Resampling Estimators for Generalized L-Statistics
by
Jun Shao
Purdue University
Technical Report #88-59

Department of Statistics
Purdue University
November 1988
RESAMPLING ESTIMATORS FOR GENERALIZED L-STATISTICS

Jun Shao

Department of Statistics
Purdue University
West Lafayette, IN 47907

ABSTRACT

A wide class of statistics, the generalized L-statistics, was introduced in Serfling (1984). The generalized L-statistics are asymptotically normal under weak conditions. This report consists of two parts. In part I, we show that the jackknife estimators of the asymptotic variances of generalized L-statistics are consistent. In part II, bootstrap methods for generalized L-statistics are studied. The results provide methods for large sample statistical analysis based on generalized L-statistics.
PART I

JACKKNIFE VARIANCE ESTIMATORS FOR GENERALIZED L-STATISTICS

1. Introduction

The generalized L-statistics was introduced by Serfling (1984). It generalizes the classes of U-statistics and L-statistics and consists of other types of statistics such as trimmed sample variance, trimmed U-statistics and Winsorized U-statistics. See Serfling (1984, 1985) for other examples. Let X_1,\ldots, X_n be independent and identically distributed samples from an unknown population distribution F, m be a fixed positive integer and $h(x_1,\ldots, x_m)$ be a given symmetric function. Denote the distribution function of $h(X_1,\ldots, X_m)$ by $H(y)$, i.e.,

$$H(y) = P_F\{ h(X_1,\ldots, X_m) \leq y \}, \quad y \in \mathbb{R}.$$

Let

$$H_n(y) = n_{(m)}^{-1} \sum_{c_m} I[h(X_{i_1},\ldots, X_{i_m}) \leq y],$$

where $I[A]$ is the indicator function of the set A, $n_{(m)} = n(n-1) \cdots (n-m+1)$ and \sum_{c_m} is the summation taken over the $n_{(m)}$ m-tuples (i_1,\ldots, i_m) of distinct elements from $\{1,\ldots, n\}$. We consider a class of smooth generalized L-statistics defined by $T(H_n)$, where T is defined to be

$$T(G) = \int y J[G(y)]dG(y), \quad \text{for any distribution function } G,$$

and J is a function on $[0,1]$ (Serfling, 1984). When $h = x$, H_n reduces to the ordinary empirical distribution and $T(H_n)$ reduces to the ordinary L-statistics. When $J \equiv 1$, $T(H_n)$ is a U-statistic. It was shown in Serfling (1984) that the influence function of $T(H_n)$ is

$$\phi(z) = -m \int [g(y,z) - H(y)]J[H(y)]dy,$$

where

$$g(y,z) = \int \cdots \int I[h(x_1,\ldots, x_{m-1}, z) \leq y].$$
Furthermore, under either condition A or condition B stated below, the generalized L-statistics are asymptotically normal, i.e.,
\[n^{1/2}(T(H_n) - T(H)) \rightarrow N(0, \sigma^2) \] in distribution,
where \(\sigma^2 = E_F \varphi^2(X_1) \) and is assumed to be finite.

Condition A. \(J(t) = 0 \) for \(0 \leq t < \alpha \) or \(\beta < t \leq 1 \), where \(0 < \alpha < \beta < 1 \) are constants, \(J \) is continuous on \([\alpha, \beta]\) and \(H \) is continuous.

Condition B. \(J \) is continuous on \([0, 1]\) and \(H \) is continuous and satisfies
\[\int [H(y)(1 - H(y))]^{1/2} \, dy < \infty. \] (1.3)

The statistics with \(J \) functions satisfying condition A are referred to as trimmed statistics in the literature and they usually provide robust estimators (Huber, 1981). Condition (1.3) is equivalent to \(E_F h^2(X_1, \ldots, X_m) < \infty \) if the distribution \(H \) has regularly varying tails (see Feller, 1966, p.268) with a finite exponent. It is implied by \(E_F [h(X_1, \ldots, X_m)]^{2+\delta} < \infty \) for a \(\delta > 0 \).

