EDGEBWORTH EXPANSIONS IN STATISTICS:
SOME RECENT DEVELOPMENTS

by

Shanti S. Gupta
and
S. Panchapakesan
Purdue University
and
Southern Illinois University

Technical Report #82-18

Department of Statistics
Purdue University
(Revised December 1982)

This research was supported by the Office of Naval Research Contract N00014-75-C-0455 at Purdue University. Reproduction in whole or in part is permitted for any purpose of the United States Government.
EDGECRTH EXPANSIONS IN STATISTICS: SOME RECENT DEVELOPMENTS*

by
Shanti S. Gupta
Purdue University
and
S. Panchapakesan
Southern Illinois University

1. Introduction. The study of approximations to distributions has been an important part of statistical investigations since the early part of this century. Charlier, Chebyshev, and Edgeworth were notable contributors among others. Though the interest initially was the approximation to empirical distributions by theoretical functions, the focus quickly shifted to approximate evaluation of distribution functions or quantiles of complicated distributions. Such approximations are very useful in statistical inference, especially in the investigation of robustness of standard tests of hypotheses and of estimators.

Consider a sequence of statistics, \(\{T_N\} \), \(N \geq 1 \), where \(N \) usually denotes the sample size. The distribution function (d.f.) \(F_N \) of \(T_N \) is said to possess an asymptotic expansion valid to \((r+1) \) terms if functions \(A_0, \ldots, A_r \) can be found such that

\[
(1.1) \quad \left| F_N(x) - A_0(x) - \sum_{j=1}^{r} \frac{A_j(x)}{N^{j/2}} \right| = o(N^{-r/2}).
\]

The expansion is said to be uniformly valid to \((r+1) \) terms if

\[
(1.2) \quad \sup_x \left| F_N(x) - A_0(x) - \sum_{j=1}^{r} \frac{A_j(x)}{N^{j/2}} \right| = o(N^{-r/2}).
\]

It is to be noted that, in defining the above concepts, Wallace (1958) requires the remainder to be \(O(N^{-r+1}/2) \). Our definition is in accord with

*This research was supported by the Office of Naval Research contract N00014-75-C-0455 at Purdue University. Reproduction in whole or in part is permitted for any purpose of the United States Government.
Erdelyi (1956) and is used by Bickel (1974) and many other authors. An expansion which is valid to just one term gives an ordinary limit theorem. The higher order terms are of practical interest. The basic approximation A_0 can often be greatly improved by taking one or two additional terms of the expansion. Further, these expansions are useful and necessary to discriminate procedures equivalent to first order. This point has been clearly brought out by Hodges and Lehmann (1970).

Expansions of the type (1.1) are, in general, known as Edgeworth expansions. The related expansions of F_N^{-1} are the Cornish-Fisher expansions. Of course, there are some other expansions of interest such as the expansions for density functions and frequency functions of lattice random variables. In some cases, better approximations can be obtained based on saddle point method; however, this involves a deep knowledge of the characteristic function of F_N which may not be usually available. Our interest here is mainly confined to Edgeworth and Cornish-Fisher expansions in which $A_0(x) = \phi(x)$, the standard normal distribution function (as, in fact, the case was, when they were first introduced). It is perhaps appropriate at this point to make a comment about the Edgeworth series and the related Charlier's A-series. Charlier's paper was published in 1905 and Edgeworth's in 1907. However, Gnedenko and Kolmogorov (1968, Chapter 8) point out that both these types of expansions appear already in the work of Chebyshev. For further historical information about these expansions, we refer to Cramér (1972) and Särndal (1971).

Another problem that has always been of interest is to obtain suitable bounds for $\sup_x |F_N(x) - A_0(x)|$ or in other words, to determine the rate of convergence to A_0. These bounds are called Berry-Esseen bounds. For basic contributions to this problem, one should refer to Berry (1941), Esseen (1942, 1945), and Bergström (1944, 1945, 1949). In the course of this
paper, we will refer to some recent results regarding these bounds.

