ON A CLASSIFICATION PROBLEM:
RANKING AND SELECTION APPROACH *

by
Shanti S. Gupta and Lii-Yuh Leu
Department of Statistics Graduate Institute of Statistics
Purdue University National Central University
West Lafayette, IN, USA Chung-Li, Taiwan, R.O.C.

Technical Report #89-27C

Department of Statistics
Purdue University

August 1989

* This research was supported in part by the Office of Naval Research Contract N00014–88–K–0170 and NSF Grants DMS–8606964, DMS–8702620 at Purdue University. The research of Dr. Lii–Yuh Leu was also supported in part by the National Science Council, Republic of China.

*
ON A CLASSIFICATION PROBLEM: RANKING AND SELECTION APPROACH *

by
Shanti S. Gupta and Lii-Yuh Leu
Department of Statistics Graduate Institute of Statistics
Purdue University National Central University
West Lafayette, IN, USA Chung-Li, Taiwan, R.O.C.

ABSTRACT

This paper deals with a classification problem based on ranking and selection approach. We assume that the populations follow multivariate normal distribution. The corresponding selection problem is to choose the population with the smallest Mahalanobis distance. The subset selection approach is considered throughout this paper. Sometimes the indifference zone approach is also proposed. It should be pointed out that, for the subset selection approach, we need not assume that the individual to be classified belongs to one of the several given categories. The classification procedures depend on whether the parameters μ_i and Σ_i are known or unknown.

Key Words and Phrases: classification rules; multivariate normal populations; Mahalanobis distance; ranking and selection; probability of correct classification.

* This research was supported in part by the Office of Naval Research Contract N00014-88-K-0170 and NSF Grants DMS-8606964, DMS-8702620 at Purdue University. The research of Dr. Lii-Yuh Leu was also supported in part by the National Science Council, Republic of China.
1. Introduction

The problem of classification arises when an investigator makes a number of measurements on an individual and wishes to classify the individual into one of several categories on the basis of these measurements. Since Fisher (1936) introduced the linear discriminant function for distinguishing between two multivariate normal distributions with a common covariance matrix, a great deal of work has been done by many authors on this problem. For an extensive bibliography, the reader is referred to Anderson, Das Gupta and Styan (1972), Das Gupta (1973) and Lachenbruch (1975). For a general approach to this problem, Anderson (1984) is a good reference.

In general, for the classification problem, we assume that the individual to be classified belongs to one of the several categories. In a real situation, this assumption may not be appropriate. Thus the problem of selecting the nearest category to the individual based on distance function was considered to cover the above drawback. For the decision theoretic approach see Cacoullos (1965a, 1965b) and Srivastava (1967). Although some intuitive classification procedures have optimality properties based on decision viewpoint, in practice we want to control the probability of misclassification. Using the classical approach, it is difficult to control this probability. Hence an approach based on the concept of ranking and selection was considered by Cacoullos (1973) and A.K. Gupta and Govindarajulu (1973, 1985). Unfortunately, their results are too conservative and very limited.

Let CC stand for a correct classification and R denote a classification procedure, for a given constant P^*, $1/k < P^* < 1$, we want to choose a classification procedure R to satisfy the probability requirement (1.1)

$$P(CC|R) \geq P^*$$

(1.1)

where $P(CC|R)$ is the probability of a correct classification when the procedure R is used. To make the classification problem more precise, we may ask the problem: can one find a classification procedure satisfying the probability requirement (1.1) and what is the sample size needed?

Let π_i, $i = 0, 1, \ldots, k$, be $k + 1$ populations, we want to classify π_0 as one of the π_i, $i =$
1, ..., k. We assume that \(\pi_i \sim N_p \left(\mu_i, \Sigma_i \right) \) (the \(p \)-variate multivariate normal distribution with mean vector \(\mu_i \) and covariance matrix \(\Sigma_i \)), \(i = 0, 1, \ldots, k \). Based on the Mahalanobis distance between two populations, our problem is related to the problem of selecting the smallest Mahalanobis distance. The subset selection approach is considered throughout this paper. Sometimes the indifference zone approach is also used. The classification procedures depend on whether the parameters \(\mu_i \) and \(\Sigma_i \) are known or unknown.

2. Classification procedures when \(\mu_0 \) known, \(\mu_i, i = 1, \ldots, k \), unknown

In this section we assume that \(\mu_0 \) is known and \(\mu_i, i = 1, \ldots, k \), are unknown. The Mahalanobis distance of \(\pi_i \) and \(\pi_0 \) is defined to be \(\theta_i = \left(\mu_i - \mu_0 \right)' \Sigma_i^{-1} \left(\mu_i - \mu_0 \right), i = 1, \ldots, k \). Let \(\theta_{[1]} \leq \ldots \leq \theta_{[k]} \) denote the ordered values of the \(\theta_i \)'s, \(i = 1, \ldots, k \). Our classification problem may reduce to a selection problem which selects the population corresponding to the parameter \(\theta_{[1]} \). We will classify \(\pi_0 \) as the selected population when the indifference zone approach is used, and classify \(\pi_0 \) as any one population in the selected subset when the subset selection approach is used.

Let \(X_{ij}, j = 1, \ldots, n \), be a random sample from population \(\pi_i \), \(\overline{X}_i = \frac{1}{n} \sum_{j=1}^{n} X_{ij} \) be the sample mean vector, \(S_i = \frac{1}{n-1} \sum_{j=1}^{n} \left(X_{ij} - \overline{X}_i \right) \left(X_{ij} - \overline{X}_i \right)' \) be the sample covariance matrix for the population \(\pi_i, i = 1, \ldots, k \), respectively and \(S = \frac{1}{k} \sum_{i=1}^{k} S_i \) be the pooled sample covariance matrix of populations \(\pi_1, \ldots, \pi_k \). Throughout this paper, we denote \(\chi^2_{p;\delta} \) as the noncentral chi–square distribution with degrees of freedom \(p \) and noncentrality parameter \(\delta \) and \(F_{p,q;\delta} \) as the noncentral \(F \)-distribution with degrees of freedom \(p \) and \(q \) and noncentrality parameter \(\delta \). Also, let \(G_p(x;\delta) \) denote the cdf of \(\chi^2_{p;\delta} \) and \(F_{p,q}(x;\delta) \) the cdf of \(F_{p,q;\delta} \). When \(\delta = 0 \) we simplify these by \(\chi^2_p \), \(F_{p,q} \), \(G_p(x) \) and \(F_{p,q}(x) \) respectively.