For various purposes in statistical analysis, we need a consistent estimator of the unknown asymptotic variance \(\sigma^2 \). In this paper, we prove that the estimators of \(\sigma^2 \) obtained by using the jackknife method (Quenouille, 1956; Tukey, 1958) are strongly consistent. For \(i = 1, \ldots, n \), let \(H_{ni} \) be defined as in (1.1) corresponding to \(n - 1 \) samples \(X_1, \ldots, X_{i-1}, X_{i+1}, \ldots, X_n \). The jackknife estimator of \(\sigma^2 \) is defined to be
\[s_f^2 = (n-1) \sum_{i=1}^{n} [T(H_{ni}) - \overline{T}_n]^2, \] (1.4)
where \(\overline{T}_n = n^{-1} \sum_{i=1}^{n} T(H_{ni}) \).

In Section 2, the strong consistency of \(s_f^2 \) is proved for trimmed generalized L-statistics. The case of untrimmed generalized L-statistics is treated in Section 3. Since U- and L-statistics are special cases of generalized L-statistics, our result includes the existing results in jackknifing U- and L-statistics (see
Arvesen, 1969; Parr and Schucany, 1982) as special cases.

2. Trimmed generalized L-statistics

Let \(U_n \) be a U-statistic (see Hoeffding, 1948) defined to be

\[
U_n = n^{-1}(m) \sum_{c_m} k(X_{i_1}, \ldots, X_{i_m}),
\]

where \(k(x_1, \ldots, x_m) \) is a symmetric kernel. For each \(i \), let

\[
U_{ni} = [(n-1)(m)]^{-1} \sum_{c_m} k(X_{i_1}, \ldots, X_{i_m}),
\]

where \((n-1)(m) = (n-1) \cdots (n-m) \) and \(\sum_{c_m} \) is the summation taken over the \((n-1)(m) \) \(m \)-tuples \((i_1, \ldots, i_m) \) of distinct elements from the integers \(\{ 1, \ldots, i-1, i+1, \ldots, n \} \). The jackknife estimator of the asymptotic variance of \(U_n \) is

\[
s_n^2 = (n-1)\sum_{i=1}^n (U_{ni} - U_n)^2.
\]

Lemma 1. Assume that \(E_F k^2(X_1, \ldots, X_m) < \infty \). Then

\[
s_n^2 \rightarrow m^2 \int \phi^2(y) dF(y) \text{ a.s.,}
\]

where \(\phi(y) = E_F [k(X_1, \ldots, X_m) \mid X_1 = y] - E_F k(X_1, \ldots, X_m) \).

This result was proved in Arvesen (1969, Theorem 5), although he stated a weaker version of this result (the weak consistency). The following lemmas are also needed for the proof of the main results.

Lemma 2. Let \(H, H_n \) and \(H_{ni} \) be defined as in Section 1. Then

(i) \(\sum_{i=1}^n [H_n(y) - H_{ni}(y)] = 0 \) for any \(y \).

(ii) \(\| H_n - H_{ni} \|_\infty \leq m(n-m)^{-1} \), where \(\| \cdot \|_\infty \) is the sup norm.

Proof. Let
\[A_{ni}(y) = [(n-1)_{(m-1)}]^{-1} \sum_{i_{m-1}} I[h(X_i, X_{i_1}, \ldots, X_{i_{m-1}}) \leq y] \] (2.1)

where \((n-1)_{(m-1)}=\ldots(n-1)\cdot(n-m+1)\) and \(\sum_{i_{m-1}}\) is the summation taken over the \((n-1)_{(m-1)} \) \(m-1\)-tuples \((i_1, \ldots, i_{m-1})\) of distinct elements from the integers \(\{1, \ldots, i-1, i+1, \ldots, n\}\). A straightforward calculation shows that

\[H_n(y) - H_{ni}(y) = m(n-m)^{-1}[A_{ni}(y) - H_n(y)]. \]

Then (i) follows from \(n^{-1} \sum_{i=1}^{n} A_{ni}(y) = H_n(y)\) and (ii) follows from both \(\|A_{ni}\|_{\infty}\) and \(\|H_n\|_{\infty}\) are bounded by one. □

Lemma 3. Assume that \(H\) is continuous. Then

\[\|H_n - H\|_{\infty} \to 0 \quad a.s. \]