Significant contributions to the theory of asymptotic expansions were made by Rao (1960) who obtained Edgeworth expansions and Berry-Esseen bounds for sums of independent random vectors. These and other related developments in the field including the results of B. von Bahr, R. N. Bhattacharya and A. Bikjalis are discussed in Bhattacharya and Rao (1976).

For excellent accounts of the theory of Edgeworth expansions for sums of independent random variables, one should also refer to Cramér (1962), Gnedenko and Kolmogorov (1968), Feller (1971) and Petrov (1975).

There are also three fine expository papers by Wallace (1958), Bickel (1974), and Pfanzagl (1980). Wallace has given a nice summary of the state of the art regarding asymptotic approximations to distributions. He has also discussed the uses of these approximations in problems such as the Behrens-Fisher problem and in the investigation of robustness of standard tests of hypotheses. Bickel (1974) surveys more recent work on Edgeworth expansions for M-estimates, rank tests and some other statistics arising in nonparametric models. Pfanzagl (1980), while developing a general parametric statistical theory based on asymptotic methods, has discussed the available literature on stochastic and Edgeworth expansions. In particular, he has discussed the numerical accuracy of results based on Edgeworth expansions.

In reviewing the development of Edgeworth expansions in statistics, we do not attempt to be exhaustive - neither in coverage nor in details. We restrict our attention to some of the recent developments. These relate to transformations of Edgeworth series (Section 2), Cornish-Fisher expansions
(Section 3), Berry-Esseen bounds and Edgeworth expansions for test-statistics such as linear rank statistics, U-statistics, and linear combinations of order statistics (Section 4), expansions for minimum contrast estimators and Fisher-consistent estimators (Section 5), Edgeworth and Cornish-Fisher expansions in selection and ranking problems (Section 6), and asymptotic expansions for statistics with nonnormal limiting distributions (Section 7).

2. **Edgeworth Series for Sums and Transformations of Series.** Let \(\{X_n\}, \ n \geq 1, \) be a sequence of independent and identically distributed (i.i.d.) random variables and let \(F_n \) denote the d.f. of the standardized sum

\[
Y_n = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} (X_i - \mu)/\sigma, \quad \text{where} \quad \mu = E(X_1) \quad \text{and} \quad \sigma^2 = V(X_1).
\]

Now, letting the cumulants \(\kappa_r = \sigma^r \lambda_r, \ r \geq 3, \) the first few terms of the Edgeworth expansion are given by

\[
F_n(x) = \phi(x) - \lambda_3 \frac{\phi(3)(x)}{6\sqrt{n}} + \frac{1}{n} \left[\lambda_4 \frac{\phi(4)(x)}{24} + \frac{\lambda_3^2 \phi(6)(x)}{72} \right] + \ldots,
\]

where \(\phi^{(r)}(x) \) denotes the \(r \)-th derivative of \(\phi(x) \) with respect to (w.r.t.) \(x \). Cramér (1928) proved that the series is valid uniformly in \(x \) provided that one more cumulant exists than used in any partial sum and the characteristic function \(\psi(t) \) of \(X_1 \) satisfies the condition

\[
(2.1) \quad \lim_{|t| \to \infty} \sup_{t} |\psi(t)| < 1.
\]

This condition (commonly now called the Cramér's condition) is satisfied if the distribution of \(X_1 \) has an absolutely continuous part. For discrete distributions, the condition is not satisfied and in this case the result is not generally valid; however, a different expansion is available. Takeuchi and Akahira (1977) have given Edgeworth expansion of \(F_n \) when moments do not necessarily exist but when the density can be approximated by rational functions.
The theory of Edgeworth expansions for sums of independent random variables is fairly well-developed and for excellent accounts one can refer to any of the books mentioned in this regard in the previous section.

