TIME REVERSAL ON LEVY PROCESSES

by

Jean Jacod and Philip Protter

Technical Report #86-18

Department of Statistics
Purdue University

May, 1986
TIME REVERSAL ON LEVY PROCESSES

by

Jean Jacod
Laboratoire de Probabilités
Université Paris VI
4, Place Jussieu, Tour 56
75252 Paris Cédex 05
France

and

Philip Protter1
Mathematics Department
University of Wisconsin
Madison, WI 53706

After May 31, 1986:
Mathematics Department
Purdue University
West Lafayette, IN 47907

May 1986

1Supported in part by NSF Grant #DMS 8500997
ABSTRACT. Time reversal of semimartingales defined on a Lévy process framework is considered. Usually semimartingales cannot be time reversed such that the reversed process is still a semimartingale. An expansion of filtrations result for Lévy processes is established and then it is used to give sufficient conditions such that a semimartingale defined on a Lévy process can be time reversed and still remain a semimartingale.

AMS 1970 subject classifications: Primary 60H44; Secondary 60H05; 60J30; 60J65.

Key words and phrases: Semimartingale; Time reversal; Expansion of filtrations; Lévy process; Processes with stationary and independent increments; Brownian motion; Local time; Additive functionals.

Running head: Time Reversal on Lévy Processes.
1. Introduction.

Usually semimartingales, when reversed, are not semimartingales, as J. Walsh (1982) has pointed out. Nevertheless since semimartingales are essentially the most general possible stochastic differentials, it is desirable to obtain sufficient conditions such that they be reversible. This type of problem and related questions have recently been considered by a number of authors (e.g.: Follmer (1986), Lindquist and Picci (1985), Pardoux (1985), Picard (1986), Protter (1986)).

Suppose we are given a complete probability space \((\Omega, \mathcal{F}, P)\) with at least two filtrations \(\mathbb{F} = (\mathcal{F}_t)_{t \in [0,1]}\) and \(\mathbb{H} = (\mathcal{H}_t)_{t \in [0,1]}\). Let \(Y\) be a process with paths that are right continuous and have left limits (hereafter: cadlag), defined on \([0,1]\). We associate to \(Y\) the time-reversed process \(\check{Y} = (\check{Y}_t)_{t \in [0,1]}\) (also denoted \((Y)^{-}\)) given by:

\[
\check{Y}_t = \begin{cases}
0 & \text{if } t = 0 \\
Y_{(1-t)-} - Y_1^- & \text{if } 0 < t < 1 \\
Y_0 - Y_1^- & \text{if } t = 1
\end{cases}
\]

(1.1) where \(Y_u^-\) denotes the left limit at \(u\), \(0 < u \leq 1\).

(1.2) DEFINITION. \(Y\) is called an \((\mathbb{F}, \mathbb{H})\) reversible semimartingale if

(i) \(Y\) is an \(\mathbb{F}\)-semimartingale on \([0,1]\)
(ii) \(\check{Y}\) is a \(\mathbb{H}\)-semimartingale on \([0,1]\).
Note that in the above definition \(\hat{Y} \) need not be a semimartingale on the closed interval \([0,1]\). By Stricker's theorem if \(Y \) is an \(\mathbb{F} \)-semimartingale it is also a semimartingale for its natural filtration (i.e. the minimal filtration to which it is adapted), and thus one can simply say \(Y \) is a reversible semimartingale if both \(Y \) and \(\hat{Y} \) are semimartingales with respect to their natural filtrations.

We shall be primarily interested here in Lévy processes and we make the convention that \(Z \) will always denote a Lévy process. (A Lévy process \(Z \) on \([0,1]\) is a process with stationary and independent increments, and with \(Z_0 = 0 \) a.s..)

We let \(Z^0 \) denote the continuous local martingale part of \(Z \) relative to its natural filtration \(\mathbb{F} \). (We refer the reader to Jacod (1979) or Dellacherie and Meyer (1982) for all unexplained terms, notation, and "well known" results.) Then either \(Z^0 \equiv 0 \) or \(Z^0/\sigma \) is a standard Wiener process for some \(\sigma > 0 \). Let \(\tilde{\mathbb{F}} \) be the natural filtration of \(\hat{Z} \).

\[(1.3) \text{ PROPOSITION. The Lévy process } Z \text{ is a reversible semimartingale. Its continuous local martingale part } Z^0 \text{ is an } (\mathbb{F}, \tilde{\mathbb{F}}) \text{ reversible semimartingale.} \]

Proof. \(\hat{Z} \) is clearly also a Lévy process, with the same law as \(-Z\); thus it is a reversible semimartingale, since Lévy processes are semimartingales (e.g. Jacod (1979), p. 63). It is well known that for \(s < t \), \(Z^0_t - Z^0_s \) is measurable with respect to the \(\sigma \)-field \(\sigma(Z_u - Z_s; \ s \leq u \leq t) \). Thus \((Z^0)^-\) is again a Lévy process with
respect to $\tilde{\mathbb{P}}$, and we deduce that Z^C is an $(\mathbb{P}, \tilde{\mathbb{P}})$ reversible semimartingale (indeed, it is a reversible martingale). Using that $\mathcal{U}(\xi) = \mathcal{U}(-Z)$, where $\mathcal{U}(X)$ denotes the law of the process X on $[0,1]$, one could easily prove as well that $(Z^C)^* = (\xi)^*$. □

Next consider semimartingales of the form:

$$(1.4) \quad X_t = \int_0^t f(Z_{s-})dZ_s, \quad Y_t = \int_0^t f(Z_{s-})dZ^C_s,$$

for a suitable (e.g. locally bounded) Borel function f. These semimartingales will not in general be $(\mathbb{P}, \tilde{\mathbb{P}})$ reversible since \tilde{X} and \tilde{Y} are not even adapted to $\tilde{\mathbb{P}}$. We shall see later however that they are adapted to the following filtration:

$$(1.5) \quad \tilde{\mathcal{G}} = (\tilde{\mathcal{F}}_t)_{t \in [0,1]} \text{ denotes the smallest complete (right continuous) filtration relative to which } \tilde{Z} \text{ is adapted and } Z_1 \text{ is } \tilde{\mathcal{F}}_0\text{-measurable.}$$

Since $\tilde{Z}_1 = Z_0 - Z_{1-}$ equals Z_1 a.s., this is clearly equivalent to

$$(1.6) \quad \tilde{\mathcal{G}} \text{ is the smallest complete filtration relative to which } \tilde{Z} \text{ is adapted and } \tilde{Z}_1 \text{ is } \tilde{\mathcal{F}}_0\text{-measurable.}$$

For convenience we define as well:

$$(1.7) \quad \mathcal{G} = (\mathcal{G}_t)_{t \in [0,1]} \text{ denotes the smallest complete (right continuous) filtration relative to which } Z \text{ is adapted and } Z_1 \text{ is } \mathcal{G}_0\text{-measurable.}$$
Our goal is to show that X and Y in (1.4) are $(\mathcal{F}, \mathcal{G})$ reversible for as many functions f as possible. Clearly the first step is to prove that Z itself is $(\mathcal{F}, \mathcal{G})$ - reversible. Since \hat{Z} is also a Lévy process, by comparing (1.6) and (1.7), this amounts to the following theorem, due to Tom Kurtz (1986).

\begin{equation}
(1.8) \text{THEOREM (Kurtz). A Lévy process } Z \text{ is a } \mathcal{G} \text{ semimartingale on } [0, 1).}
\end{equation}

Actually it is possible to prove much more:

\begin{equation}
(1.9) \text{THEOREM. Let } Z \text{ be a Lévy process. Then every } F \text{ semimartingale is a } \mathcal{G} \text{ semimartingale on } [0, 1).}
\end{equation}

In the usual terminology (c.f., e.g., Jeulin (1980)), the filtration satisfies "Hypothesis (H')" on $[0, 1)$.

Returning to the processes X and Y of (1.4), we still need an hypothesis on the function f:

\begin{equation}
(1.10) \text{HYPOTHESIS. There is a right continuous function } \hat{f} \text{ of finite variation on compacts such that the set } D = \{x : f(x) \neq \hat{f}(x)\} \text{ is at most countable.}
\end{equation}

For example, every Borel function of finite variation on finite intervals is of this description.
Our main results for Lévy processes are the following two theorems. Our other primary result is Theorem (3.3) and its consequences.

(1.11) THEOREM. Let Z be a Lévy process and let f satisfy
\[(1.10). \text{Then the process } X_t = \int_0^t f(Z_{s-})dZ_s \text{ is an } (\mathcal{F}_t, \mathcal{G}) \text{ reversible semimartingale.} \]

(1.12) THEOREM. Let Z be a Lévy process, and let f satisfy
\[(1.10). \text{Then the process } Y_t = \int_0^t f(Z_{s-})dZ^c_s \text{ is an } (\mathcal{F}_t, \mathcal{G}) \text{ reversible semimartingale.} \]

It is implicit in Theorem (1.12) that Z^c is not identically zero, since otherwise the statement is void. Other results similar to that of (1.11) where the process X is a stochastic integral with respect to the jump measure of Z are given in paragraph four.