Proof. For each \(y\), \(H_n(y)\) is a U-statistic. From theory of U-statistic, \(H_n(y) \to H(y)\) a.s. Let \(D = \{\) all rational numbers in \(R\}\). Then almost surely, \(H_n(y) \to H(y)\) for all \(y \in D\). Let \(\omega = (X_1, X_2, \ldots)\) be fixed such that \(H_n(y) \to H(y)\) for all \(y \in D\). Since \(D\) is a dense subset of \(R\) and \(H_n\) is a distribution function, \(H_n\) converges weakly to \(H\). From the continuity of \(H\), we have \(\|H_n - H\|_{\infty} \to 0\). This completes the proof. □

We now establish the strong consistency of \(s_f^2\) given by (1.4) for trimmed generalized L-statistics.

Theorem 1. Assume condition A. Then

\[s_f^2 \to \sigma^2 \quad a.s. \]

Proof. Define

\[W_{ni}(y) = [H_{ni}(y) - H_n(y)]^{-1} \int_{H_n(y)}^{H_{ni}(y)} J(t) dt - J[H(x)] \] (2.2)

for \(H_{ni}(y) \neq H_n(y)\) and \(W_{ni}(y) = 0\) if \(H_{ni}(y) = H_n(y)\). From Lemma 8.1.1B in Serfling (1980),
\[T(H_{ni}) - T(H_n) = \int [H_n(y) - H_{ni}(y)] J[H(y)] dy \]

\[+ \int W_{ni}(y)[H_n(y) - H_{ni}(y)] J[H(y)] dy. \]

Let \(U_{ni} = \int [H_{ni}(y) - H(y)] J[H(y)] dy, \quad U_n = \int [H_n(y) - H(y)] J[H(y)] dy, \)

\(R_{ni} = \int W_{ni}(y)[H_n(y) - H_{ni}(y)] dy \) and \(\overline{R}_n = n^{-1} \sum_{i=1}^{n} R_{ni}. \) From Lemma 2,

\(U_n = n^{-1} \sum_{i=1}^{n} U_{ni}. \) Then

\[s_j^2 = (n-1) \sum_{i=1}^{n} (U_{ni} - U_n)^2 \]

\[+ (n-1) \sum_{i=1}^{n} (R_{ni} - \overline{R}_n)^2 + 2(n-1) \sum_{i=1}^{n} R_{ni} (U_{ni} - U_n). \]

Note that \(U_n \) is a U-statistic with \(\int [I[h(x_1,\ldots,x_m) \leq y] - H(y)] J[H(y)] dy \) as the kernel. Hence from Lemma 1,

\[(n-1) \sum_{i=1}^{n} (U_{ni} - U_n)^2 \rightarrow \sigma^2 \text{ a.s.} \]

Using Cauchy-Schwarz inequality, the result follows from

\[(n-1) \sum_{i=1}^{n} R_{ni}^2 \rightarrow 0 \text{ a.s.} \] (2.5)

Let \(a \) and \(b \) be two constants such that \(H(a) < \alpha \) and \(H(b) > \beta \). From Lemma 2(ii) and Lemma 3, for almost all \(\omega = (X_1, X_2, \ldots) \), there is an \(n_\omega > 0 \) such that

\(H_{ni}(a) < \alpha, H_n(a) < \alpha, H_{ni}(b) > \beta \) and \(H_n(b) > \beta \) hold for all \(i \leq n \) and \(n \geq n_\omega \).

Then \(R_{ni} = \int_a^b W_{ni}(y)[H_n(y) - H_{ni}(y)] dy \), since \(J(t) = 0 \) if \(t < \alpha \) or \(t > \beta \). Thus,

\[\max_{i \leq n} R_{ni}^2 \leq (b-a)^2 \max_{i \leq n} \left(\| W_{ni} \|_\infty \| H_n - H_{ni} \|_\infty \right) \]

\[\leq C n^{-2} \max_{i \leq n} \| W_{ni} \|_\infty. \]

where \(C \) is a constant. Since \(J \) is a continuous function on \([\alpha, \beta]\), \(\| H_{ni} - H_n \|_\infty \leq m(n-m)^{-1} \) and \(\| H_n - H \|_\infty \rightarrow 0 \text{ a.s.}, \) \(\max_{i \leq n} \| W_{ni} \|_\infty \rightarrow 0 \text{ a.s.} \)