We will discuss the classification procedures in various situations.

2.1. \(\Sigma_i, i = 1, \ldots, k \), known

2.1.1. Indifference Zone Approach

For the indifference zone approach, we will make the assumptions \(\theta_{[1]} = 0 \), i.e. \(\pi_0 \)}}
belongs to one of the π_i, $i = 1, \ldots, k$, and $\theta[2] \geq \Delta$, where Δ is a given positive constant. Let $Y_i = n \left(\bar{X}_i - \mu_0 \right)' \Sigma_i^{-1} \left(\bar{X}_i - \mu_0 \right)$, $i = 1, \ldots, k$, then $Y_i \sim \chi^2_{p_i n \theta_i}$. Intuitively, we will consider the classification procedure R_1 as follows:

R_1: Classify π_0 as π_i if and only if $Y_i = \min_{1 \leq j \leq k} Y_j$.

For a given P^*, we want to find an appropriate sample size n so that the probability requirement (1.1) is satisfied. The following theorem is useful for this problem.

Theorem 2.1 \[\inf P(CC|R_1) = \int_0^\infty [1 - G_p(x; n\Delta)]^{k-1} dG_p(x). \] \hspace{1cm} (2.1)

Proof. Let $Y_{(i)}$ denote the statistic corresponding to the parameter $\theta[i]$. Then

$$P(CC|R_1) = P \{ Y_{(1)} \leq Y_{(j)}, j = 2, \ldots, k \}$$

$$= \int_0^\infty \prod_{j=2}^k [1 - G_p(x; n\theta[1])] dG_p(x)$$

$$\geq \int_0^\infty [1 - G_p(x; n\Delta)]^{k-1} dG_p(x) \hspace{1cm} (2.2)$$

The inequality (2.2) holds, since $G_p(x; \delta)$ has the stochastic increasing property and the equality is attained when $\theta[2] = \ldots = \theta[k] = \Delta$. \hfill \Box

Remark 2.1. Let d be the solution of the equation

$$\int_0^\infty [1 - G_p(x; d)]^{k-1} dG_p(x) = P^* \hspace{1cm} (2.3)$$

and n^* be the smallest positive integer such that $n\Delta \geq d$. Then n^* is the sample size needed to guarantee the probability requirement (1.1).

2.1.2. **Subset Selection Approach**

For the subset selection approach, Gupta (1966) and Gupta and Studden (1970) have considered the problem for selecting the smallest parameter of $\mu_i' \Sigma_i^{-1} \mu_i$, $i = 1, \ldots, k$. Following their idea, we consider the classification procedure R_2 as follows:

R_2: Classify π_0 as any one of the π_i's for which $Y_i \leq c_2 \min_{1 \leq j \leq k} Y_j$, where $c_2 > 1$ is the smallest value such that the probability requirement (1.1) is satisfied.

By applying Theorem 3.1 of Gupta and Studden (1970), we have the following theorem:
Theorem 2.2. \(\inf P(CC|R_2) = \int_0^\infty \prod_{j=2}^{k} [1 - G_p(x/c_2)]^{k-1} dG_p(x). \quad (2.4) \)

Proof. \(P(CC|R_2) = P \{ Y(1) \leq c_2 Y(j), \ j = 2, \ldots, k \} \)

\[
= \int_0^\infty \prod_{j=2}^{k} [1 - G_p(x/c_2;n\theta_{[j]})] dG_p(x;n\theta_{[1]}) \\
\geq \int_0^\infty [1 - G_p(x/c_2;n\theta_{[1]})]^{k-1} dG_p(x;n\theta_{[1]}) \quad (2.5) \\
\geq \int_0^\infty [1 - G_p(x/c_2)]^{k-1} dG_p(x). \quad (2.6)
\]

The equality in (2.5) holds when \(\theta_{[1]} = \theta_{[2]} = \ldots = \theta_{[k]} \) and the equality in (2.6) holds when \(\theta_{[1]} = 0. \) \(\Box \)

Remark 2.2. The values \(c_2 \) satisfying the equation \(\int_0^\infty [1 - G_p(x/c_2)]^{k-1} dG_p(x) = P^* \) can be found from Gupta and Sobel (1962) and Armitage and Krishnaiah (1964).

On the other hand, we may consider another classification procedure \(R_3 \) as follows:

\(R_3: \) Classify \(\pi_0 \) as any one of the \(\pi_i \)'s for which \(Y_i \leq c_3 \), where \(c_3 \) is the smallest positive constant such that the probability requirement (1.1) is satisfied.

For the determination of the value \(c_3 \), we can use the following theorem:

Theorem 2.3. \(\inf P(CC|R_3) = G_p(c_3), \) if \(\theta_{[1]} = 0. \)

Proof. \(P(CC|R_3) = P \{ Y(1) \leq c_3 \} \)

\[= G_p(c_3) \text{ if } \theta_{[1]} = 0. \] \(\Box \)

The values of \(c_3 \) can be found from \(\chi_p^2 \)-tables.