If either of the semimartingales X or Y defined in (1.4) are $(\mathcal{F}_t, \mathcal{G})$ reversible, then one can add a process A of finite variation provided it is adapted to \mathcal{F}, and also \bar{A} is adapted to \mathcal{G}. Since we can consider the Lévy process Z as a Markov process, we shall see in paragraph three that the reversed process \bar{A} of an additive functional A of Z is adapted to \mathcal{G}.

As a corollary of Theorem (1.11) and the above remark we then obtain (for example):
(1.13) COROLLARY. Let L be the local time at 0 of the Brownian motion $Z = W$. Then the process

$$U_t = \int_0^t f(W_s)dW_s + \int_0^t g(W_s)dL_s + \int_0^t h(W_s)ds$$

is an (\mathbb{F}, \mathbb{G}) reversible semimartingale, for all Borel locally bounded g and h, and all functions f satisfying (1.10).

Corollary (1.13) is a special case of Theorem (6.2).

This paper is organized as follows. In paragraph two we prove Theorems (1.8) and (1.9), and even slightly more. In paragraph three we prove a general result (unrelated to Lévy processes) and show how it yields simple proofs of Theorems (1.11) and (1.12) under a supplementary hypothesis. Theorem (1.11) is proved in full generality in paragraph four. In paragraph five we prove a theorem that is useful for reversing purely discontinuous local martingales with paths of infinite variation (Theorem (5.3)), and we then use it to prove Theorem (1.12). In paragraph six we consider the Brownian case and give proofs that are elementary in the sense that they do not use Markov process theory or the results of Cinlar, Jacod, Protter and Sharpe (1980). Our results are then used to give simple interpretations of recent results of Haussmann, Pardoux, and Picard.
2. Expansion of Filtrations for Lévy Processes.

In this paragraph we establish results about the expansion of filtrations that have an interest in their own right. All that is needed for the time reversal results, however, is Theorem (1.8). A simple proof of Theorem (1.8) alone is given following Comment (2.18) for the convenience of the reader who is interested primarily in time reversal.

For all facts about random measures and stochastic integrals with respect to random measures we refer the reader to Jacod (1979).

Let \(\mu \) denote the jump measure of \(Z \). That is:

\[
\mu(\omega; dt\times dx) = \sum_{s > 0, \Delta Z_s(\omega) \neq 0} \epsilon(s, \Delta Z_s(\omega))(dt\times dx)
\]

where \(\Delta Z_s = Z_s - Z_{s-} \), the jump of \(Z \) at time \(s \). Since \(Z \) is a Lévy process, the \(F \) compensator of \(\mu \) is given by:

\[
v(\omega; dt\times dx) = dt\Theta F(dx)
\]

where \(F \) is a non-random measure on \(\mathbb{R} \) which integrates the function \(x \mapsto \min(x^2,1) \). For every \(a > 0 \) we have a decomposition for the Lévy process \(Z \) as follows:

\[
Z_t = b_a t + Z^0_t + \int_0^t \int_{|x| \leq a} x(\mu - v)(ds\times dx) + \sum_{0 < s < t} \frac{\Delta Z_s}{|\Delta Z_s|} \chi_{|\Delta Z_s| > a}
\]

where \(b_a \in \mathbb{R} \), and the integral above is a stochastic integral.
We introduce still another filtration, which is larger than \mathbb{G}:

\[(2.4) \quad \mathbb{H} = (\mathcal{F}_t)_{t \geq 0} \text{ is the smallest complete filtration relative to which } Z \text{ is adapted, and } Z_1^0 \text{ and} \]

\[\mu([0,1] \times \mathbb{A}) = \sum_{0 \leq s \leq 1} 1_A(\Delta Z_s) \text{ are } \mathcal{F}_0 \text{-measurable, for all } 0 \leq s \leq 1 \]

Borel sets A lying at at positive distance from 0.

That \mathbb{H} is larger than \mathbb{G} (i.e., $\mathcal{F}_t \subset \mathcal{F}_t$ for all t) is easily deduced from the following two facts:

(1) \[\int \mu((0,1] \times \mathbb{A}) f(x) = \sum_{0 \leq s \leq 1} f(\Delta Z_s) \text{ is } \mathcal{F}_0 \text{-measurable for all Borel functions } f \text{ vanishing on a neighborhood of } 0;\]

(ii) the integral on the right side of (2.3) is the limit in L^2, as n tends to ∞, of:

\[\int_{0 \leq s \leq t} x(\mu - \nu)(ds \times dx) = \sum_{0 \leq s \leq t} \frac{1}{n^2} |\Delta Z_s| \leq a \]

\[-t \int_{\frac{1}{n^2} |x| \leq a} xF(dx);\]

As a consequence Z_1 is clearly \mathcal{F}_0-measurable.

The main result of this paragraph is the following:

(2.5) \textbf{THEOREM. Let } Z \text{ be a Lévy process. Then every } F \text{ semimartingale is an } \mathbb{H} \text{ semimartingale on } [0,1], \text{ where } \mathbb{H} \text{ is as defined in (2.4).} \]

Since any \mathbb{H} semimartingale which is adapted to \mathbb{G} is also a \mathbb{G} semimartingale by Stricker's theorem, this result yields Theorem (1.9) and a fortiori Theorem (1.8).
We begin with two preliminary results which have intrinsic interest. The first one is due to Tom Kurtz (1986).

(2.6) **THEOREM.** Assume that the Lévy process Z is integrable (i.e., $E(|Z_t|) < \infty$, for all t). Then

$$M_t = Z_t - \int_0^t \frac{Z_1 - Z_s}{1 - s} \, ds \text{ is a } G \text{ martingale on } [0,1),$$

and Z is a G semimartingale on $[0,1)$.

Proof. Since $Z - M$ is of finite variation on every compact subinterval of $[0,1)$, the second claim follows from the first.

Let $0 \leq s < t \leq 1$ be rationals, with $s = j/n$ and $t = k/n$.

Next set

$$Y_i = \frac{Z_{i+1} - Z_i}{n}.$$

Then $Z_1 - Z_s = \sum_{i=j}^{n-1} Y_i$ and $Z_t - Z_s = \sum_{i=j}^{k-1} Y_i$.

The random variables Y_i are i.i.d. and integrable. Therefore

$$E(Z_t - Z_s | Z_1 - Z_s) = E\left(\sum_{i=j}^{k-1} Y_i | \sum_{i=j}^{n-1} Y_i \right)$$

$$= \frac{k - j}{n - j} \sum_{i=j}^{n-1} Y_i$$
\[\frac{t - s}{1 - s} (Z_t - Z_s) . \]

The independence of the increments of \(Z \) yields \(\mathbb{E}(Z_t - Z_s | \mathcal{G}_s) = \mathbb{E}(Z_t - Z_s | Z_1 - Z_s) \); thus \(\mathbb{E}(Z_t - Z_s | \mathcal{G}_s) = \frac{t - s}{1 - s} (Z_1 - Z_s) \) for all rationals \(0 \leq s < t \leq 1 \). Since \(Z_t - \mathbb{E}(Z_t) \) is an \(\mathbb{F} \) martingale, the random variables \((Z_t)_{0 \leq t \leq 1} \) are uniformly integrable, while the paths of \(Z \) are right continuous. We deduce that (2.8) holds for all reals, \(0 \leq s < t \leq 1 \).

Now fix \(s \) and \(t \), \(0 \leq s < t \leq 1 \). Using first Fubini's theorem for conditional expectations and second (2.8) yields:

\[
\mathbb{E}(M_t - M_s | \mathcal{G}_s) = \mathbb{E}(Z_t - Z_s | \mathcal{G}_s) - \int_0^t \frac{1}{1 - u} \mathbb{E}(Z_1 - Z_u | \mathcal{G}_s) du
\]

\[
= \frac{t - s}{1 - s} (Z_1 - Z_s) - \int_0^t \frac{1}{1 - u} \frac{1 - u}{1 - s} (Z_1 - Z_s) du
\]

\[
= 0 . \]

(2.9) **THEOREM.** Let \(Z \) be a Lévy process.

(1) The process

\[
\widehat{Z}^c_t = Z^c_t - \int_0^t \frac{Z^c_1 - Z^c_s}{1 - s} ds
\]

is an \(\mathbb{F} \) martingale on \([0,1]\) with quadratic variation

\[\langle \widehat{Z}^c, \widehat{Z}^c \rangle = \langle Z^c, Z^c \rangle . \]
(ii) The \mathbb{H} compensator ρ of the jump measure μ on $[0,1)$ is given by:

\[
(2.11) \quad \rho(\omega; dt \times dx) = dt \times \frac{\mu(\omega; (t,1] \times dx)}{1-t}.
\]

Proof. We indicate the dependence of the various filtrations on the underlying process Z by writing $\mathbb{F}(Z)$, $\mathbb{G}(Z)$, or $\mathbb{H}(Z)$.