Hence (2.5) holds and the result follows. \(\square \)

3. Untrimmed generalized L-statistics

For untrimmed generalized L-statistics, we prove the following similar result.
Theorem 2. Assume condition B. Then
\[s^2_f \rightarrow \sigma^2 \text{ a.s.} \]

Proof. From (2.2)-(2.4), we only need to show (2.5) holds. Using Lemma 2(i), we obtain
\[
(n-1)\sum_{i=1}^{n} r_{ni}^2 = (n-1)m^2(n-m)^{-2}\sum_{i=1}^{n} \left(\int W_{ni}(y)[A_{ni}(y) - H(y)]dy \right)^2
\leq Cn^{-1} \sum_{i=1}^{n} \left(\int |A_{ni}(y) - H(y)|dy \right)^2 \max_{i \leq n} ||W_{ni}||_{\infty},
\]
where \(C \) is a constant. From the proof of Theorem 1, \(\max_{i \leq n} ||W_{ni}||_{\infty} \rightarrow 0 \text{ a.s.} \)

Then (2.5) follows from
\[
n^{-1} \sum_{i=1}^{n} \left(\int |A_{ni}(y) - H_n(y)|dy \right)^2 = O(1) \text{ a.s.} \tag{3.1}
\]

Let \(\xi_n = n^{-1} \sum_{i=1}^{n} \left(\int |A_{ni}(y) - H(y)|dy \right)^2 \). Using the notation in (2.1), we have
\[
\xi_n \leq n^{-1} \sum_{i=1}^{n} \sum_{j=1}^{n} \left(\int |I[h(X_{i}, X_{j})] - H(y)|dy \right)^2
\leq n^{-1} \sum_{i=1}^{n} \left(\int |I[h(X_{i}) - H(y)]|dy \right)^2,
\] \(\tag{3.2} \)
which is a U-statistic with a kernel \(\{ \int |I[h(x_1, \ldots, x_m) - H(y)]|dy \}^2 \). Under condition (1.3),
\[
E_F \left(\int |I[h(X_1, \ldots, X_m) - H(y)]|dy \right)^2 \tag{3.3}
\]
\[
= \int E_F \left(\left[\int |I[h(X_1, \ldots, X_m) - H(y)]|dy \right]^2 \right) \leq \left(\int [H(y)(1-H(y))]^hdy \right)^2 < \infty.
\]

From the almost sure convergence of U-statistics, the quantity in (3.2) converges almost surely to the quantity in (3.3). Hence \(\xi_n = O(1) \text{ a.s.} \). Similarly,
\[
\int |H_n(y) - H(y)|dy \text{ is bounded by}
\]
\[
n^{-1} \sum_{i=1}^{n} \int |I[h(X_{i}) - H(y)]|dy,
\]
which converges almost surely to
\[
E_F \int |I[(X_1, \ldots, X_m) - H(y)]|dy < \infty
\]
under condition (1.3). Then (3.1) follows from
\[
n^{-1} \sum_{i=1}^{n} \left(\int |A_{ni}(y) - H_n(y)|dy \right)^2 \leq 2 \xi_n + 2 \left(\int |H_n(y) - H(y)|dy \right)^2.
\]
This completes the proof. □

4. Remarks

A different type of generalized L-statistic (Serfling, 1984) is $T(K_n)$, where T is given by (1.2) and

$$K_n(y) = n^{-m} \sum_{i_1=1}^{n} \cdots \sum_{i_m=1}^{n} \mathbb{I}[h(X_{i_1}, \ldots, X_{i_m}) \leq y].$$

$T(H_n)$ and $T(K_n)$ are closely related and have the same limiting distribution. Note that $K_n(y)$ is a V-statistic. Consistency of jackknife estimators for V-statistics can be established using similar techniques in treating jackknife estimators for U-statistics (e.g., Sen, 1977). Therefore, our results in the previous sections can be extended to the statistics $T(K_n)$ with some modifications.
PART II

BOOTSTRAPPING FOR GENERALIZED L-STATISTICS

1. Introduction

Let X_1, \ldots, X_n be independent and identically distributed (i.i.d.) samples from an unknown population distribution F and $T_n = T_n(X_1, \ldots, X_n)$ be a statistic. The bootstrap (Efron, 1979) is a useful nonparametric method for statistical analysis based on T_n. For example, the bootstrap can be used to approximate the sampling distribution of a function $L_n = L_n(T_F, T_n)$ and its other characteristics for various purposes in statistical inferences for T_F, where T_F depends on F and is an unknown parameter of interest.