Suppose we have a sequence of distributions of random vectors approximated to a certain order of accuracy by an Edgeworth series. Bhattacharya and Ghosh (1978) proved that such an expansion may be transformed by a sequence of smooth functions of the corresponding random vectors to yield a valid Edgeworth expansion of the resulting sequence of distributions. This latter expansion may be obtained by the so-called delta method in which the moments of a function of a random vector are formally calculated from a Taylor series expansion of the function. The conditions needed to be satisfied are essentially concerned with the derivatives of the functions. Skovgaard (1981a) gives a generalization of the Bhattacharya-Ghosh theorem. These results provide the mechanism for Edgeworth expansions of distributions of statistics in non-standard cases. Skovgaard (1981b) has used this approach to obtain Edgeworth expansion of the distribution of maximum likelihood estimators in the general (non i.i.d.) case.

3. Cornish-Fisher Expansions. Typically, in many statistical applications, we require quantiles of a distribution. Starting with an Edgeworth expansion of a distribution function \(F_n \), Cornish and Fisher (1937) obtained an asymptotic expansion of a quantile \(x \) of \(F_n \) in terms of the corresponding normal quantile \(z \) by means of formal substitutions, Taylor expansion and identification of powers of \(n \). The expansion is of the form

\[
(3.1) \quad x = z + \frac{P_1(z)}{\sqrt{n}} + \frac{P_2(z)}{n} + \frac{P_3(z)}{n^{3/2}} + \frac{P_4(z)}{n^2} + \ldots
\]

where the \(P_i(z) \) are polynomials in \(z \). We refer to \(P_i(z) \) as the \(i \)th adjustment. Cornish and Fisher (1937) have tabulated, for nine probability levels, all the polynomials needed to obtain all terms through the fourth adjustment based on the sixth cumulant. Fisher and Cornish (1960) extended the formulae and
tables to the sixth adjustment based on the eighth cumulant for ten (the earlier nine and one more) probability levels. These are further extended to order n^{-4} by Draper and Tierney (1973) and to order n^{-6} by Hill (1964).

Now, we can also expand z in terms of x in a form similar to (3.1). This is known as the normalizing expansion. In fact, this is obtained as an intermediate step in getting (3.1). It is also useful in itself as it provides an asymptotic transformation of a random variable X with distribution F_n into a standard normal random variable. Both expansions are referred to as Cornish-Fisher expansions. For an absolutely continuous distribution both expansions are valid for every probability level whenever the initial Edgeworth series is valid. This can be proved by adapting the proof of Wasow (1956) for the invertability of a special class of distribution expansions. Incidentally, Hill and Davis (1968) obtained formal expansions which generalize Cornish-Fisher relations to an arbitrary analytic f.

The Edgeworth and Cornish-Fisher expansions require the knowledge of the cumulants of the distributions involved. Gray, Coberly and Lewis (1975) showed how the general Edgeworth expansion can be suitably utilized to eliminate the requirement of knowing the cumulants without affecting the order of the error of approximation. McCune and Gray (1975) used this result along with the expansions of Hill and Davis (1968) to obtain Cornish-Fisher type expansions with unknown cumulants. However, these new expansions lack simplicity for applications. Using a technique analogous to that used by Gray, Coberly and Lewis (1975), a simpler expression was obtained by McCune (1977).

Finally, it should be noted that the Edgeworth and Cornish-Fisher expansions are known to have some deficiencies which show up in tails of the distribution. The approximations for $F_n(x)$ are not probability distributions. Further, the monotonicity property as well as the zero-one range property are violated in parts of either or both tails. Correspondingly, the approximations for quantiles are not always monotonic in the probability level.

As we have already mentioned, a reasonably complete theory of Berry-Esseen bounds and Edgeworth expansions is available for sums of independent random variables and vectors. In recent years, Berry-Esseen bounds and asymptotic expansions have been obtained for several statistics occurring in statistical estimation and tests which are of a different structure. In this section, we discuss these results for linear combination of order statistics, spacings, simple linear rank statistics and U-statistics.