(1) Since Z^C is itself a Lévy process Theorem (2.6) implies that \hat{Z}^C is a $\mathbb{G}(Z^C)$ martingale on $[0,1)$. In this case $\mathbb{G}(Z^C) = \mathbb{H}(Z^C)$, and letting $Z^d = Z - Z^C$ we have that $\mathbb{H}(Z)$ is the filtration generated by $\mathbb{H}(Z^C)$ and $\mathbb{H}(Z^d)$. (That is, $\mathbb{H}(Z)_t = \mathbb{H}(Z^C) \cap \mathbb{H}(Z^d)$. Note that the filtrations $\mathbb{H}(Z^C)$ and $\mathbb{H}(Z^d)$ are independent, whence \hat{Z}^C is also an $\mathbb{H}(Z)$ martingale on $[0,1)$.

(ii) Let \mathcal{A}_0 denote the class of Borel subsets of \mathbb{R} lying at a positive distance from 0. For $A \in \mathcal{A}_0$ we set:

\[
Z^A_t = \mu((0,t] \times A)
\]

\[
\hat{Z}^A_t = Z^A_t - \int_0^t Z^A_s - Z^A_t \frac{\mu(\omega; (0,t] \times A)}{1-s} ds = \mu((0,t] \times A) - \rho((0,t] \times A).
\]

For all $A \in \mathcal{A}_0$ the processes $(\rho((0,t] \times A))_{0 \leq t \leq 1}$ are continuous and adapted to \mathbb{H}; thus the random measure ρ is \mathbb{H}-predictable. Therefore the statement (ii) is equivalent to the claim that for
every $A \in \mathcal{F}_0$, the process \hat{Z}^A is an $\mathcal{H}(Z)$ martingale on $[0,1)$. In other words, for all $0 < s < t < 1$ it suffices to prove that

$$(2.12) \quad E\{(\hat{Z}^A_t - \hat{Z}^A_s)U\} = 0,$$

where U is bounded and $\mathcal{F}(Z)_s$-measurable, and V is bounded and measurable with respect to $\sigma(Z^C_1 - Z^C_s; Z^B_1 - Z^B_s; B \in \mathcal{F}_0)$. Due to the independence of the increments of Z the r.v. U is independent of $(\hat{Z}^A_t - \hat{Z}^A_s)V$, and thus it is enough to prove (2.12) when $U = 1$. Further, by a monotone class argument it is enough to consider V of the form:

$$V = f(Z^C_1 - Z^C_s) \prod_{i=1}^n f_i(Z^A_i - Z^A_s) \prod_{j=1}^m g_j(Z^B_j - Z^B_s)$$

where f, f_i, g_j are all bounded Borel; where (A_1, \ldots, A_n) is a Borel partition of A; and where $B_j \in \mathcal{F}_0$ with $B_j \cap A = \emptyset$.

Next observe that the processes Z^C and Z^B_j are independent of \hat{Z}_t^A and Z^A_i. Thus it is enough to prove (2.12) when $U = 1$ and

$$V = \prod_{i=1}^n f_i(Z^A_i - Z^A_s),$$

with A_i as above. Since $\hat{Z}^A = \sum_{i=1}^n Z^A_i$, and since the processes Z^A_i are independent, we have in this case:
\[E\{ (\hat{Z}_t^A - \hat{Z}_s^A)_{UV} \} \]

\[= \sum_{i=1}^{n} E\{ (\hat{Z}_t^A_i - \hat{Z}_s^A_i) f_i (Z_1^A - Z_s^A) \} \prod_{j, k \neq i, 1 \leq j \leq n} E\{ f_j (Z_1^A - Z_s^A) \} \]

Finally, it suffices to show:

\[(2.13) \quad E\{ (\hat{Z}_t^A - \hat{Z}_s^A) f_i (Z_1^A - Z_s^A) \} = 0. \]

At this stage we observe that \(Z_1^A \) is an integrable Lévy process (recall that \(A_i \) lies away from 0), and hence by Theorem (2.6) we have that \(Z_t^A \) is a \(\mathcal{G}(Z^A_1) \) martingale on \([0,1]\). Since \(Z_t^A_i - Z_s^A_i \) is \(\mathcal{G}(Z_t^A) \)-measurable, (2.13) follows and the proof is complete.

PROOF OF THEOREM (2.5). A is well known, it suffices to prove that any square-integrable \(\mathcal{F} \)-martingale \(M \) on \([0,1]\) with \(M_0 = 0 \), and which is either continuous or purely discontinuous, is an \(\mathcal{H} \)-semimartingale on \([0,1]\) (c.f. Dellacherie and Meyer (1982)).

Case (i): Let \(M \) be a continuous square-integrable \(\mathcal{F} \) martingale on \([0,1]\) with \(M_0 = 0 \). The representation theorem for martingales of a Levy process implies that \(M_t = \int_0^t H_s dZ_s^C \) for some predictable process \(H \) such that
\begin{equation}
E\left[\int_0^1 H_s^2 d\langle Z^0, Z^0 \rangle_s \right] = \sigma^2 E\left[\int_0^1 H_s^2 ds \right] < \infty,
\end{equation}

since \(\langle Z^0, Z^0 \rangle_t = \sigma^2 t \) for some \(\sigma > 0 \). But \(\langle \hat{Z}^0, \hat{Z}^0 \rangle = \langle Z^0, Z^0 \rangle \),
and thus (2.14) yields that the stochastic integral \(\hat{M}_t = \int_0^t H_s d\hat{Z}^0_s \)
is well-defined and is an \(\mathbb{H} \) martingale on \([0,1] \). Moreover if \(C = Z^0 - \hat{Z}^0 \), then (2.10) together with (2.14) implies that the
Stieltjes integral \(D_t = \int_0^t H_s dC_s \) is well defined on \([0,1] \).

It remains only to observe that

\begin{equation}
M = \hat{M} + D.
\end{equation}

Equality (2.15) is clear if the paths of \(H \) are continuous, by considering the Riemann-type approximations of the integrals
defining \(M, \hat{M}, \) and \(D \). To show (2.15) is general, note that we can always find a sequence of continuous, adapted processes \(\hat{H}^n \)
converging to \(H \) in \(L^2(\Omega \times [0,1], P(d\omega) \otimes \sigma^2 dt) \). If \(\hat{M}^n, \hat{D}^n \) are defined analogously with \(\hat{H}^n \) instead of \(H \), we have
\(\hat{M}^n = \hat{M}^n + \hat{D}^n \). But then a classical convergence theorem for stochastic - as well as for Stieltjes - integrals implies that
\(\hat{M}^n_t \to M_t, \hat{D}^n_t \to D_t \), and \(\hat{D}^n_t \to D_t \), all in \(L^2 \). Hence (2.15) holds
and \(M \) is an \(\mathbb{H} \) semimartingale on \([0,1] \).

Case (ii): Let \(M \) be a purely discontinuous square integrable \(\mathbb{F} \)
martingale on \([0,1] \) with \(M_0 = 0 \). Then there exists a predictable
function \(W \) on \(\Omega \times [0,1] \times \mathbb{R} \) such that
\begin{equation}
M_t = \int_0^t \int_{\mathbb{R}} W(s,x)(\mu - \nu)(ds \times dx)
\end{equation}

where \(W \) satisfies:

\begin{equation}
E\left\{ \int_0^1 \int_{\mathbb{R}} W(s,x)^2 \mu(ds \times dx) \right\} = E\left\{ \int_0^1 \int_{\mathbb{R}} W(s,x)^2 dsF(dx) \right\} < \infty,
\end{equation}

and where \(\mu, \nu, \) and \(F \) are given in (2.1) and (2.2) (c.f. Jacod (1979)).

Note that (2.17) implies that the following stochastic integral is well-defined and gives and \(M_t \) martingale on \([0,1] \):

\begin{equation}
\hat{M}_t = \int_0^t \int_{\mathbb{R}} W(s,x)(\mu - \rho)(ds \times dx),
\end{equation}

where \(\rho \) is as given in (2.11). For \(n \in \mathbb{N} \) we set:

\begin{align*}
M^n_t &= \int_0^t \int_{\mathbb{R}} W(s,x)(\mu - \nu)(ds \times dx) \\
\hat{M}^n_t &= \int_0^t \int_{\mathbb{R}} W(s,x)(\mu - \rho)(ds \times dx) \\
C^n_t &= \int_0^t \int_{\mathbb{R}} W(s,x)(\rho - \nu)(ds \times dx)
\end{align*}
where $M^0 = \hat{M}^0 = C^0 = 0$. These processes are all of finite variation on $[0,t]$, for all $t < 1$. Also $M^n = \hat{M}^n + C^n$; M^n is an F martingale on $[0,1]$; and \hat{M}^n is an \mathbb{H} martingale on $[0,1)$. Furthermore a classical convergence theorem for random measures implies that $M^n_t \to M_t$ and $\hat{M}^n_t \to \hat{M}_t$ in L^2 as n tends to ∞. Therefore $C^n_t \to C_t$ in L^2, where C_t is defined to be $M_t - \hat{M}_t$. It remains only to prove that C has paths of finite variation on $[0,t]$, all $t < 1$.