Remark 2.3. Note that if we use the procedure \(R_3 \), the selected subset may be an empty set. This drawback suggests that \(\pi_0 \) may not belong to one of the \(\pi_i, \ i = 1, \ldots, k. \)

Remark 2.4. We may consider a testing problem: \(H_0: \mu_0 = \mu_i, \) for some \(i, \ i = 1, \ldots, k, \) vs. \(H_1: \mu_0 \neq \mu_i, \ i = 1, \ldots, k. \) For a level \(\alpha \) test, the suggested rejection region could be

\[\min_{1 \leq j \leq k} Y_j \geq d, \] where \(d \) is the \(c_3 \) value determined by the procedure \(R_3 \) and the associated
probability P^* is $1 - \alpha$. We note that

$$P_{H_0} \left(\min_{1 \leq j \leq k} Y_j \geq d \right) = 1 - P_{H_0} \left(\min_{1 \leq j \leq k} Y_j < d \right)$$

$$\leq 1 - P_{H_0} \left(Y_{(1)} \leq d \right) = 1 - P^* = \alpha.$$

2.2. Σ_i, $i = 1, \ldots, k$, unknown, not all equal

2.2.1. Indifference Zone Approach

If Σ_i, $i = 1, \ldots, k$, are unknown but not all equal, we may estimate θ_i by $(X_i - \mu_0)' S_i^{-1} (X_i - \mu_0)$, $i = 1, \ldots, k$. Let $Y_i^* = n (X_i - \mu_0)' S_i^{-1} (X_i - \mu_0)$, $i = 1, \ldots, k$, and define a classification procedure R_4 as follows:

R_4: Classify π_0 as π_i if and only if $Y_i^* = \min_{1 \leq j \leq k} Y_j^*$.

We note that $Y_i^* \sim \frac{(n-1)p}{n-p} F_{p,n-p; n\theta_i}$ and $F_{p,n-p}(x; n\theta_i)$ has the stochastic increasing property. If we assume that $\theta_{[1]} = 0$ and $\theta_{[2]} \geq \Delta$, then we have the following theorem:

Theorem 2.4. $\inf P(C | R_4) = \int_0^\infty [1 - F_{p,n-p}(x; n\Delta)]^{k-1} dF_{p,n-p}(x).$ \hspace{1cm} (2.7)

Proof. $P(C | R_4) = P \left\{ \frac{n-p}{(n-1)p} Y_{(1)}^* \leq \frac{n-p}{(n-1)p} Y_{(j)}^*, \; j = 2, \ldots, k \right\}$

$$= \int_0^\infty \prod_{j=2}^k [1 - F_{p,n-p}(x; n\theta_{[j]})] \, dF_{p,n-p}(x)$$

$$\geq \int_0^\infty [1 - F_{p,n-p}(x; n\Delta)]^{k-1} dF_{p,n-p}(x). \quad \Box$$

Remark 2.5. In order to satisfy the probability requirement (1.1), we should choose the smallest n such that $n\Delta \geq d$ and $\int_0^\infty [1 - F_{p,n-p}(x; d)]^{k-1} dF_{p,n-p}(x) = P^*$.

2.2.2. Subset Selection Approach

Analogous to Gupta and Studden (1970), we consider the classification procedure R_5 as follows:

R_5: Classify π_0 as any one of the π_i's for which $Y_i^* \leq c_5 \min_{1 \leq j \leq k} Y_j^*$, where $c_5 > 1$ is the smallest constant such that the probability requirement (1.1) is satisfied.

By applying Theorem 3.1 of Gupta and Studden (1970), we have the following theorem:
Theorem 2.5. \(\inf P(CC|R_0) = \int_0^\infty [1 - F_{p,n-p}(x/c_5)]^{k-1} dF_{p,n-p}(x). \) (2.8)

Proof. \(P(CC|R_0) = P \left\{ \frac{n-p}{(n-1)p} Y^*_1 \leq c_5 \frac{n-p}{(n-1)p} Y^*_j, \ j = 2, \ldots, k \right\} \)

\[\geq \int_0^\infty \prod_{j=2}^k \left[1 - F_{p,n-p} \left(x/c_5 \frac{n\theta[j]}{n\theta[1]} \right) \right] dF_{p,n-p} \left(x/n\theta[1] \right) \]

\[\geq \int_0^\infty \left[1 - F_{p,n-p}(x/c_5) \right]^{k-1} dF_{p,n-p}(x). \]

Remark 2.6. The value of \(c_5 \) is the solution of the equation

\[\int_0^\infty \left[1 - F_{p,n-p}(x/c_5) \right]^{k-1} dF_{p,n-p}(x) = P^*. \]

On the other hand, we may consider a classification procedure \(R_6 \) as follows:

\(R_6: \) Classify \(\pi_0 \) as any one of the \(\pi_i \)'s for which \(Y^*_i \leq c_6, \) where \(c_6 \) is the smallest positive constant such that the probability requirement (1.1) is satisfied.

For the determination of the \(c_6 \) values, it is easy to show that

Theorem 2.6. \(\inf P(CC|R_6) = F_{p,n-p} \left(\frac{n-p}{(n-1)p} c_6 \right) \) if \(\theta[1] = 0. \)

The values of \(c_6 \) can be found from the \(F_{p,n-p} \)-tables.

Remark 2.7. Note that if we use the procedure \(R_6 \), the selected subset may be an empty set.