Let X^*_1, \ldots, X^*_n be i.i.d. samples drawn from the empirical distribution $F_n(x) = n^{-1} \sum_{i=1}^{n} I[X_i \leq x]$, where $I[A]$ is the indicator function of the set A. X^*_i are called bootstrap samples. A bootstrap analog for T_n is $T^*_n = T_n(X^*_1, \ldots, X^*_n)$. The sampling distribution of L_n, $P_F\{L_n(T_F, T_n) \leq t\}$, is approximated by the bootstrap estimate $P_*\{L_n(T_n, T^*_n) \leq t\}$, where P_* is the probability corresponding to the bootstrap sampling.

In many situations L_n is $n^{1/2}(T_n - T_F)$ and it can be approximated by an average of i.i.d. random variables, i.e.,

$$T_n - T_F = n^{-1} \sum_{i=1}^{n} \phi(X_i) + R_n,$$

where ϕ is a function depending on F and T_n and satisfies $E_F \phi(X_i) = 0$ and $0 < E_F \phi^2(X_i) < \infty$. Note that $n^{-1} \sum_{i=1}^{n} \phi(X_i) = O_p(n^{-1/2})$. Hence usually $R_n = o_p(n^{-1/2})$. More generally, we have

$$T_n - T_F = U_n + R_n,$$

where $U_n = U_n(X_1, \ldots, X_n)$ is a U-statistic (see Hoeffding, 1948) satisfying $E_F U_n = 0$ and $R_n = o_p(n^{-1/2})$. Serfling (1984) gives a wide class of statistics,
the generalized L-statistics, which have property (1.2). More details for the
generalized L-statistics is given in the next section.

A bootstrap analog of (1.2) is

$$T_n^* - T_n = U_n^* - U_n + R_n^*,$$ \hspace{1cm} (1.3)

where $U_n^* = U_n(X_1^*,...,X_n^*)$ and R_n^* satisfies

$$R_n^* = o_p(n^{-1/2}).$$ \hspace{1cm} (1.4)

Note that the o_p in (1.4) is with respect to the unconditional probability P
defined by $P\{A\} = E_F P^*\{A\}$ for any measurable set A. Equation (1.3) can be
called a bootstrap representation for the bootstrap statistic $T_n^* - T_n$. A direct
consequence of (1.3)-(1.4) is that the bootstrap estimator of the sampling distribu-
tion $P_F\{ n^{1/2}(T_n - T_F) \leq t \}$ is weakly consistent, i.e.,

$$\sup_t \left| P^*\{ n^{1/2}(T_n^* - T_n) \leq t \} - P_F\{ n^{1/2}(T_n - T_F) \leq t \} \right| = o_p(1).$$ \hspace{1cm} (1.5)

This follows from (1.4) and a well established bootstrap theory for U-statistics
(see Bickel and Freedman, 1981).

For several classes of statistics such as (ordinary) L-statistics and different-
tiable statistical functionals, (1.1) holds and the bootstrap representation holds
with $U_n^* = n^{-1} \sum_{i=1}^n \phi(X_i^*)$ (see Babu and Singh, 1984; Gill, 1987). The purpose
of this paper is to show the bootstrap representation (1.3) holds for a wide class
of statistics, the generalized L-statistics. The result includes that for ordinary
L-statistics since $n^{-1} \sum_{i=1}^n \phi(X_i)$ is a special case of U-statistics.