In obtaining these results for statistics T_N in these situations, two methods have been used. One method is to obtain a stochastic expansion for T'_N, in other words, T_N is approximated sufficiently accurately by a statistic T'_N which has a simpler structure. The desired results are then proved for T'_N instead of T_N. In many cases that were first considered, T'_N is a smooth function of a sum of independent random vectors and the problem is solved by the use of the classical theory. In some other cases, T'_N is of a different type. An important example of such T'_N is a U-statistic. This situation arises, for example, when we are dealing with one-sample linear rank statistic and linear combinations of order statistics.

Another technique used by Albers, Bickel and van Zwet (1976) and Bickel and van Zwet (1978) to obtain Edgeworth expansions for the one- and two-sample problems is based on conditioning. With the right conditioning, it turns out easier to obtain an Edgeworth expansion for the conditional d.f. of the linear rank statistic T_N. One can then obtain an expansion for the unconditional d.f. of T_N by taking the expected value.

Albers, Bickel and van Zwet (1976) gave a rigorous proof of Edgeworth expansion for the d.f. of the general linear rank statistic for the one-sample problem under the null hypothesis as well as general alternatives. They have also shown that the expansion can be greatly simplified by considering contiguous
location alternatives and smooth scores. Numerical aspects of these expansions are considered in Albers (1974). Albers (1979) specialized the general results to certain contiguous nonparametric alternatives and smooth scores. Bickel and van Zwet (1978) provided the Edgeworth expansion for the general two-sample linear rank statistic under the null hypothesis as well as contiguous location alternatives. The expansion under the null hypothesis has been obtained also by Robinson (1978). Rogers (1971) obtained an expansion under the null hypothesis in the special case of the two-sample Wilcoxon statistic but his proof appears to be in error. A Berry-Esseen bound in this special case was obtained by Stoker (1954).

Suppose that X_1, X_2, \ldots, X_N are independent random variables with density functions f_1, f_2, \ldots, f_N, respectively. Let R_j be the rank of X_j when the X_i are arranged in increasing order. For sequences of real numbers c_1, \ldots, c_N and a_1, \ldots, a_N, we define a simple linear rank statistic by

$$T_N = \sum_{j=1}^{N} c_j a_{R_j}.$$

Here the a_i are the scores. By taking $c_1 = \ldots = c_m = 0$, $c_{m+1} = \ldots = c_N = 1$ for $1 < m < N$, we get the two-sample rank statistic. The behavior of the characteristic function of a suitably standardized T_N for the large values of the argument has been investigated by van Zwet (1980).

Using this result, an Edgeworth expansion with remainder $o(N^{-1})$ was obtained for simple linear rank statistics under the null hypothesis by Does (1981) who considered scores a_j generated by a function $J(t)$, $0 < t < 1$, using either $a_j = J(j/(N+1))$ or $a_j = E(J(U_{j,N}))$, $j = 1, \ldots, N$, where $U_{j,N}$ denotes the jth order statistic in a random sample of size N from the uniform distribution on $(0,1)$. His theorem holds for a wide class of functions J which includes the normal quantile function, thus allowing unbounded scores.
Berry-Esseen bounds of order $O(N^{-1/2})$ for simple linear rank statistics under the null-hypothesis have been obtained by von Bahr (1976) and Ho and Chen (1978) as a by-product of their results for statistics of the form
\[N \sum_{j=1}^{N} X(j,R_{j}) \] where $X = \{X(i,j): 1 \leq i, j \leq N\}$ is a square matrix of random variables with independent row vectors. Hušková (1977) has obtained the same bound under the null-hypothesis as well as under contiguous alternatives. All these results were obtained for bounded scores. Recently, Does (1982b) has obtained the same bound under the null-hypothesis for a wide class of scores generating functions as in the case of his Edgeworth expansion mentioned above. For these results of Does as well as asymptotic expansions under contiguous alternatives, reference can also be made to Does (1982a).