Remark 2.8. We may consider a testing problem: \(H_0: \mu_0 = \mu_i, \) for some \(i, \ i = 1, \ldots, k, \) vs. \(H_1: \mu_0 \neq \mu_i, \ i = 1, \ldots, k. \) For a level \(\alpha \) test, the suggested rejection region could be \(\min_{1 \leq j \leq k} Y^*_j \geq d, \) where \(d \) is the \(c_6 \) value determined by the procedure \(R_6 \) and the associated probability \(P^* \) is \(1 - \alpha. \)

2.3. \(\Sigma_i = \Sigma, \ i = 1, \ldots, k, \) unknown

When \(\Sigma_i = \Sigma, \ i = 1, \ldots, k, \) are unknown, we estimate \(\Sigma \) by \(S \) and let \(Y^*_i = n \left(\frac{\bar{X}_i - \mu_0}{\Sigma} \right)' S^{-1} \left(\frac{\bar{X}_i - \mu_0}{\Sigma} \right), \ i = 1, \ldots, k. \) We note that \(Y^*_i \sim \frac{\nu p}{\nu + p + 1} F_{p,v-p+1}; n\theta_i, \)
where \(v = k(n - 1) \) and \(a'\Sigma^{-1}a/Ch_1(S\Sigma^{-1}) \geq a'S^{-1}a \geq a'\Sigma^{-1}a/Ch_p(S\Sigma^{-1}) \) for any \(p \times 1 \) vector \(a \), where \(Ch_i(S\Sigma^{-1}) \) is the \(i \)-th smallest eigenvalue of the matrix \(S\Sigma^{-1} \). Let \(Z = Ch_1(S\Sigma^{-1})/Ch_p(S\Sigma^{-1}) \) and \(H(z) \) be the cdf of \(Z \) (\(H \) is independent of \(\mu_i \), \(i = 1, \ldots, k \), and \(\Sigma \)). This problem was considered by Chattopadhyay (1981) for subset selection approach.

2.3.1. Indifference Zone Approach

For the indifference zone approach, we consider the classification procedure \(R_7 \) as follows:

\(R_7: \) Classify \(\pi_0 \) as \(\pi_i \) if and only if \(Y_i^{**} = \min_{1 \leq j \leq k} Y_j^{**} \).

For this procedure, the following result can be used to determine the required sample size to satisfy the probability requirement (1.1).

Theorem 2.7. \(\inf P(CC|R_7) \geq \int_0^1 \int_0^\infty [1 - G_p(x/z; n\Delta)]^{k-1} dG_p(x) dH(z). \) \((2.9) \)

Proof. \(P(CC|R_7) = P \left\{ Y_{(1)}^{**} \leq Y_{(j)}^{**}, \ j = 2, \ldots, k \right\} \)

\[\geq P \left\{ n \left(\bar{X}_{(1)} - \mu_0 \right)' \Sigma^{-1} \left(\bar{X}_{(1)} - \mu_0 \right) \leq \frac{Ch_1(S\Sigma^{-1})}{Ch_p(S\Sigma^{-1})} n \left(\bar{X}_{(j)} - \mu_0 \right)' \Sigma^{-1} \left(\bar{X}_{(j)} - \mu_0 \right), \right. \]

\[j = 2, \ldots, k \}

\[= \int_0^1 \int_0^\infty \prod_{j=2}^k [1 - G_p(x/z; n\theta_{[j]})] dG_p(x) dH(z) \]

\[\geq \int_0^1 \int_0^\infty [1 - G_p(x/z; n\Delta)]^{k-1} dG_p(x) dH(z). \]

\(\square \)

Remark 2.9. Since \(Ch_1(S\Sigma^{-1})/Ch_p(S\Sigma^{-1}) \xrightarrow{P} 1 \) as \(n \to \infty \), we have \(P(CC|R_7) \to 1 \) as \(n \to \infty \).

Remark 2.10. The distribution of \(Ch_1(S\Sigma^{-1})/Ch_p(S\Sigma^{-1}) \) can be found in Pillai, Al–Ani and Jouris (1969).

Remark 2.11. It is easy to show that \(\inf P(CC|R_7) \geq P(Z > \theta_\varepsilon) \int_0^\infty [1 - G_p(x/\theta_\varepsilon; n\Delta)]^{k-1} dG_p(x), \)

where \(\varepsilon > 0 \) and \(P(Z \leq \theta_\varepsilon) = \varepsilon \). The equation \(P(Z > \theta_\varepsilon) \int_0^\infty [1 - G_p(x/\theta_\varepsilon; n\Delta)]^{k-1} dG_p(x) = \)
P^* can be used to determine the required sample size.

2.3.2. Subset Selection Approach

For the subset selection approach we refer to Chattopadhyay (1981). We consider the classification procedure R_8 as follows:

R_8: Classify π_0 as any one of the π_i's for which $Y_i^{**} \leq c_8 \min_{1 \leq j \leq k} Y_j^{**}$, where $c_8 > 1$ is the smallest constant such that the probability requirement (1.1) is satisfied.

Analogous to the proof of Theorem 2.7, we have the following result:

Theorem 2.8. \(\inf P(CC|R_8) \geq \int_0^1 \int_0^\infty [1 - G_p(x/c_8 z)]^{k-1} dG_p(x) dH(z). \) (2.10)

Remark 2.12. \(\int_0^1 \int_0^\infty [1 - G_p(x/c_8 z)]^{k-1} dG_p(x) dH(z) \to 1 \) as $n \to \infty$.

Remark 2.13. It is easy to show that
\[
\inf P(CC|R_8) \geq P(Z > \theta_\varepsilon) \int_0^\infty [1 - G_p(x/c_8 \theta_\varepsilon)]^{k-1} dG_p(x).
\]

On the other hand, we may consider an easier classification procedure R_9 defined as follows:

R_9: Classify π_0 as any one of the π_i's for which $Y_i^{**} \leq c_9$, where c_9 is the smallest positive constant such that the probability requirement (1.1) is satisfied.

It is easy to show that

Theorem 2.9. \(\inf P(CC|R_9) = F_{p,v-p+1} \left(\frac{v-p+1}{v_p} c_9 \right) \) if $\theta_{[1]} = 0$.

Remark 2.14. We can consider the testing problem: $H_0: \mu_0 = \mu_i$, for some i, $i = 1, \ldots, k$, vs. $H_1: \mu_0 \neq \mu_i$, $i = 1, \ldots, k$. The reject region is $\min_{1 \leq j \leq k} Y_j^{**} \geq d$.