To this end, we observe that in view of (2.2) and (2.14), we have

$$C^n_t = \int_0^t U^n_s ds,$$

where

$$U^n_s(\omega) = \int_{|x| > \frac{1}{n}} \frac{1}{1 - s} \mu(\omega; (s,1] \times dx)W(\omega, s, x) - \int_{|x| > \frac{1}{n}} F(dx)W(\omega; s, x).$$

Let $n > m > 0$, and with the convention $\frac{1}{0} = +\infty$, we have

$$N_{t}^{n,m,S}(\omega) = \frac{1}{1 - s} \mathbb{1}_{\{s < t]\}} \int_s^t W(\omega, s, x)(\mu - v)(\omega; du \times dx).$$

Note that $N_{t}^{n,m,S}(\omega)$ is the integral (with respect to $\mu - v$) of the function:

$$(\omega, u, x) \mapsto W^{n,m,S}(\omega, u, x) = \frac{1}{1 - s} \mathbb{1}_{\{s < u\}} W(\omega, s, x) \mathbb{1}_{\{\frac{1}{n} < |x| < \frac{1}{m}\}}.$$
Therefore $N_{n,m,s}^n$ is an F martingale, and

$$E((N_{1}^{n,m,s})^2) = E\left\{ \int_0^1 \int_{0}^{1} (w_{n,m,s}(u,x))^2 du dF(dx) \right\}$$

$$= \frac{1}{1-s} \int_{\frac{1}{mn}}^{1} W(s,x)^2 dF(dx) .$$

By construction we also have $N_{1}^{n,m,s} = U_{s}^{n} - U_{s}^{m}$. Hence for $t < 1$,

$$E\left\{ \int_0^t (U_{s}^{n} - U_{s}^{m})^2 ds \right\} = \int_0^t \frac{ds}{1-s} E\left\{ \int_{\frac{1}{mn}}^{1} W(s,x)^2 dF(dx) \right\} ,$$

which tends to 0 as n,m increase to ∞, by (2.17). We deduce that U^n converges to a limit U in $L^2(\Omega \times [0,t], P(\omega) \otimes du)$, and moreover obviously $C_t = \int_0^t U_s ds$, which completes the proof. \(\Box\)

(2.18) COMMENT. Theorems (1.9) and (2.5) will not be used for the time reversal results comprising the rest of this article. Theorem (1.8), however, is fundamental. It is worth noting, therefore, that it has a simple proof, based only on Theorem (2.6).

ELEMENTARY PROOF OF THEOREM (1.8). Let Z be an arbitrary Lévy process. Let $J_t^1 = \sum_{0 < s < t} \Lambda Z_s \mathbb{1}_{\{|\Lambda Z_s| > 1\}}$, the last term on the right side of (2.3) with $a = 1$. Set:

$$Z_t^1 = Z_t - J_t^1.$$
Then Z' is an integrable Lévy process and hence is a $\mathcal{G}(Z')$ semimartingale by Theorem (2.6). (We write $\mathcal{G}(Z')$ to indicate the dependence of the filtration on the underlying process, as in the proof of Theorem (2.9).) Moreover Z' and J^1 are independent, hence $\mathcal{G} = \mathcal{G}(Z)$ is contained in the filtration \mathcal{K} which is generated by the two independent filtrations $\mathcal{G}(Z')$ and $\mathcal{G}(J^1)$, and it readily follows that Z' is a \mathcal{K} semimartingale on $[0,1)$. It is therefore a \mathcal{G} semimartingale on $[0,1)$ as well, because of Stricker's theorem (c.f. e.g., Dellacherie and Meyer (1982), p. 248). Moreover since Z has right continuous paths with left limits we deduce that J^1 has paths of finite variation on $[0,1]$ and thus it is a \mathcal{G}-semimartingale. Therefore $Z = Z' + J^1$ is a \mathcal{G}-semimartingale on $[0,1]$.

(2.19) COMMENT. In the case where the Lévy process is a Brownian motion these results are not new. Theorem (1.8) for Z a Brownian motion is due to Itô (1973) and of course holds on $[0,1]$ and not just on $[0,1)$. Theorem (1.9) for the Brownian case can be found (along with many other interesting results) in Jeulin (1980) (p. 46 ff).

With the notation of Definition (1.2), let Y be an $(\mathcal{F}, \mathcal{G})$ reversible semimartingale. We also suppose given a process H with cadlag paths such that:

(3.1) For all t, $0 \leq t \leq 1$, H_t is \mathcal{F}_t and \mathcal{G}_t measurable;
(3.2) the quadratic covariation \([H,Y]\) exists (as the limit in probability of discrete approximations) and is of finite variation.

(3.3) THEOREM. Let \(H\) and \(Y\) be as given above with \(H\) satisfying (3.1) and (3.2). Then the processes \([H,Y]\) and \(X_t = \int_0^t H_s \, dY_s\) are \((\mathbb{F}, \mathbb{G})\) reversible semimartingales. Moreover:

\[
(3.4) \quad X_t - [H,Y]_t = \int_0^t H_{1-s} \, d\tilde{Y}_s.
\]

Proof. First note that the left continuous process \(H_{1-s}\) is \(\mathbb{G}\) adapted by (3.1), and hence \(\tilde{Y}\) predictable, so the stochastic integral in (3.4) is well defined.

Fix \(t, 0 < t < 1\), and let \(\tau\) be a partition:
\(\{1-t = s_0 < s_1 < \cdots < s_n = 1\}\) of \([1-t,1]\), chosen such that \(\Delta Y_{s_i} = 0\) a.s. for all \(i = 1,2,\cdots,n-1\). (For a process \(V\), \(\Delta V_t = V_t - V_{t-}\), the jump at \(t\).) Next we define

\[
A^\tau = H_{(1-t)} \Delta Y_{1-t} + \sum_{i=0}^{n-2} H_{s_i} (Y_{s_{i+1}} - Y_{s_i}) + H_{s_{n-1}} (Y_1 - Y_{s_{n-1}})
\]

\[
B^\tau = - \sum_{i=0}^{n-1} H_{s_{i+1}} (Y_{s_{i+1}} - Y_{s_i})
\]

(3.5)
\[C^T = \Delta H_{1-t} \Delta Y_{1-t} + \sum_{i=0}^{n-2} (H_{S_{i+1}} - H_{S_i})(Y_{S_{i+1}} - Y_{S_i}) \\
+ (H_{1-} - H_{S_{n-1}})(Y_{1-} - Y_{S_{n-1}}). \]

By hypothesis (3.2) we have (limits are in probability):

\[\lim_{\text{mesh}(\tau) \to 0} C^T = [H,Y]_{1-} - [H,Y]_{1-t} + \Delta H_{1-t} \Delta Y_{1-t} \]

\[= [H,Y]_{1-} - [H,Y]_{(1-t)-} \]

\[= -[H,Y]^{t-}. \]

By hypothesis (3.1) and the assumption that \(Y \) is \((F, \tilde{G})\) reversible we know that \(C^T \) is \(\tilde{G}_t \)-measurable, hence \([H,Y]^T\) is \(\tilde{G}_t \)-adapted. It is of finite variation by hypothesis. Therefore \([H,Y]\) is an \((F, \tilde{G})\) reversible semimartingale.

To show \(X \) is also an \((F, \tilde{G})\) reversible semimartingale it will suffice to show the validity of formula (3.4). To that end, since \(H \) is cadlag we know that

\[\lim_{\text{mesh}(\tau) \to 0} A^T = \int_{1-t}^{1} H_s \, dY_s = X_{1-} - X_{(1-t)-} = -\tilde{X}_t \]

where the limit is in probability as \(\text{mesh}(\tau) \) tends to 0.

