \(2^{2m-1} u^m (1 - u)(1 + u)^{-2m-1} \). Expanding the latter in powers of \(u \), we find that the coefficient of \(u^n \) is precisely \(b_{nm} \) as given by (2.7).

Proof of the identity (2.11). This identity must be known. Recall that \(T_r^*(x) = \cos r\theta \) when \(x = (\cos \frac{\theta}{2})^2 \). If \(m \geq 1 \) then

\[
x^m = \left(\cos \frac{\theta}{2} \right)^{2m} = 2^{-2m} (e^{i\theta/2} + e^{-i\theta/2})^{2m} = 2^{-2m} \sum_{j=0}^{2m} \binom{2m}{j} \cos(m-j)\theta.
\]

The term with \(j = m \) gives rise to \(2^{-2m} \binom{2m}{m} = c_m^0 \). Further, for \(r = 1, \ldots, m \), the two terms with \(j = m \pm r \) together give rise to \(2^{-2m+1} \binom{2m}{m-r} \cos r\theta = a_{mr} T_r^*(x) \), in view of (1.4). This proves (2.11).
Proof that $AB = I$, see Theorem 2.3. Here A, B are lower triangular hence also $C = AB$. Further $c_{ii} = a_{ii} b_{ii} = 1$ thus it suffices to show that $c_{im} = 0$ when $1 \leq m < i$. From (1.4) and (2.7),

$$c_{im} = \sum_{j=m}^{i} a_{ij} b_{jm} = \sum_{j=m}^{i} 2^{-2i+1} \binom{2i}{i+j} (-1)^{j+m} 2^{2m-1} \frac{j}{m} \binom{j+m-1}{2m-1}.$$

This can be written as $c_{im} = \sum_{j=m}^{i} (-1)^{j} \binom{2i}{i+j} g(j)$, where

$$g(x) = \alpha x \binom{x + m - 1}{2m - 1} = \frac{\alpha x^2}{(2m-1)!} \prod_{r=1}^{m-1} (x+r)(x-r),$$

with $\alpha = \alpha_{im}$ as a constant factor. Note that $g(x)$ is an even polynomial of degree $2m$ such that $g(r) = 0$ for $r = 0, \pm 1, \ldots, \pm (m-1)$. Hence, letting $i+j = s$,

$$2c_{im} = \sum_{j=-i}^{i} (-1)^{j} \binom{2i}{i+j} g(j) = \sum_{s=0}^{2i} (-1)^{s-i} \binom{2i}{s} g(s-i) = (-1)^i \Delta^{2i} g(-i) = 0,$$

since g is of degree $2m < 2i$. Here $\Delta = E - 1$ is the usual difference operator thus $(Eg)(x) = g(x+1)$.

Acknowledgements. Many thanks to Burgess Davis for simplifying our original random walk proof of Lemma 1.4.

REFERENCES