3. Classification procedures when μ_0 unknown, μ_i, $i = 1, \ldots, k$, known

In the case that μ_0 is unknown and μ_i, $i = 1, \ldots, k$, are known. Let X_{01}, \ldots, X_{0n} be a random sample from π_0 and $\overline{X}_0 = \frac{1}{n} \sum_{j=1}^n X_{ij}$, $S_0 = \frac{1}{n-1} \sum_{j=1}^n (X_{0j} - \overline{X}_0) (X_{0j} - \overline{X}_0)'$. The Mahalanobis distance between populations π_0 and π_i is defined to be $\lambda_i = \left(\mu_i - \mu_0 \right)' \Sigma_0^{-1} \left(\mu_i - \mu_0 \right)$. We will discuss the classification procedures in various situations.
3.1. Σ_0 known

3.1.1. Indifference Zone Approach

For the indifference zone approach, we assume that $\lambda_{[2]} - \lambda_{[1]} \geq \Delta$. We define $Z_i = (\overline{X}_0 - \mu_i)' \Sigma_0^{-1} (\overline{X}_0 - \mu_i)$, $i = 1, \ldots, k$. Intuitively, we may consider the classification procedure R_{10} as follows:

R_{10}: Classify π_0 as π_i if and only if $Z_i = \min_{1 \leq j \leq k} Z_j$.

For the procedure R_{10}, we note that

$$Z_i \leq Z_j, \quad j = 1, \ldots, k, \quad j \neq i \iff 2(\mu_j - \mu_i)' \Sigma_0^{-1} (\overline{X}_0 - \mu_0) \leq \lambda_j - \lambda_i.$$

Thus we have the following result:

Theorem 3.1. $\inf P(CC|R_{10}) \geq 1 - (k - 1)\Phi \left(-\frac{\sqrt{n}\Delta}{2\delta}\right)$, \hspace{1cm} (3.1)

where Φ is the cdf of the standard normal and $\delta^2 = \max_{1 \leq i \leq k} \delta_i^2$, $\delta_i^2 = \max_{j \neq i} \left(\mu_j - \mu_i\right)' \Sigma_0^{-1} (\mu_j - \mu_i)$.

Proof. $P(CC|R_{10}) = P\left\{Z_{(1)} \leq Z_{(j)}, \quad j = 2, \ldots, k\right\}$

$$= P\left\{2(\mu_{(j)} - \mu_{(1)})' \Sigma_0^{-1} (\overline{X}_0 - \mu_0) \leq \lambda_{[j]} - \lambda_{[1]}, \quad j = 2, \ldots, k\right\}$$

$$\geq P\left\{2(\mu_{(j)} - \mu_{(1)})' \Sigma_0^{-1} (\overline{X}_0 - \mu_0) \leq \Delta, \quad j = 2, \ldots, k\right\}$$

$$\geq 1 - \sum_{j=2}^{k} P\left\{2(\mu_{(j)} - \mu_{(1)})' \Sigma_0^{-1} (\overline{X}_0 - \mu_0) > \Delta\right\}$$

$$= 1 - \sum_{j=2}^{k} \Phi \left(-\Phi \left(-\frac{\sqrt{n}\Delta}{2\delta} \right)^{1/2} \right)$$

$$\geq 1 - (k - 1)\Phi \left(-\frac{\sqrt{n}\Delta}{2\delta}\right).$$ \hspace{1cm} (3.2)

The inequality (3.2) holds since $\delta^2 \geq (\mu_{(j)} - \mu_{(1)})' \Sigma_0^{-1} (\mu_{(j)} - \mu_{(1)})$.

Remark 3.1. As $n \to \infty$, $\Phi \left(-\frac{\sqrt{n}\Delta}{2\delta}\right) \to 0$, hence $P(CC|R_{10}) \to 1$. For given P^*, we can find n such that $\inf P(CC|R_{10}) \geq P^*$.

\hspace{10cm} \square
3.1.2. Subset Selection Approach

For the subset selection approach, we consider a classification procedure R_{11} as follows:

R_{11}: Classify π_0 as any one of the π_i's for which $Z_i \leq \min_{1 \leq j \leq k} Z_j + c_{11}$, where c_{11} is the smallest positive constant such that the probability requirement (1.1) is satisfied.

Analogous to the proof of Theorem 3.1, we have the following result:

Theorem 3.2. $\inf P(CC|R_{11}) \geq 1 - (k - 1) \Phi \left(\frac{-\sqrt{n} c_{11}}{2\delta} \right)$. \hspace{1cm} (3.3)

Proof. $P(CC|R_{11}) = P \left\{ Z_{(1)} \leq Z_{(j)} + c_{11}, \; j = 2, \ldots, k \right\}$

\begin{align*}
&= P \left\{ 2 \left(\mu_{(j)} - \mu_{(1)} \right)' \Sigma_0^{-1} \left(\overline{X}_0 - \mu_0 \right) \leq \lambda_{[j]} - \lambda_{[1]} + c_{11}, \; j = 2, \ldots, k \right\} \\
&\geq P \left\{ 2 \left(\mu_{(j)} - \mu_{(1)} \right)' \Sigma_0^{-1} \left(\overline{X}_0 - \mu_0 \right) \leq c_{11}, \; j = 2, \ldots, k \right\} \\
&\geq 1 - (k - 1) \Phi \left(\frac{-\sqrt{n} c_{11}}{2\delta} \right) . \quad \square
\end{align*}

On the other hand, we suggest another classification procedure R_{12} as follows:

R_{12}: Classify π_0 as any one of the π_i's for which $nZ_i \leq c_{12}$, where c_{12} is the smallest positive constant such that the probability requirement (1.1) is satisfied.

For this procedure, it is easy to show that

Theorem 3.3. $\inf P(CC|R_{12}) = G_p(c_{12})$ if $\lambda_{[1]} = 0$.