Suppose that $X_{1,N} \leq X_{2,N} \leq \ldots \leq X_{N,N}$ are order statistics corresponding to $X_{1}, X_{2}, \ldots, X_{N}$ which are i.i.d. with distribution F. Let
\[T_{N} = N^{-1} \sum_{j=1}^{N} c_{j,N} X_{j,N}, \] where the $c_{j,N}$ are known real numbers (weights). Statistics of the form T_{N} are linear combinations of order statistics. In this case, Berry-Esseen bounds are given by Bjerve (1977) and Helmers (1977, 1981a,b). Edgeworth expansion for T_{N} with smooth weight functions is obtained by Helmers (1980) under the assumption that the underlying distribution function possesses a finite fourth moment and a certain local smoothness property. His proof uses Theorem 4.1 of van Zwet (1977) which provides a bound for the characteristic function of T_{N}. For the special case in which the underlying distribution is uniform, the above results of Bjerve, Helmers and van Zwet are substantially weaker than the result of van Zwet (1979).

The results of Helmers (1980) for linear combination of order statistics do not include trimmed means. However, Bjerve (1974) has shown that trimmed means admit asymptotic expansion. His proof employs a special property of trimmed means and thus does not apply to more general trimmed linear combinations. Expansion in the general case has been obtained by Helmers (1979).
These and related results are summarized in Helmers (1981b). A brief but clear account of the results of Bjerve (1977) and Helmers (1977) is given by van Zwet (1977).

Suppose that U_1, U_2, \ldots is a sequence of i.i.d. random variables which are uniformly distributed on $(0,1)$. For $N = 1, 2, \ldots$, let

$U_{1,N} \leq U_{2,N} \leq \ldots \leq U_{N,N}$ be the order statistics. Let $U_{0,N} = 0$ and $U_{N+1,N} = 1$. The spacings are defined by $D_{iN} = U_{i,N} - U_{i-1,N}, i = 1, \ldots, N+1$. Let

$g_N: (0,\infty) \to \mathbb{R}, N \geq 1$, be a sequence of measurable functions and define

$T_N = \sum_{i=1}^{N+1} g_N((N+1)D_{iN}), \quad N \geq 1$. Does and Helmers (1980) have obtained an Edgeworth expansion for T_N. They have also established a Berry-Esseen bound of order $O(N^{-\frac{1}{2}})$ for normalized T_N but under conditions that are hard to check. The same bound is obtained by Does and Klaassen (1981) under conditions which are easier to check.

Another important class of statistics are known as U-statistics. In finding a T'_N which stochastically approximates T_N at hand, a possible situation is that T'_N is a U-statistic of order k ($1 \leq k \leq N$). In other words,

$T'_N = \sum_{1 \leq i_1 < \ldots < i_k \leq N} h(X_{i_1}, \ldots, X_{i_k}),$

where X_1, \ldots, X_N are i.i.d. random variables. One-sample linear rank statistics and linear combinations of order statistics are known examples of such T_N. Berry-Esseen type results establishing convergence to normality of the d.f. of a standardized T'_N at the rate of $N^{-\frac{1}{2}}$ have been given by Bickel (1974), Chan and Wierman (1977) and Callaert and Janssen (1978). These authors discuss U-statistics of order 2; however, as pointed out by these authors, all their results hold for U-statistics of any fixed order and also hold in the multi-sample case [see Janssen (1978)].