2. Bootstrap representations

Let $h(x_1,...,x_m)$ be a symmetric function on \mathbb{R}^m and $H_F(x)$ be the distri-
bution function of $h(X_1,...,X_m)$, i.e.,

$$H_F(x) = P_F\{ h(X_1,...,X_m) \leq x \}, \quad x \in \mathbb{R}.$$
An empirical version of $H_F(x)$ is

$$H_n(x) = \binom{n}{m}^{-1} \sum_c [h(X_{i_1}, \ldots, X_{i_m}) \leq x],$$

(2.1)

where \sum_c is the summation taken over all combinations of m integers (i_1, \ldots, i_m) chosen from the integers $1, \ldots, n$. Note that $H_n(x)$ is a U-statistics. Let J be a function defined on the interval $[0,1]$, G be a distribution function and

$$T(G) = \int x J[G(x)] dG(x).$$

A class of generalized L-statistics is defined to be $T_n = T(H_n)$ (Serfling, 1984). The corresponding T_F is $T(H_F)$. Examples of generalized L-statistics include U-statistics, (ordinary) L-statistics, trimmed variances, trimmed U-statistics and Winsorized U-statistics (see more examples in Serfling, 1984).

It was shown in Serfling (1984) that T_n satisfies (1.2) with $R_n = o_p(n^{-1/2})$ and

$$U_n = \int [H_F(x) - H_n(x)] J[H_F(x)] dx$$

(2.2)

under the following condition.

Condition A. (1) The functions J and H_F are continuous.

(2) The distribution H_F satisfies $\int [H_F(x)(1-H_F(x))]^{1/2} dx < \infty$.

For any integers $1 \leq i_1 \leq i_2 \leq \cdots \leq i_m \leq n$, let H^{i_1, \ldots, i_m}_F be the distribution of $h(X_{i_1}, \ldots, X_{i_m})$. To establish the bootstrap representation (1.3)-(1.4), we need to assume

Condition B. $\int [H^{i_1, \ldots, i_m}_F(x)(1-H^{i_1, \ldots, i_m}_F(x))]^{1/2} dx < \infty$ for any integers $i_1 \leq \cdots \leq i_m$.

Note that for a random variable Y with distribution G, the condition $\int [G(x)(1-G(x))]^{1/2} dx < \infty$ is almost equivalent to the condition $E_G Y^2 < \infty$ (see Serfling, 1980, p.276) and is implied by $E_G |Y|^{2+\delta} < \infty$ for a $\delta > 0$. Hence condition B is almost the same as $E_F h^2(X_{i_1}, \ldots, X_{i_m}) < \infty$ and implied by
$E_F | h(X_{i_1}, \ldots, X_{i_m}) |^{2+\delta} < \infty$ for any integers $i_1 \leq \cdots \leq i_m$.

Lemma 1. Let H_n^* be the bootstrap analog of H_n, i.e., H_n^* is defined by (2.1) with X_{ij} replaced by the bootstrap samples X_{ij}^*. If H_F is continuous, then

$$\|H_n^* - H_F\| \to 0 \text{ a.s. and } \|H_n^* - H_n\| \to 0 \text{ a.s.},$$

where $\| \|$ is the sup norm.

Proof. For any fixed x, since $H_n(x)$ is a bounded U-statistic and $H_n^*(x)$ is its bootstrap analog, $H_n^*(x) \to H_F(x)$ a.s. (Athreya et al., 1984). Then almost surely, $H_n^*(x) \to H_F(x)$ for all rational x, which implies H_n^* converges weakly to H_F a.s. since all rational numbers form a dense set in \mathbb{R} and H_n^* is a distribution function. Then $\|H_n^* - H_F\| \to 0$ a.s. follows from the continuity of H_F. A similar argument shows that $\|H_n - H_F\| \to 0$ a.s. Hence the results hold. \(\square\)

Theorem 1. Assume conditions A and B. For the generalized L-statistics $T_n = T(H_n)$, the bootstrap representation (1.3)-(1.4) holds with U_n given by (2.2).