Remark 3.2. We may consider a testing problem: $H_0: \mu_0 = \mu_i$, for some i, $i = 1, \ldots, k$, vs. $H_1: \mu_0 \neq \mu_i$, $i = 1, \ldots, k$. The suggested reject region is $\min_{1 \leq j \leq k} Z_j \geq d$.

3.2. Σ_0 unknown

When Σ_0 is also unknown, we estimate it by S_0, and let $Z_i^* = n \left(\overline{X}_0 - \mu_i \right)' S_0^{-1} \left(\overline{X}_0 - \mu_i \right)$, $i = 1, \ldots, k$. For the indifference zone approach, we consider the classification procedure R_{13} as follows:

R_{13}: Classify π_0 as π_i if and only if $Z_i^* = \min_{1 \leq j \leq k} Z_j^*$.

11
Analogous to the proof of Theorem 2.7, and Theorem 3.1, for large sample, we have the following result:

Theorem 3.4. \(\inf P(CC|R_{13}) \geq 1 - (k - 1) \Phi \left(-\frac{\sqrt{n} \Delta}{2\delta} \right) \), if \(n \) is large enough.

Proof. \(P(CC|R_{13}) = P \left\{ Z_{(1)}^* \leq Z_{(j)}^*, \ j = 2, \ldots, k \right\} \)

\[
\geq P \left\{ n \left(\overline{X}_0 - \mu_{(1)} \right)' \Sigma_0^{-1} \left(\overline{X}_0 - \mu_{(1)} \right) \leq \frac{Ch_1(S_0 \Sigma_0^{-1})}{Ch_p(S_0 \Sigma_0^{-1})} n \left(\overline{X}_0 - \mu_{(j)} \right)' \Sigma_0^{-1} \left(\overline{X}_0 - \mu_{(j)} \right), \ j = 2, \ldots, k \right\}
\]

\[
\approx P \left\{ n \left(\overline{X}_0 - \mu_{(1)} \right)' \Sigma_0^{-1} \left(\overline{X}_0 - \mu_{(1)} \right) \leq n \left(\overline{X}_0 - \mu_{(j)} \right)' \Sigma_0^{-1} \left(\overline{X}_0 - \mu_{(j)} \right), \ j = 2, \ldots, k \right\}
\]

\[
\geq 1 - (k - 1) \Phi \left(-\frac{\sqrt{n} \Delta}{2\delta} \right), \text{ if } n \text{ is large enough.} \quad \square
\]

For the subset selection approach, we consider the classification procedure \(R_{14} \) as follows:

\(R_{14} \): Classify \(\pi_0 \) as one of the \(\pi_i \)'s for which \(Z_i^* \leq \min_{1 \leq j \leq k} Z_j^* + c_{14} \), where \(c_{14} \) is the smallest positive constant such that the probability requirement (1.1) is satisfied.

For large sample, it is easy to show that

Theorem 3.5. \(\inf P(CC|R_{14}) \geq 1 - (k - 1) \Phi \left(-\frac{\sqrt{n} \sigma_{14}}{2\delta} \right) \).

On the other hand, a simple procedure \(R_{15} \) can be defined as follows:

\(R_{15} \): Classify \(\pi_0 \) as one of the \(\pi_i \)'s for which \(Z_i^* \leq c_{15} \), where \(c_{15} \) is the smallest positive constant such that the probability requirement (1.1) is satisfied.

Since \(Z_i^* \sim \frac{\sqrt{n-1}}{n-p} F_{p, n-p; n\lambda_i} \), it is easy to show that

Theorem 3.6. \(\inf P(CC|R_{15}) = F_{p, n-p} \left(\frac{n-p}{(n-1)p} c_{15} \right) \) if \(\lambda_{[1]} = 0 \).

4. Classification procedures when \(\mu_i, \ i = 0, 1, \ldots, k, \) unknown

When \(\mu_i, \ i = 0, 1, \ldots, k, \) are unknown, we use \(\theta_i \) defined in Section 2 as a measurement of distance between populations \(\pi_0 \) and \(\pi_i, \ i = 1, \ldots, k, \) respectively. Let \(X_{ij}, \ j = 1, \ldots, n, \)
be a random sample from population π_i, $i = 0, 1, \ldots, k$, $\overline{X}_i = \frac{1}{n} \sum_{j=1}^{n} X_{ij}$ be the sample
mean vector and $S_i = \frac{1}{n-1} \sum_{j=1}^{n} (X_{ij} - \overline{X}_i) (X_{ij} - \overline{X}_i)'$ be the sample covariance matrix
within the population π_i and $S^* = \frac{1}{k+1} \sum_{i=0}^{k} S_i$ is the pooled sample covariance matrix. We
will discuss the classification procedures in various situations.

4.1. Σ_i, $i = 1, \ldots, k$, known

When Σ_i, $i = 1, \ldots, k$, are known. We define $\U_i = n (\overline{X}_0 - \overline{X}_i)' \Sigma_i^{-1} (\overline{X}_0 - \overline{X}_i)$,
i = 1, \ldots, k. For this case, we use the subset selection approach and consider a classification
procedure R_{16} as follows:

R_{16}: Classify π_0 as one of the π_i's for which $\U_i \leq c_{16} \min_{1 \leq j \leq k} \U_j$, where $c_{16} > 1$ is the
smallest constant such that the probability requirement (1.1) is satisfied.