To describe the results for U-statistics of order 2, define

$U_N = \sum_{1 \leq i < j \leq N} h(X_i, X_j),\quad N \geq 1$.
where the kernel h is a symmetric function of two variables with $Eh(X_1, X_2) = 0$. Let σ_N^2 denote the variance of U_N. Asymptotic normality of $\sigma_N^{-1}U_N$ was proved by Hoeffding (1948) under the sole condition that $Eh^2(X_1, X_2)$ exists. Grams and Serfling (1973) showed that $\sup_x |P[\sigma_N^{-1}U_N \leq x] - \Phi(x)| = O(N^{-r/(2r+1)})$ when $Eh^{2r} < \infty$; this gives $O(N^{-2})$ when h has finite moments of all orders. An order bound of exactly $O(N^{-2})$ was obtained by Bickel (1974) assuming that the kernel h is bounded. The same order bound was obtained by Chan and Wierman (1977) assuming only the existence of the fourth moment of h and by Callaert and Janssen (1978) under the assumption that the third absolute moment of the kernel exists. Recently, Helmers and van Zwet (1982) relaxed this moment condition even further by requiring that $E|h(X_1, X_2)|^p < \infty$ for some $p > 5/3$, $Eg^2(X_1) > 0$, and $E|g(X_1)|^3 < \infty$, where $g(x) = E(h(X_1, X_2)|X_1 = x)$. A Berry-Esseen theorem for U-statistics when the sample size is random is given by Ahmad (1980) when the random size is independent of the observations. A special case of Ahmad's result is a Berry-Esseen theorem for random sums which is also discussed by Landers and Rogge (1976); however, the latter authors do not assume the independence between the sample observations and the sample size but assume more stringent conditions on $\{N_n\}$, the sequence of positive integer-valued random variables whose values are the sample sizes. The latest of these results is that of Callaert and Aerts (1982). Their theorem holds for U-statistics when the sample size is random and includes the earlier results of Landers and Rogge (1976), Ahmad (1980), and Helmers and van Zwet (1982). When σ_N^2 is unknown, a Berry-Esseen bound of order $O(N^{-\frac{1}{2}})$ is given by Callaert and Veraverbeke (1982) for the studentized U-statistic $N^{-\frac{1}{2}}S_N^{-1}U_N$ where $S_N^{-\frac{1}{2}}$ is the jackknife estimator [see, for example, Miller (1968)] of σ_N^2. An
Edgeworth expansion for the d.f. of $\sigma_N^{-1} U_N$ with remainder $o(N^{-1})$ has been obtained by Callaert, Janssen and Veraverbeke (1979) assuming the existence of the fifth absolute moment of h and some regularity conditions on the kernel. The same result is established by these authors in another paper (1980) under a set of less restrictive but less tractable set of conditions.

Recently, Efron (1979) gave a "bootstrap" method for setting confidence intervals and estimating significance levels. The bootstrap procedure is a resampling procedure to approximate the distribution of a function of the observations and the underlying distribution. The approximation is called the bootstrap distribution of the quantity. Bickel and Freedman (1981) have obtained some asymptotic results regarding bootstrap pivotal quantities. Singh (1981) has obtained Edgeworth expansions with remainder $o(n^{-1/2})$ for the bootstrap approximation of the standardized sample mean in the lattice as well as non-lattice case, under the assumption that the absolute third moment exists. He has also obtained the convergence rates of the bootstrap approximation of the distributions of sample quantiles.

Finally, for the class of Neyman's $C(\alpha)$ tests, Chibisov (1972a) obtained the term of order $N^{-\frac{1}{2}}$ in the normal approximation for the distributions of the test statistics. In another paper, he (1972b) derived asymptotic expansions for the distributions of some test criteria for testing compound hypotheses.
5. Asymptotic Expansions for Estimators. In this section, we discuss asymptotic expansions for a number of statistics occurring in parametric models such as maximum likelihood (m.l.) estimators and, more generally, minimum contrast (m.c.) estimators. Of course, there could be tests based on these estimators and thus could have been included in the previous section. But they are considered here to emphasize their roles in estimation.

Most of these results are reviewed by Pfanzagl (1980).