Equation (3.7) is the Riemann approximation theorem for stochastic integrals: (e.g. Dellacherie and Meyer (1982); alternatively it can
be shown directly by the dominated convergence theorem for stochastic integrals (cf. Jacod (1979), p. 57). Also, since

\[Y_{s_{i+1}^-} - Y_{s_i^-} = -(\check{y}_{1-s_1^-} - \check{y}_{1-s_{i+1}^-}), \]

analogously we have

\[\lim_{t \to 0} B^T = \int_0^t H_{1-s} d\check{y}_s. \]

From (3.5) we have that:

\[
A^T + B^T + C^T = H_{1-t} \Delta Y_{1-t} + \sum_{i=0}^{n-2} H_{s_{i+1}^-} (Y_{s_{i+1}^-} - Y_{s_i^-}) \\
+ H_{1-(Y_{1-} - Y_{s_{n-1}^-})} - \sum_{i=0}^{n-1} H_{s_{i+1}^-} (Y_{s_{i+1}^-} - Y_{s_i^-}) \\
= H_{1-t} \Delta Y_{1-t} + \sum_{i=0}^{n-2} H_{s_{i+1}^-} (\Delta Y_{s_{i+1}^-} - \Delta Y_{s_i^-}) \\
\quad - AH_{1-(Y_{1-} - Y_{s_{n-1}^-})} - H_{1} \Delta Y_{s_{n-1}^-}.
\]

However we chose \(\tau \) so that \(\Delta Y_{s_i} = 0 \) for \(1 \leq i \leq n-1 \), and thus:

\[
A^T + B^T + C^T = (H_{1-t} - H_{s_1^-}) \Delta Y_{1-t} + AH_{1-(Y_{s_{n-1}^-} - Y_{1-})},
\]

which clearly tends to 0, since \(s_1 \) decreases to \(1-t \) and \(s_{n-1} \) increases to 1. Therefore formula (3.4) follows from (3.6), (3.7), and (3.8). \(\square \)
(3.9) COMMENT. If \(\tilde{Y} \) is a \(\tilde{G} \) semimartingale on the closed interval \([0,1]\), the same proof shows that \(\tilde{X} \) is a \(\tilde{G} \) semimartingale on \([0,1]\).

(3.10) COMMENT. Let \(f \) be a \(\mathcal{C}^1 \) function, and suppose \(Z \) is a Lévy process. If we take \(H = f(Z) \), then Theorem (1.11) follows trivially from Theorem (3.3); one need only check that (3.2) holds which has been shown by Meyer (1976), p. 359. The same argument establishes Theorem (1.12) whenever \(f \) is \(\mathcal{C}^1 \). In paragraph six we apply Theorem (3.3) to stochastic differential equations.

4. Time Reversal and Additive Functionals.

In this paragraph we prove Theorem (1.11). It is convenient (and involves no loss of generality) to use the Dynkin realization for our Lévy process \(Z \). That is, we take \(\Omega \) to be the path space \(\Omega = \mathcal{D}([0,\infty),\mathbb{R}) \); \(Z \) to be the canonical process \(Z_t(\omega) = \omega(t) \) for \(\omega \in \Omega \); \(\mathcal{F} \) to be the canonical filtration; \((\theta_t)_{t \geq 0} \) to be the canonical shifts (so that \(Z_{t+s} = Z_t \circ \theta_s \)); and we assume given a family of measures \((\mathbb{P}^x)_{x \in \mathbb{R}} \) under which \(Z \) is a Lévy process with \(Z_0 = x \), \(\mathbb{P}^x \) - a.s. Therefore \(\mathcal{E} = (\Omega, \mathcal{F}_t, \theta_t, Z_t, \mathbb{P}^x) \) is a strong Markov process. These are the standard notational conventions of Blumenthal and Getoor (1968). Note that the measure \(\mathbb{P} \) of Theorems (1.11) and (1.12) is the measure \(\mathbb{P}^0 \) restricted to \(\mathcal{F}_1 \) in this context.

An adapted, càdlàg process \(A \) is an additive functional (AF) of \(Z \) if \(A_{t+s} = A_t + A_s \circ \theta_t \) a.s. all \(s, t > 0 \), where the null set does not depend on \(s \) or \(t \). Note that we drop the traditional requirement that the paths of \(A \) be increasing.
For a given process \(Y \), let \(\bar{Y} \) be as defined in (1.1), and let \(\bar{G} \) be as defined in (1.5).

(4.1) LEMMA. If \(A \) is an additive functional of \(Z \), then \(\bar{A} \) is adapted to \(\bar{G} \).

Proof. It suffices to prove that \(\bar{A}_{t^-} \) is \(\bar{G}_t \)-measurable. Since \(A \) is additive we have \(\bar{A}_{t^-} = A_{t^-} \circ \theta_{1-t}^- \); also \(A_{t^-} \) is \(\mathcal{F}_{t^-} \)-measurable, so it is enough to show that \(\theta_{1-t}^{-1}(\mathcal{F}_t) \subseteq \mathcal{G}_t \). Since \(\mathcal{F} \) was defined to be minimal, it is enough to show that \(Z_s \circ \theta_{1-t}^- = Z_{t^- + t} \) is \(\bar{G}_t \)-measurable for all \(s < t \). But \(Z_{t^- + t} = Z(t^- + t) - Z_0 - Z_s \), and also \(Z_0 = 0 \), P-a.s. Since \(\bar{G} \) is P-complete, we are done. \(\square \)

PROOF OF THEOREM (1.11). First we observe that \(Z - Z_0 \) is an AF, and hence \(X_t = \int_0^t f(Z_s^-) dZ_s \) (cf (1.4)) is also an AF of \(Z \). (See Cinlar, Jacod, Protter and Sharpe (1980) for proofs of this and related statements.)

We next recall that if \(Z \) is a pure step process (that is, a compound Poisson process) then its paths are of finite variation on \([0,1]\). Therefore \(X \) and \(\bar{X} \) are also of finite variation on \([0,1]\) and the results follows from Lemma (4.1). Therefore it remains to consider the case where \(Z \) is not a pure step process.

Let \(\hat{f} \) be the right continuous function of finite variation on compacts associated to \(f \) in (1.10), and let \(\hat{X}_t = \int_0^t \hat{f}(Z_s^-) dZ_s \).
We will first prove that \(\hat{x} \) is an \((\mathcal{F}, \mathcal{G})\) reversible semimartingale. Note that \(\hat{f} \) is the right derivative of a function \(F \) which is the difference of two convex functions. Let \(\eta \) be the Radon (signed) measure which is the derivative of \(\hat{f} \), taken in the generalized functions sense.

Next we recall the construction of the local time \(L^a \) of the \(F \) semimartingale \(Z \) at a level \(a \). (This is the semimartingale local time as introduced by Meyer (1976) p. 365; it is not the Markov local time as found for example in Blumenthal and Getoor (1968). The latter need not even exist.) Set:

\[
\text{sign } |x| = \begin{cases}
-1 & \text{if } x \leq 0 \\
1 & \text{if } x > 0
\end{cases}
\]

Then

\[
L^a_t = |Z_t-a| - |Z_0-a| - \int_0^t \text{sign}(Z_{s-}-a) d(Z-Z_0)_s \\
- \sum_{s \leq t} \{ |Z_s-a| - |Z_{s-}-a| - \text{sign}(Z_{s-}-a) dZ_s \}
\]

defines the local time. As is well known there exists a jointly measurable version, and we use this one by convention. Since

\(|Z_t-a| - |Z_0-a|\)

is an AF, \(L^a \) is also an AF, which is indeed continuous and nondecreasing in \(t \). Then the Meyer-Tanaka-Ito change of variables formula yields:
\begin{equation}
(4.2) \quad F(Z_t) - F(Z_0) = X_t + \frac{1}{2} \int \mathbb{L}^a_t \eta (da) + \sum_{s \leq t} \{ F(Z_s^-) - F(Z_{s-}) - f(Z_{s-}) \Delta Z_s \}. \tag{4.2}
\end{equation}

Denote by S_t the second two terms on the right side of (4.2). Then S_t is an AF with paths of finite variation on $[0,1]$; thus \hat{S} is a \hat{G} semimartingale by Lemma (4.1). Moreover if we set $V_t = F(Z_t) - F(Z_0)$ for $t \in (0,1)$ we have

$$
\hat{V}_t = F(Z_{(1-t)^-}) - F(Z_{1^-}) = F(\hat{Z}_t^{-\hat{Z}_1}) - F(\hat{Z}_1),
$$

P.a.s., since $Z_0 = 0$ a.s. However by Theorem (1.8) we know that $\hat{Z}_t - \hat{Z}_1$ is a \hat{G} semimartingale on $[0,1]$. Therefore \hat{V} is also a \hat{G} semimartingale on $[0,1]$ since F is the difference of convex functions. Equation (4.2) then yields that \hat{X}^- is a \hat{G} semimartingale on $[0,1]$, and thus \hat{X} is an (F, \hat{G}) reversible semimartingale.