For this procedure, we have the following result:

Theorem 4.1. $\inf P(CC|R_{16}) \geq \int_0^\infty [1 - G_p(2x/c_{16})]^{k-1} dG_p(x)$. \hspace{1cm} (4.1)

Proof. Let $\U_{(j)} = n \left(\overline{X}_0 - \overline{X}_{(j)} \right)' \Sigma_{(j)}^{-1} \left(\overline{X}_0 - \overline{X}_{(j)} \right)$, \(j = 1, \ldots, k \). Given $\overline{X}_0 = \overline{x}$, $\U_{(j)}$, $j = 1, \ldots, k$, are independent and $\U_{(j)} \sim \chi^2_{p;n} \left(\mu_{(j)} - \overline{x} \right)' \Sigma_{(j)}^{-1} \left(\mu_{(j)} - \overline{x} \right)$.

\begin{align*}
P(CC|R_{16}) &= P \{ \U_{(1)} \leq c_{16} \U_{(j)}, j = 2, \ldots, k \} \\
&= \int P \left\{ n \left(\overline{X}_{(1)} - \overline{x} \right)' \Sigma_{(1)}^{-1} \left(\overline{X}_{(1)} - \overline{x} \right) \leq c_{16} n \left(\overline{X}_{(j)} - \overline{x} \right)' \Sigma_{(j)}^{-1} \left(\overline{X}_{(j)} - \overline{x} \right), j = 2, \ldots, k \} dF(\overline{x}) \\
&= \int \prod_{j=2}^{k} \left[1 - G_p(y/c_{16}) \right] dG_p \left(y; n \left(\mu_{(1)} - \overline{x} \right)' \Sigma_{(1)}^{-1} \left(\mu_{(1)} - \overline{x} \right) \right) dF(\overline{x}) \\
&\geq \int \prod_{j=2}^{k} \left[1 - G_p(y/c_{16}) \right] dG_p \left(y; n \left(\mu_{(1)} - \overline{x} \right)' \Sigma_{(1)}^{-1} \left(\mu_{(1)} - \overline{x} \right) \right) dF(\overline{x}) \\
&= P \left\{ \U_{(1)} \leq c_{16} \U^*_{(j)}, j = 2, \ldots, k \right\} \\
\end{align*}

where F is the cdf of \overline{X}_0, $\U^*_{(j)}$, $j = 2, \ldots, k$, and $\U_{(1)}$ are independent and $\U^*_{(j)} \sim \chi^2_p$.

Now $\U_{(1)} \sim 2\chi^2_p$. Hence

\[P(CC|R_{16}) \geq \int_0^\infty [1 - G_p(2y/c_{16})]^{k-1} dG_p(y). \]
Remark 4.1. If we use the measurement \(v_i = (\mu_i - \mu_0)' (\Sigma_0 + \Sigma_i)^{-1} (\mu_i - \mu_0) \) then we have an easier classification procedure \(R_{17} \) defined by

\[R_{17}: \text{Classify } \pi_0 \text{ as one of the } \pi_i \text{'s for which } \cup_i^* \leq c_{17}, \text{ where } \cup_i^* = n \left(\overline{X}_0 - \overline{X}_i \right)' (\Sigma_0 + \Sigma_i)^{-1} \left(\overline{X}_0 - \overline{X}_i \right) \text{ and } c_{17} \text{ is the smallest positive constant such that the probability requirement (1.1) is satisfied.} \]

It is easy to show that \(\inf P(\text{CC}|R_{17}) = G_p(c_{17}) \) if \(\psi_{[1]} = 0 \).

4.2. \(\Sigma_i, i = 1, \ldots, k, \) unknown, not all equal

When \(\Sigma_i, i = 1, \ldots, k, \) are unknown and \(\Sigma_i, i = 1, \ldots, k, \) are not all equal. We define \(V_i = n \left(\overline{X}_0 - \overline{X}_i \right)' S_{i}^{-1} \left(\overline{X}_0 - \overline{X}_i \right), i = 1, \ldots, k. \) A classification procedure \(R_{18} \) is defined as follows:

\[R_{18}: \text{Classify } \pi_0 \text{ as one of the } \pi_i \text{'s for which } V_i \leq c_{18} \min_{1 \leq j \leq k} V_j, \text{ where } c_{18} > 1 \text{ is the smallest constant such that the probability requirement (1.1) is satisfied.} \]

Given \(\overline{X}_0 = \overline{x} \), we have \(V_i \sim \begin{pmatrix} (n-1)p \\ n-p \end{pmatrix} F_{p,n-p; n(p, \overline{x} - \overline{x})' \Sigma_{i}^{-1} (\overline{x} - \overline{x})}. \) Analogous to the proof of Theorem 4.1, we have the following result:

Theorem 4.2. \(\inf P(\text{CC}|R_{18}) \geq \int_0^\infty \left[1 - F_{p,n-p}(2y/c_{18}) \right]^{k-1} dF_{p,n-p}(y). \) \(\quad (4.2) \)

Proof. \(\int P \left\{ V_{(1)} \leq c_{18} V_{(j)}, j = 2, \ldots, k, \overline{X}_0 = \overline{x} \right\} dF(\overline{x}) \)

\[\geq P \left\{ V_{(1)} \leq c_{18} V_{(j)}, j = 2, \ldots, k \right\} \]

where \(V_{(j)} \) and \(V_{(1)} \) are independent, \(V_{(1)} \sim \begin{pmatrix} 2(n-1)p \\ n-p \end{pmatrix} F_{p,n-p} \) and \(V_{(j)} \sim \begin{pmatrix} (n-1)p \\ n-p \end{pmatrix} F_{p,n-p}, j = 2, \ldots, k. \) Thus

\[P(\text{CC}|R_{18}) \geq \int_0^\infty \left[1 - F_{p,n-p}(2y/c_{18}) \right]^{k-1} dF_{p,n-p}(y). \]

Remark 4.2. We can define an easier classification procedure \(R_{19} \) as follows:

\(R_{19}: \text{Classify } \pi_0 \text{ as one of the } \pi_i \text{'s for which } V_i \leq c_{19}, \text{ where } c_{19} \text{ is the smallest positive constant such that the probability requirement (1.1) is satisfied.} \)

It is easy to show that \(\inf P(\text{CC}|R_{19}) = F_{p,n-p} \left(\frac{n-p}{2(n-1)p} c_{19} \right), \) if \(\theta_{[1]} = 0. \)
4.3. $\Sigma_i = \Sigma$, $i = 0, 1, \ldots, k$, unknown

When $\Sigma_i = \Sigma$, $i = 0, 1, \ldots, k$, and Σ is unknown, we estimate Σ by S^* and define $W_i = n\left(\overline{X}_0 - \overline{X}_i\right)' S^{*-1} \left(\overline{X}_0 - \overline{X}_i\right)$, $i = 1, \ldots, k$. Then a classification R_{20} can be defined by:

R_{20}: Classify π_0 as any one of the π_i's for which $W_i \leq c_{20} \min_{1 \leq j \leq k} W_j$, where $c_{20} > 1$ is the smallest positive constant such that the probability requirement (1.1) is satisfied.