Linnik and Mitrofanova (1965) obtained asymptotic expansions for the distributions of m.l. estimators. Mitrofanova (1967) extended the result for vector parameters. As pointed out by Pfanzagl (1973a, p. 998) and Bickel (1974, p. 11), her proof contains serious gaps. Chibisov (1973 a,b) extended the work of Linnik and Mitrofanova (1965) to a wider class of m.c. estimators for a single parameter under progressively much weaker conditions. Pfanzagl (1973a) also deals with Edgeworth expansions for m.c. estimators for a single parameter. Earlier, Michel and Pfanzagl (1971) and Pfanzagl (1971) established the order of the error of the normal approximation for m.c. estimators. In another paper, Pfanzagl (1973b) showed that, for m.c. estimators of vector parameters, the approximation by normal distribution holds with an error of order $O(N^{-\frac{1}{2}})$ uniformly over the class of all convex sets. For a discussion of the results of Linnik and Mitrofanova (1965), Pfanzagl (1971, 1973a), and Michel and Pfanzagl (1971), reference should be made to Bickel (1974).

Skovgaard (1981b) has discussed the method of computing the Edgeworth expansions of the distributions of m.l. estimators in the non i.i.d. case. He has also given the first four terms of the corresponding stochastic expansion.

Edgeworth expansions of distributions of Fisher-consistent estimators for curved exponential family of parent distributions (assumed to be dominated by the Lebesgue measure) are obtained by Ghosh, Sinha and Subrahmanyan (1979).
This result leads to second-order efficiency of the m.l. estimator w.r.t. any bounded, bowl shaped loss function. The formal Edgeworth expansions here are not valid without the assumption of the dominating Lebesgue measure.

Another type of results, though not concerned directly with the distributions of estimators, is the rate of convergence to normality of stopping times associated with sequential estimation. One such result is given by Ghosh (1980).

6. Edgeworth and Cornish-Fisher Expansions in Selection and Ranking Procedures. We will restrict our attention here to the so-called subset selection procedures. For an overall view of the theory, we refer to Gupta and Panchapakesan (1979) and Gupta and Huang (1981). A typical problem associated with many classical subset selection rules is the evaluation of the constant d, $d > 0$, such that $P[\max_{1 \leq i \leq k} (X_i - X_0) \leq d] = P^*$ where P^* is specified and X_0, X_1, \ldots, X_k are i.i.d. random variables with the real line as the support, or the evaluation of the constant c, $c > 1$, such that $P[\max_{1 \leq i \leq k} (X_i/X_0) \leq c] = P^*$ where X_0, X_1, \ldots, X_k are i.i.d. random variables with the positive real axis as the support. We will now discuss one such problem.

Let X_0, X_1, \ldots, X_p be i.i.d. normal random variables with mean μ and variance σ^2. Let s^2_ν be an estimator of σ^2 which is independent of the X_i such that $\nu s^2_\nu/\sigma^2$ has a chi-square distribution with ν degrees of freedom. Define $Y = (X_{[p]} - X_0)/s_\nu$, where $X_{[p]} = \max(X_1, \ldots, X_p)$. The statistic Y arises in the problem of selecting a subset of normal populations (with a common unknown variance σ^2) which contains the "best" population with probability at least P^*. This problem was studied by Gupta (1956). For implementation of his procedure, we need to evaluate appropriate percentage points of the distribution of Y. This statistic also appears in a few
other selection problems [see Gupta and Sobel (1957)]. The probability
\(P[Y < y] \) can be evaluated by using an Edgeworth expansion of standardized
\(Y \). For evaluating the percentage points of \(Y \), we can use Cornish-Fisher expansions. We will illustrate this method of evaluation and discuss some
numerical results.