In order to finish the proof of the theorem it is then enough to show that $X_t = \hat{X}_t$ a.s. for all $t \in [0,1]$. That is, letting $D = \{ x : f(x) \neq \hat{f}(x) \}$, it is enough to prove that

\begin{equation}
(4.3) \quad \int_0^t 1_D(Z_{s^-}) dZ_s = 0 \quad \text{a.s.,} \quad 0 \leq t \leq 1. \tag{4.3}
\end{equation}

Suppose first that:
Recalling (2.3), for every $a > 0$ the process Z has the decomposition:

\begin{equation}
Z_t = M^a_t + b_a t + J^a_t,
\end{equation}

where $J^a_t = \sum_{s \leq t} AZ_s 1\{|AZ_s| > a\}$; $b_a \in \mathbb{R}$; and M^a is a martingale such that $\langle M^a, M^a \rangle_t = k_a t$ for some constant k_a. Then (4.4) implies:

\begin{align*}
E\left(\int_0^t 1_D(Z_{s-})dM^a_s\right)^2 &= E\left(\int_0^t 1_D(Z_{s-})d\langle M^a, M^a \rangle_s\right) \\
&= k_a E\left(\int_0^t 1_D(Z_{s-})ds\right) \\
&= 0.
\end{align*}

Thus if $Y^a_t = M^a_t + b_a t$ we obtain

\begin{equation}
\int_0^t 1_D(Z_{s-})dY^a_s = 0 \quad \text{a.s., } 0 \leq t \leq 1.
\end{equation}

Moreover, since $\lim_{a \to \infty} J^a_t = 0$, $0 \leq t \leq 1$, combining this with (4.6), and using the decomposition (4.5), yields (4.3).
Therefore it remains only to prove (4.4). Let V denote the 1-potential of the Markov process \mathcal{E} at $x = 0$. That is,

$$V(A) = E\{\int_0^t e^{-S_A(Z_s)}ds\}.$$

By hypothesis, D is at most countable, so (4.4) will follow from the property:

$$V(\{x\}) = 0, \text{ all } x \in \mathbb{R}. \quad (4.7)$$

To prove (4.7) we will use a result of Kesten (1969) (see also Bretagnolle (1971)). Let $T_x = \inf\{t > 0 : Z_t = x\}$ be the hitting time of $\{x\}$, and let $C = \{x : P(T_x < \infty) > 0\}$. Since by hypothesis \mathcal{E} is not a compound Poisson process, the result of Kesten states that we are in one of the following four cases:

$$\text{Either: } C = \emptyset; \ C = \mathbb{R}_+; \ C = \mathbb{R}_-; \ C = \mathbb{R}. \quad (4.8)$$

Applying the strong Markov property at time T_x, and using that $Z_{T_x} = x$ on $\{T_x < \infty\}$, we have:

$$V(\{x\}) = E^0\{\int_{T_x}^\infty e^{-s}1_{\{x\}}(Z_s)ds\}$$

$$= E^0\{e^{-T_x}\int_0^\infty e^{-t}1_{\{x\}}(Z_t \circ \theta_{T_x})dt\}. \quad (4.9)$$
\[E^0\{ e^{-T_x} \} E_x^x \int_0^\infty e^{-t} 1_{\{x\}}(Z_t) dt. \]

However the spatial homogeneity of the Lévy process \(Z \) implies that
\[P^x(Z_t - x \in A) = P^x(Z_t \in A). \] Hence (4.9) yields:

\[(4.10) \quad V(\{x\}) = E^0\{ e^{-T_x} \} V(\{0\}). \]

Assuming that \(V(\{0\}) > 0 \), we have \(0 \in C \) and also \(V(\{x\}) > 0 \)
for all \(x \in C \) by (4.10) and because \(E^0\{ e^{-T_x} \} > 0 \) for all \(x \in C \).
Then (4.8) implies that \(C \) is uncountable; this in turn implies
the finite measure \(V \) has uncountably many atoms, which is
impossible. Thus we must have \(V(\{0\}) = 0 \), and hence (4.7)
follows from (4.10) and the theorem is proved.

\[(4.11) \text{COMMENT.} \quad \text{Let } \bar{\mathcal{H}} \text{ be the filtration associated to the Lévy process } \bar{Z} \text{ by (2.4). Due to Theorem (2.5), we can obtain more than Theorem (1.11): namely that } X \text{ is an } (F, \bar{\mathcal{H}})\text{-reversible semimargingale. We state this as a theorem in the next paragraph (Theorem (5.16)).} \]

5. Time Reversal and Enlargement of Filtrations.

In this paragraph we prove Theorem (1.12). We begin however
with a theorem that has intrinsic interest.

We need an additional hypothesis.
(5.1) HYPOTHESIS. For every t, $0 \leq t \leq 1$, the law of the random variable Z_t has a density ρ_t (with respect to Lebesgue measure). Moreover $\sup_{|y| \leq n, \epsilon \leq t \leq 1} \rho_t(y) < \infty$ for all $n \in \mathbb{N}$, $\epsilon > 0$.

(5.2) COMMENT. If Z^c is not identically zero then (5.1) holds.

(5.3) THEOREM. Assume Hypothesis (5.1) holds. Let k be a Borel function on \mathbb{R}^2 such that:

(i) k is bounded and $\sup_{|x| \leq n, |y| \leq 1} \frac{k(x,y)}{|y|} < \infty$ for all $n \in \mathbb{N}$

(ii) for each y, $|y| \leq 1$, the function $k(\cdot,y)$ is either right continuous or left continuous, and it admits a Radon measure η_y as its generalized function sense derivative; moreover there is a positive Radon measure η such that $|\eta_y| \leq |y| \eta$, all $|y| \leq 1$, where $|\eta_y|$ denotes the total variation measure of η_y. Then the F martingale

\begin{equation}
V_t = \int_0^t \int_{\mathbb{R}} k(Z_{s-},y)(\mu - \nu)(ds \times dy)
\end{equation}

is an $(\mathbb{F}, \tilde{\mathbb{G}})$ reversible semimartingale.

Proof. (a) Let $\tilde{\mu}$ denote the jump measure of the reversed process \tilde{Z}. Since $\mathcal{L}(\tilde{Z}) = \mathcal{L}(-Z)$, the $\tilde{\mathbb{F}}$-compensator (where $\tilde{\mathbb{F}}$ is the natural filtration of \tilde{Z}) of $\tilde{\mu}$ is clearly
(5.5) \[\tilde{v}(dt \times dy) = dt \otimes \hat{F}(dy) \]

where \(\hat{F} \) is the symmetric analog of \(F \) given in (2.2). By virtue of Hypothesis (5.1) and Jacod (1985), pp. 28-9, there is a nonnegative \(\tilde{G} \)-predictable function \(U \) on \(\Omega \times [0,1] \times \mathbb{R} \) such that the \(\tilde{G} \) compensator of \(\tilde{v} \) is:

(5.6) \[\tilde{r}(\omega; dt \times dy) = U(\omega, t, y)\tilde{v}(dt \times dy), \]

and

(5.7) \[\int_0^t \int \frac{|U(\omega, s, y) - 1|}{|y|} |y|\tilde{v}(ds \times dy) < \infty \]

for all \(t < 1, \omega \in \Omega \).

(b) Next we set for \(n \in \mathbb{N} \):

(5.8) \[\tilde{v}_n^t = \int_0^t \int \frac{k(Z_{s-}, y)(\mu - \nu)(ds \times dy)}{|y| > 1/n} \]

This is an AF with paths of finite variation (of Cinlar, Jacod, Protter and Sharpe (1980)), and thus it is an \((\tilde{F}, \tilde{G}) \) reversible semimartingale by Lemma (4.1). Also since \(Z \) is a Levy process \(\Delta Z_1 = 0 \) a.s. and we have

\[\tilde{v}_n^t = \int_0^t \int \frac{k(Z_{(1-s)-}, y)\nu(ds \times dy)}{|y| > 1/n} - \int_0^t \int \frac{k(Z_{(1-s)-}, y)\mu(ds \times dy)}{|y| > 1/n} \]
\(\int_0^t \int_{|y| > 1/n} k(Z_{1-s}, -y) \tilde{\mu}(ds \times dy) - \int_0^t \int_{|y| > 1/n} k(Z_{1-s} + y, -y) \tilde{\mu}(ds \times dy) \).

Since \(k \) is bounded, both \(\nu^n \) and \(\tilde{\nu}^n \) have bounded jumps; in particular \(\tilde{\nu}^n \) is a special semimartingale, and its \(\tilde{\xi} \)-canonical decomposition

\[\tilde{\nu}^n = \tilde{\nu}_t^n + \tilde{A}_t^n \]

is given by (using (5.5), (5.6) and (5.9)):

\[\tilde{\nu}_t^n = -\int_0^t \int_{|y| > 1/n} k(Z_{1-s} + y, -y)(\tilde{\mu} - \tilde{\tau})(ds \times dy) \]

\[(5.10) \quad \tilde{A}_t^n = \int_0^t \int_{|y| > 1/n} \{ k(Z_{1-s}, -y) - k(Z_{1-s} + y, -y) \} \tilde{\mu}(ds \times dy) \]

\[= \tilde{B}_t^n + \tilde{C}_t^n \]

where

\[\tilde{B}_t^n = \int_0^t \int_{|y| > \frac{1}{n}} k(Z_{1-s} + y, -y) \{ 1 - U(s, y) \} \tilde{\mu}(ds \times dy) \]

\[(5.11) \quad \tilde{C}_t^n = \int_0^t ds \int_{|y| > 1/n} \{ k(Z_{1-s}, y) - k(Z_{1-s} - y, y) \} F(dy) . \]
(c) The next step is to let \(n \) increase to \(\infty \). Using hypothesis (i), a classical convergence theorem for stochastic integrals with respect to random measures yields that \(v^n_t \to v_t \) in probability, uniformly in \(t \). Therefore we also have \(\tilde{v}^n_t \to \tilde{v}_t \) in probability for all \(t, \ 0 \leq t \leq 1 \). Analogously by the same theorem \(\tilde{\mu}^n_t \to \tilde{\mu}_t \) in probability, where

\[
\tilde{\mu}_t = - \int \int_0^t k(z_{1-s}+y,-y)(\tilde{\mu}-\tau)(ds\times dy) .
\]

Using hypothesis (i) again together with (5.7) and (5.11) we have \(\tilde{b}^n_t \to \tilde{b}_t \) in probability, where

\[
\tilde{b}_t = \int \int_0^t k(z_{1-s}+y,-y)[1-U(s,y)]\tilde{a}(ds\times dy) ,
\]

which is a process with paths of finite variation. We can thus deduce that \(\tilde{\mathcal{C}}^n_t \) converges in probability to \(\tilde{\mathcal{C}}_t = \tilde{v}_t - \tilde{\mu}_t - \tilde{b}_t \). It remains only to prove that \(\tilde{\mathcal{C}}_t \) is a continuous process of finite variation, since that will imply that \(\tilde{V} \) is a semimartingale.