Given $\overline{X}_0 = \overline{x}$, $W_i \sim \frac{v^*_{p}}{v^*_{p-1}} \frac{F_{p,v^*_{p-1}+1; n(\mu_i - \overline{x})' \Sigma^{-1} (\mu_i - \overline{x})}}{C_{p}(S^* \Sigma^{-1})}$, where $v^* = (k+1)(n-1)$.

Analogous to the proof of Theorem 4.1 and Theorem 2.7, we have the following result:

Theorem 4.3. $\inf P(CC|R_{20}) \geq \int_0^1 \int_0^\infty [1 - F_{p,v^*_{p-1}+1}(2y/c_{20}z)]^{k-1} dF_{p,v^*_{p-1}+1}(y) dH^*(z)$. \hspace{1cm} (4.3)

where $H^*(z)$ is the cdf of $Ch_1(S^* \Sigma^{-1})/Ch_p(S^* \Sigma^{-1})$.

Proof. $P\{W_{(1)} \leq c_{20} W_{(j)}, j = 2, \ldots, k | \overline{X}_0 = \overline{x}\}$

$= P\left\{n\left(\overline{X}_{(1)} - \overline{x}\right)' S^{*-1} \left(\overline{X}_{(1)} - \overline{x}\right) \leq c_{20} n\left(\overline{X}_{(j)} - \overline{x}\right)' S^{*-1} \left(\overline{X}_{(j)} - \overline{x}\right), j = 2, \ldots, k\right\}$

$\geq P\left\{n\left(\overline{X}_{(1)} - \overline{x}\right)' S^{*-1} \left(\overline{X}_{(1)} - \overline{x}\right) \leq \frac{Ch_1(S^* \Sigma^{-1})}{Ch_p(S^* \Sigma^{-1})} c_{20} n\left(\overline{X}_{(j)} - \overline{x}\right)' S^{*-1} \left(\overline{X}_{(j)} - \overline{x}\right), j = 2, \ldots, k\right\}$

$= \int_0^1 \int_0^\infty \prod_{j=2}^k \left[1 - F_{p,v^*_{p-1}+1}(y/c_{20}z; n(\mu_{(j)} - \overline{x})' S^{*-1} (\mu_{(j)} - \overline{x}))\right] dF_{p,v^*_{p-1}+1}

\left(y; n\left(\mu_{(1)} - \overline{x}\right)' S^{*-1} \left(\mu_{(1)} - \overline{x}\right)\right) dH^*(z)$

$\geq \int_0^1 \int_0^\infty [1 - F_{p,v^*_{p-1}+1}(y/c_{20}z)]^{k-1} dF_{p,v^*_{p-1}+1}(y; n(\mu_{(1)} - \overline{x})' S^{*-1} (\mu_{(1)} - \overline{x})) dH^*(z)$

$= P\{W_{(1)} \leq c_{20} W_{(j)}, j = 2, \ldots, k | \overline{X}_0 = \overline{x}\}$

where $W^*_{(j)} \sim \frac{v^*_{p}}{v^*_{p-1}} F_{p,v^*_{p-1}+1}$ is independent of \overline{X}_0. Therefore

$P(CC|R_{20}) = P\{W_{(1)} \leq c_{20} W_{(j)}, j = 2, \ldots, k\}$

$\geq \int_0^1 \int_0^\infty [1 - F_{p,v^*_{p-1}+1}(2y/c_{20}z)]^{k-1} dF_{p,v^*_{p-1}+1}(y) dH^*(z)$.

\square
Remark 4.3. We also have \(\inf P(\mathcal{C}|R_{20}) \geq P(Z^* > \theta_\epsilon) \)

\[
\int_0^\infty \left[1 - F_{p,v^*-p+1} \left(2y/c_{20} \theta_\epsilon \right) \right]^{k-1} dF_{p,v^*-p+1}(y),
\]

where \(Z^* = \text{Ch}_1(S^* \Sigma^{-1})/\text{Ch}_p(S^* \Sigma^{-1}) \).

Remark 4.4. Since \(W_i \sim 2^{v^*-p+1} F_{p,v^*-p+1;n \theta_i}, \) we can define an easier classification procedure \(R_{21} \) as follows:

\(R_{21} \): Classify \(\pi_0 \) as one of the \(\pi_i \)'s for which \(W_i \leq c_{21}, \) where \(c_{21} \) is the smallest positive constant such that the probability requirement (1.1) is satisfied.

It is easy to show that \(\inf P(\mathcal{C}|R_{21}) = F_{p,v^*-p+1} \left(\frac{v^*-p+1}{2v^*} c_{21} \right) \) if \(\theta_{[1]} = 0. \)
BIBLIOGRAPHY

This paper deals with a classification problem based on ranking and selection approach. We assume that the populations follow multivariate normal distribution. The corresponding selection problem is to choose the population with the smallest Mahalanobis distance. The subset selection approach is considered throughout this paper. Sometimes the indifference zone approach is also proposed. It should be pointed out that, for the subset selection approach, we need not assume that the individual to be classified belongs to one of the several given categories. The classification procedures depend on whether the parameters μ_i and Σ_i are known or unknown.