Proof. Let $W_n^*(x) = M[H_n(x), H_n^*(x)] - J[H_F(x)]$ if $H_n(x) \neq H_n^*(x)$ and $= 0$ if $H_n(x) = H_n^*(x)$, where $M(s, t) = \int_s^t J(u)du / (t-s)$. Then from Lemma 8.1.1B of Serfling (1980),

$$T_n^* - T_n = U_n^* - U_n + \int W_n^*(x)[H_n(x) - H_n^*(x)]dx,$$

where U_n^* is the bootstrap analog of U_n given by (2.2) with H_n replaced by H_n^*. From Lemma 1 and the continuity of J, $\|W_n^*\| \to 0$ a.s. It remains to show that

$$\int |H_n^*(x) - H_n(x)| dx = O_p(n^{-h}). \quad (2.3)$$

Let E_* and V_* be the expectation and variance taken under the bootstrap probability P_*, respectively. Since $E_*[H_n^*(x)] = K_n(x)$, where
\[K_n(x) = n^{-m} \sum_{i=1}^{n} \cdots \sum_{i_m=1}^{n} I[h(X_{i_1}, \ldots, X_{i_m}) \leq x], \quad (2.4) \]

we have
\[
E_F E_*[H_n^*(x) - H_n(x)] \leq \{E_F V_*[H_n^*(x)] + E_F [K_n(x) - H_n(x)]^2\}^{1/2}.
\]

Hence (2.3) follows from
\[
\int (E_F [K_n(x) - H_n(x)]^2)^{1/2} \, dx = O(n^{-1/2}) \quad (2.5)
\]

and
\[
\int (E_F V_*[H_n^*(x)])^{1/2} \, dx = O(n^{-1/2}). \quad (2.6)
\]

Let \(Z_n(x) \) be the average of all terms \(I[h(X_{i_1}, \ldots, X_{i_m}) \leq x] \) with at least one equality \(i_j = i_l, j \neq l \). From Serfling (1980, p.206),
\[
H_n(x) - K_n(x) = [1-n_{(m)}/n^m][H_n(x) - Z_n(x)], \quad (2.7)
\]

where \(n_{(m)} = n(n-1) \cdots (n-m+1) \). Then
\[
E_F [H_n(x) - K_n(x)]^2 \leq C n^{-2} \{E_F [H_n(x) - H_F(x)]^2
\]
\[
+ E_F [Z_n(x) - Z_F(x)]^2 + [Z_F(x) - H_F(x)]^2\},
\]

where \(C \) is a constant and \(Z_F(x) = E_F [Z_n(x)] \). Then (2.5) follows from condition B. Since for given \(X_1, \ldots, X_n, H_n^*(x) \) is a U-statistic, we have
\[
V_*[H_n^*(x)] \leq mn^{-1}K_n(x)[1-K_n(x)]
\]
(see Serfling, 1980, p.183). Then (2.6) follows from
\[
A_n = \int (E_F [K_n(x)(1-K_n(x))])^{1/2} \, dx = O(1).
\]

Note that \(A_n \) is bounded by
\[
\int_{-\infty}^{0} (E_F[K_n(x)])^{1/2} \, dx + \int_{0}^{\infty} (E_F[1-K_n(x)])^{1/2} \, dx.
\]

From (2.7),
\[
E_F[K_n(x)] = [n_{(m)}/n^m]H_F(x) + [1-n_{(m)}/n^m]Z_F(x).
\]

Hence \(A_n \) is bounded by
\[
\int_{-\infty}^{0} [H_F(x)]^{1/2} \, dx + \int_{0}^{\infty} [Z_F(x)]^{1/2} \, dx + \int_{0}^{\infty} [1-H_F(x)]^{1/2} \, dx + \int_{0}^{\infty} [1-Z_F(x)]^{1/2} \, dx.
\]
which is finite under condition B. This completes the proof. □

If the function J is more smooth (condition C), then we can obtain a stronger result than (1.4) under less requirement on the moment of $h(X_{i_1}, \ldots, X_{i_m})$.

Condition C. J is Lipschitz continuous of order δ ($0 < \delta \leq 1$), i.e., there is a constant $C > 0$ such that $|J(t) - J(s)| \leq C|s - t|^\delta$ for any $s, t \in [0, 1]$, and

$$
\int [H_{i_1, \ldots, i_m}(x)(1 - H_{i_1, \ldots, i_m}(x))]^{(1+\delta)^2} dx < \infty
$$

for any integers i_1, \ldots, i_m.