(d) Actually we will show that:

\[
(5.12) \quad D_t = \int_0^t ds \int_{|y| \leq 1} |k(z_{1-s},y) - k(z_{1-s},y,y)|F(dy) < \infty \ \text{a.s.}
\]

If (5.12) holds we can use Lebesgue's dominated convergence theorem to conclude
\[\bar{C}_t = \int_0^t ds \int_R \{ k(Z_{1-s}, y) - k(Z_{1-s} - y, y) \} F(dy) , \]

and \(\bar{C} \) will have continuous paths of finite variation. To show (5.12), define \(K_n = \{ |Z_s| \leq n, \text{ all } s \leq 1 \} \). Then

\[
E[1_{K_n} D_t] \leq \int_0^t ds \int |y| \leq 1 F(dy) E[|k(Z_{1-s}, y) - k(Z_{1-s} - y, y)| 1_{\{ |Z_{1-s}| \leq n \}}]
\]

\[
= \int_0^t ds \int |y| \leq 1 F(dy) \int |u| \leq n \rho_{1-s}(u) |k(u, y) - k(u-y, y)| du
\]

where \(\rho_t \) is the density defined in Hypothesis (5.1). Next we use hypothesis (ii) of the theorem to obtain for \(|y| \leq 1 \):

\[
|k(u, y) - k(u-y, y)| \leq \int |\eta_y|(dv) \leq |y| \int |u-v| \leq y \eta(dv)
\]

and thus, if \(L_t^n = \sup_{|y| \leq n, s \in [1-t, 1]} \rho_s(y) \), it follows that:

\[
E[1_{K_n} D_t] \leq \int_0^t ds \int |y| \leq 1 F(dy) \int |v| \leq n+1 \eta(dv) |y| \int |u-v| \leq y \rho_{1-s}(u) ds
\]

\[
\leq t L_t^{n+2} \eta([n-1,n+1]) \int |y| \leq 1 F(dy) |y|^2 < \infty.
\]

Since \(\cup K_n = \Omega \), we have established (5.12), and thus the theorem as well.
(5.13) COMMENT. In (ii) of the previous theorem, the assumption that \(k(\cdot,y) \) is either right continuous or left continuous is clearly too strong a requirement. Indeed the property that it admits a Radon measure for its derivative implies that at each point \(x \) it has a right and left limit, say \(k_+(x,y) \) and \(k_-(x,y) \); thus it would be enough to assume only that \(k(x,y) \) lies in the interval having \(k_+(x,y) \) and \(k_-(x,y) \) as its endpoints.

(5.14) COMMENT. As in Comment (4.11), let \(\tilde{\mathbb{H}} \) be the filtration associated to the Lévy process \(\tilde{Z} \) by (2.4). Then \(V \) is an \((\mathbb{F},\tilde{\mathbb{H}}) \) reversible semimartingale.

In fact, we could obtain this result directly by using the method of paragraph two instead of the results of Jacod (1985). More precisely let \(\tilde{\rho} \) be the \(\tilde{\mathbb{H}} \) compensator of \(\tilde{\mu} \) on \([0,1)\). Then we define \(\tilde{\mathbb{H}}^n \) and \(\tilde{\mathbb{M}} \) as above, using \(\tilde{\rho} \) instead of \(\tilde{\tau} \), so that \(\tilde{\mathbb{H}}^n \) and \(\tilde{\mathbb{M}} \) are \(\tilde{\mathbb{H}} \) local martingales on \([0,1)\). We still have

\[
\tilde{\mathbb{Y}}^n = \tilde{\mathbb{M}}^n + \tilde{\mathbb{A}}^n,
\]

and

\[
\tilde{\mathbb{A}}^n = \tilde{\mathbb{B}}^n + \tilde{\mathbb{C}}^n,
\]

with \(\tilde{\mathbb{C}}^n \) unchanged but with \(\tilde{\mathbb{B}}^n \) given by (instead of (5.11)):

\[
\tilde{\mathbb{B}}^n_t = \int_0^t \int_{\frac{1}{n}}^{1} k(z_1-s+y,-y)(\tilde{\nu} - \tilde{\rho})(ds \times dy).
\]
Thus \(\mathcal{B}^n_t = \int_0^t \mathcal{U}^n_s ds \), with

\[
\mathcal{U}^n_s = \int \frac{1}{1 - s^n} ((s, 1) \times dy) k(z_{1-s} + y, -y) - \int \frac{F(dy) k(z_{1-s} + y, -y)}{|y|^{\frac{1}{n}}}
\]

and, exactly as in the proof of (2.5), we deduce from assumption (1) that \(\mathcal{B}^n_t \) converges to \(\mathcal{B}_t = \int_0^t \mathcal{U}_s ds \) in \(L^2 \) for a suitable process \(\mathcal{U}_s \).

The rest of the proof remains unchanged. Observe however that, although we do not use the results of Jacod (1985) with this method, we are unable to remove Hypothesis (5.1), which seems necessary to obtain that \(\mathcal{C}^n \) converges to a process with paths of finite variation.

PROOF OF THEOREM (1.12). Exactly as in the proof of Theorem (1.11), it is enough to show that the process \(\mathcal{Y}_t = \int_0^t \hat{f}(Z_{s-}) dZ_s^c \) is an \((F, \mathcal{F})\) reversible semimartingale, where \(\hat{f} \) is the function associated to \(f \) in (1.10). In other words we can and do assume that \(f \) is a right continuous function of finite variation on compacts. We let

\[
X_t = \int_0^t f(Z_{s-}) dZ_s; \quad Y_t = \int_0^t f(Z_{s-}) dZ_s^c
\]

as in (1.4).
By Theorem (1.11) we know that X is an $(\mathbb{F}, \mathcal{G})$ reversible semimartingale. Also since Z^0 is not identically zero, by Comment (5.2) we have that Hypothesis (5.1) holds.

Consider next the decomposition (4.5) of Z:

$$Z_t = M_t^a + b_a t + J^a_t,$$

with $a = 1$. The martingale M_t^1 can be written as:

$$M_t^1 = Z_t^0 + \int_0^t \int_{|y| \leq 1} y(\mu - v)(ds \times dy).$$

Hence if $A_t = b_1 t + J^1_t$ (the last two terms on the right side of (4.5)), we have:

$$X_t = Y_t + \int_0^t \int_{|y| \leq 1} f(Z_{s-})y(\mu - v)(dy \times ds) + \int_0^t f(Z_{s-})dA_s.$$

Then $C_t = \int_0^t f(Z_{s-})dA_s$ is an AF of Z with paths of finite variation, and hence it is an $(\mathbb{F}, \mathcal{G})$ reversible semimartingale by Lemma (4.1). It remains only to show that the middle term on the right side of (5.15) is $(\mathbb{F}, \mathcal{G})$ reversible.

To this end we use Theorem (5.3), with $k(x, y) = f(x)y$. Note that such a k clearly satisfies the hypotheses (5.3) (i), (ii), and the proof is complete. \qed
Actually, due to Lemma (4.1) and Theorem (2.5), we can obtain more than Theorems (1.11) and (1.12). Let $\hat{\mathcal{H}}$ be the filtration associated to the Lévy process \tilde{Z} by (2.4).

(5.16) THEOREM. Let Z be a Lévy process and let f, g satisfy (1.10). Let A be an additive functional of Z. If

$$U_t = \int_0^t f(Z_s^-) dZ_s + \int_0^t g(Z_s^-) dZ_s^c + A_t,$$

then U is an $(\mathbb{F}, \hat{\mathcal{H}})$ reversible semimartingale.

Proof. By Lemma (4.1), we know that \tilde{A} is $\tilde{\mathcal{G}}$-adapted, and it has paths of finite variation. Since $\tilde{\mathcal{F}}_t \supseteq \tilde{\mathcal{G}}_t$ (as shown in the remark following (2.4)), we have that \tilde{A} is an $\hat{\mathcal{H}}$ semimartingale.

Letting $X_t = \int_0^t f(Z_s^-) dZ_s$ and $Y_t = \int_0^t g(Z_s^-) dZ_s^c$ as in (1.4), we have by Theorems (1.11) and (1.12) that \tilde{X} and \tilde{Y} are $\tilde{\mathcal{G}}$ semimartingales. But then it follows from Theorem (2.5) that \tilde{X} and \tilde{Y} are each $\hat{\mathcal{H}}$ semimartingales. Finally it suffices to note that $\tilde{U} = \tilde{X} + \tilde{Y} + \tilde{A}$ to complete the proof.

\square

6. The Brownian Case and Applications

In the Brownian case the situation is particularly simple, since any additive functional A of a standard Brownian motion B has a representation
\[A_t = \int_{\mathbb{R}} L^x_t \mu(dx) \]

for some signed measure \(\mu \), where \(L^x_t \) is a (jointly continuous) version of the local times of \(B \) at levels \(x \). The relation (6.1) allows us to use only martingale stochastic integration theory, and in particular we can avoid Lemma (4.1). In the Brownian case Theorem (1.8) was first proved by Itô (1978) on \([0,1]\). Theorems (1.11) and (1.12) become in this case:

\[V_t = \int_0^t f(B_s) dB_s + \int_{\mathbb{R}} L^x_t \mu(dx) \]

where \(\mu \) is a signed measure on \(\mathbb{R} \). Then \(V \) is an \((F_t, \mathbb{Q})\) reversible semimartingale.

Proof. Although the proof is a corollary of Theorem (1.11) and Lemma (4.1) (with \(Z = B \)), we give an autonomous proof.

Let \(\hat{f} \) and \(D \) be associated with \(f \) as in (1.10). It is well known that \(B \) spends a.s. zero time in the at most countable set \(D \) (one need not resort to Kesten's theorem here!). Therefore

\[
E\{ \int_0^t 1_D(B_s) dB_s \} = E\{ \int_0^t 1_D(B_s) ds \} = 0
\]
and so \(\int_0^t f(B_s) dB_s = \int_0^t \hat{f}(B_s) dB_s \) a.s. Hence it is no restriction to assume that \(f \) itself is right continuous and of finite variation on compacts.

Note that \(f = F'_+ \), the right derivative of a function \(F \) which is the difference of two convex functions. Letting \(\eta \) be the (generalized function sense) derivative of \(f \), the Meyer-Tanaka-Itô formula yields:

\[
(6.3) \quad F(B_t) - F(B_0) = \int_0^t f(B_s) \, dB_s + \frac{1}{2} \int_{\mathbb{R}} L_t^B \eta(\text{da})
\]

Letting \(U_t = F(B_t) - F(B_0) \), an \(\mathbb{F} \) semimartingale, we have

\[
\tilde{U}_t = F(B_{1-t}) - F(B_1) = F(\tilde{B}_t - \bar{B}_1) - F(-\bar{B}_1),
\]

and since \(\tilde{B}_t - \bar{B}_1 \) is a \(\mathbb{G} \) semimartingale by (1.8), we have that \(\tilde{U} \) is one as well.

It remains to show that \(A_t = \int_{\mathbb{R}} L_t^x u(dx) \) is \((\mathbb{F}, \mathbb{G}) \) reversible. Since it has continuous paths of finite variation, however, it suffices to show that \(\tilde{A}_t \) is \(\bar{\mathbb{G}}_t \) - measurable. We do this using local time theory instead of using Lemma (4.1).

First note that \(\tilde{B}_t = B_{1-t} - B_1 \) is an \(\mathbb{F} \) - Brownian motion. Let \(\mathcal{L}_t^x \) be its (jointly continuous) local time. Then well known results about Brownian local time (see, e.g., Yor (1978) p. 32) state:
$$L_t^X = \lim_{\epsilon \to 0} \frac{1}{\epsilon} \int_0^t 1_{[x, x+\epsilon]}(B_s) \, ds \text{ a.s.,}$$

where the exceptional set can be taken independent of \(x \) and \(t \).

But then:

(6.4) \[\tilde{A}_t = A_{1-t} - A_1 = \int (L_{1-t}^X - L_1^X) \mu(dx); \]

and:

$$L_{1-t}^X - L_1^X = \lim_{\epsilon \to 0} -\frac{1}{\epsilon} \int_{1-t}^1 1_{[x, x+\epsilon]}(B_s) \, ds$$

$$= \lim_{\epsilon \to 0} -\frac{1}{\epsilon} \int_{1-t}^1 1_{[x-B_1, x-B_1+\epsilon]}(B_s - B_1) \, ds$$

$$= \lim_{\epsilon \to 0} -\frac{1}{\epsilon} \int_0^t 1_{[x-B_1, x-B_1+\epsilon]}(\bar{B}_u) \, du$$

$$= -l_t^{x-B_1}.$$

Combining this with (6.4) yields:

$$\tilde{A}_t = -\int_{\mathbb{R}} l_t^{x-B_1} \mu(dx);$$

Since \(l_t^X \) are the local times of \(\tilde{B} \), they are \(\bar{\mathcal{F}} \) - adapted, and thus \(\tilde{A} \) is \(\bar{\mathcal{G}} \) - adapted.
Note that since one can take \(\mu(dx) = g(x) \delta_{\{o\}}(dx) + h(x) \, dx \), where \(\delta_{\{o\}} \) is point mass at \(o \), Corollary (1.12) is a special case of Theorem (6.2).

An interesting application of these results is to stochastic differential equations. Here our general result, Theorem (3.3), is particularly useful. Let \(B \) be a Brownian motion and \(X \) the solution of:

\[
X_t = X_0 + \int_0^t \sigma(s, X_s) \, dB_s + \int_0^t b(s, X_s) \, ds.
\]

(6.5)

The filtration \(\mathcal{F} \) is that of \(B \), and we define:

\[
\tilde{\mathcal{F}} = (\tilde{\mathcal{F}}_t)_{t \in [0,1]} \text{ denotes the smallest complete (right continuous) filtration relative to which } \tilde{B} \text{ is adapted and } X_1 \text{ is } \tilde{\mathcal{F}}_0 \text{- measurable.}
\]

(6.6)

It is a well known result in the theory of flows (see Kunita (1984), p. 227) that if \(\sigma \) and \(b \) in (6.5) are of class \(\mathcal{C}^1 \) with derivatives which are globally Holder continuous (of any positive index), then the flow \(x \to \varphi(s,t;x) \) of equation (6.5) is a \(\mathcal{C}^1 \)-diffeomorphism. (Here \(\varphi(s,t;x) \) represents the value of \(X_t \) when \(X_s = x \) and \(s \leq t \).) Moreover \(\varphi(s,t;x) \) is measurable with respect to \(\sigma(B_r-B_s; \, s \leq r \leq t) \). If furthermore \(X_t \) has a density with respect to Lebesgue measure for all \(t \in [0,1] \), we deduce that the conditional law of \(X_1 = \varphi(t,1;X_t) \) with respect to
\[\sigma(B_r - B_t : t \leq r \leq 1) = \sigma(\hat{\mathcal{B}}_u; 0 \leq u \leq 1-t) \] also has a density. In this case the results of Jacod (1985) imply that \(\hat{\mathcal{B}} \) is a \(\mathcal{F} \) \(\hat{\mathcal{F}} \) semimartingale on \([0,1)\), and therefore by Theorem (3.3) we have that \(\hat{X} \) is a \(\mathcal{F} \) \(\hat{\mathcal{F}} \) semimartingale on \([0,1)\). Haussmann and Pardoux (1985) have studied this type of question for systems and they obtained sufficient conditions for \(X_t, t \in (0,1) \) to have a density. (See also Pardoux (1985).)

By combining a Girsanov technique (as in Protter (1986)) with the above, one can consider a more general stochastic differential equation of the form:

\[(6.7) \quad Y_t = Y_0 + \int_0^t h_s \, ds + \int_0^t \sigma(s, Y_s) \, dB_s \]

where \(h \) is \(\mathcal{F} \) adapted and jointly measurable. If, for example, \(h \) is bounded and \(\sigma \) is bounded away from 0, then the process

\[(6.8) \quad W_t = B_t - \int_0^t \frac{1}{\sigma(s, Y_s)} h_s \, ds \]

is an \(\mathcal{F} \) Brownian motion for a probability \(Q \) equivalent to \(P \), and the process \(Y \) of (6.7) is a solution of

\[Y_t = Y_0 + \int_0^t \sigma(s, Y_s) \, dW_s; \]

the preceding discussion shows that \(Y \) is then a reversible semimartingale under \(Q \), if \(\sigma \) is at least \(\quad \) \(\mathcal{F}^1 \) with Hölder continuous derivatives and also if \(Y_t \) has a density for all
Since Q is equivalent to P, \hat{Y} is also a P-semimartingale. Picard (1986) has used basically this approach for the case of systems, which of course is technically more complicated.

REFERENCES

semimartingale models for Gaussian processes with stationary increments. Stochastics 15 1-50.