Theorem 2. Assume condition C. Then (1.3) holds with

$$R^*_n = O_p(n^{-(1+\delta)/2}).$$

Proof. Using the same notation as in the proof of Theorem 1, we have

$$|W^*_n(x)| \leq C[|H^*_n(x) - H_n(x)|^{\delta} + |H_n(x) - H_F(x)|^{\delta}]$$

by the Lipschitz continuity of J. Then

$$
|R^*_n| \leq C \int |H^*_n(x) - H_n(x)|^{1+\delta} dx
+ \int |H_n(x) - H_F(x)|^{\delta} |H^*_n(x) - H_n(x)|^{\delta} dx.
$$

(2.8)

Since $E_F E_* |H^*_n(x) - H_n(x)|^{1+\delta} \leq \{E_F E_* [H^*_n(x) - H_n(x)]^2\}^{(1+\delta)/2}$, the first integral on the right hand side of (2.8) can be shown to be $O_p(n^{-(1+\delta)/2})$ by using the same argument as in the proof of Theorem 1. Note that

$$
E_F E_* |H_n(x) - H_F(x)|^{\delta} |H^*_n(x) - H_n(x)|
= E_F |H_n(x) - H_F(x)|^{\delta} E_* |H^*_n(x) - H_n(x)|
\leq E_F |H_n(x) - H_F(x)|^{\delta} E_* [H^*_n(x) - H_n(x)]^2
\leq [E_F |H_n(x) - H_F(x)|^{2\delta}]^{1/2} \{E_F E_* [H^*_n(x) - H_n(x)]^2\}^{1/2}
$$

and

$$
[E_F |H_n(x) - H_F(x)|^{2\delta}]^{1/2} \leq (m/n)^{\delta/2} [H_F(x)(1 - H_F(x))]^{\delta/2}.
$$

Using the same argument as in the proof of Theorem 1, we have

$$
\int [H_F(x)(1 - H_F(x))]^{\delta/2} \{E_F E_* [H^*_n(x) - H_n(x)]^2\}^{1/2} dx = O(n^{-(1+\delta)/2})
$$
under condition C. Hence the result follows. □

3. Complements

(1) From (2.1), \(U_n \) defined in (2.2) is a U-statistic with a kernel
\[
k(x_1, \ldots, x_m) = \int \{ H_F(x) - I[h(x_1, \ldots, x_m) \leq x] \} J[H_F(x)] dx.
\]
Under condition B, \(E_F k^2(X_{i_1}, \ldots, X_{i_m}) < \infty \) for any integers \(i_1 \leq \cdots \leq i_m \) (see Serfling, 1980, Lemma 8.2.5A). Hence (1.5) holds with \(T_n = U_n \) and \(T_n^* = U_n^* \) (see Bickel and Freedman, 1981). Then Theorem 1 or 2 implies that (1.5) holds for the generalized L-statistics \(T_n = T(H_n) \) satisfying condition A and either condition B or condition C.

(2) Under condition A, Serfling (1984) showed that the distribution of \(n^{1/2}(T_n - T_F) \) converges weakly to \(N(0, \sigma^2) \), where \(\sigma^2 \) is given in (3.3) of Serfling (1984) and is generally unknown. In statistical analysis, we often need a consistent estimator of the asymptotic standard deviation \(\sigma \). Let \(Q_n \) and \(q \) be the interquartile ranges of \(P \{ n^{1/2}(T_n^* - T_n) \leq t \} \) and \(N(0,1) \), respectively. Then from (1.5), \(Q_n/q - \sigma = o_P(1) \).

(3) Serfling (1984) introduced another type of generalized L-statistics \(T(K_n) \), where \(K_n \) is defined in (2.4). With some minor changes in the proofs of Theorems 1 and 2, we can establish the bootstrap representation (1.3)-(1.4) for \(T(K_n) \) with \(U_n \) and \(U_n^* \) replaced by
\[
V_n = \int \{ H_F(x) - K_n(x) \} J[H_F(x)] dx
\]
and the bootstrap analog \(V_n^* \), respectively. Note that \(V_n \) is a V-statistic. Since V-statistics are closely related to U-statistics, result (1.5) can be extended to \(T_n = T(K_n) \) in a straightforward manner.
References