For \(r < v \), we can write \(\nu_r^i \), the \(r \)th moment of \(Y \) in the form

\[
(6.1) \quad \nu_r^i = E\left[\left(\frac{Y}{\sigma}\right)^{-r}\right] E\left[\left(\frac{X(p)}{\sigma}\right)^{-r}\right] = A_r \sum_{j=0}^{[r/2]} \binom{r}{2j} \frac{(2j)!}{2^j j!} a_{p, r-2j},
\]

where \([r/2] \) is the integral part of \(r/2 \), \(a_{p, i} \) is the \(i \)th moment of the
largest of \(p \) independent standard normal random variables, and

\[
(6.2) \quad A_\beta = E\left[\left(\frac{Y}{\sigma}\right)^\beta\right] = \frac{\Gamma\left(\frac{\nu+2}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right)} \frac{\Gamma\left(\frac{\nu+2}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right)}
\]

provided that \(\beta > -\nu \).

Let \(\sigma^2 \) be the variance of \(Y \). Let \(y(P^*) \) and \(y_s(P^*) \) denote the 100 \(P^* \)
percentage points of the distributions of \(Y \) and \(Y_s = (Y - \mu_1)/\sigma \), respectively.
Let \(\alpha_r = \kappa_r/\sigma^r \), where \(\kappa_r \) is \(r \)th cumulant of \(Y \). The Cornish-Fisher expansion
for \(y_s(P^*) \) is given by

\[
(6.3) \quad y_s(P^*) = z(P^*) + [a_{34}^1 c_1] + [a_{34}^2 I_d + a_{34}^2 I_c^2] + [a_{54}^1 e + a_{34}^1 c_d + a_{34}^1 c_3] +
\]

\[
[a_{64}^1 f + a_{34}^1 c_5 + a_{34}^2 I_d^2 + a_{34}^2 I_c^2 + a_{34}^2 I_c^4] +
\]

\[
[a_{74}^1 g + a_{34}^1 c_f + a_{34}^1 I_d^2 + a_{34}^1 I_c^2] + [a_{84}^1 h + a_{34}^1 c_g] +
\]

\[
a_{44}^1 f e_2 + a_{34}^1 c_f^2 + a_{34}^1 c_e + a_{34}^1 c_d + a_{34}^1 c_5] +
\]

\[
[a_{34}^1 c_3 + a_{34}^1 c_5] + [a_{84}^1 h + a_{34}^1 c_g] +
\]

\[
a_{44}^1 f e_2 + a_{34}^1 c_f^2 + a_{34}^1 c_e + a_{34}^1 c_d + a_{34}^1 c_5] + ...
\]
where $z(P^*)$ is the standard normal deviate corresponding to P^* and $I_c, I_d, I_{2c},...$ are tabulated in Table II of Fisher and Cornish (1960) for $P^* = .5, .75, .9, .975, .99, .995, .9975, .999$ and .9995. Now, $y(P^*) = \mu_1 + \sigma y_5(P^*)$. For calculating μ_1 using (6.1), the values of $a_{p,i}$ are available in Ruben (1954) for $i = 1(1)10$ and $p = 1(1)50$.

Gupta and Sobel (1957) tabulated the $y(P^*)$-values correct two decimal places using four adjustment terms. Their table ranges over the following values: $P^* = .75, .9, .95, .975, .99; p = 1, 4, 9(1)15(2)19(5)39, 49; v = 15(1)20, 24, 30, 36, 40, 48, 60, 80, 100, 120, 360, \infty$. The $y(P^*)$-values can also be obtained from the tables of Krishnaiah and Armitage (1966) for $P^* = .95, .99; p = 1(1)10$ and $v = 5(1)35$. These latter tables were computed using Gauss-Hermite and Gauss-Laguerre quadrature formulas. The two tables agree well in all the common cases.

Another method of evaluating the percentage points of Y is based on the result of Hartley (1943-46), who obtained the probability $P[Y \leq y]$ as a solution of certain difference-differential equation. This result can be stated in the form

$$P[Y \leq y] = I_0(y) + \frac{1}{4v} [y^2(I_2(y) - I_0(y)) - yI_1(y)]$$

$$+ \frac{1}{16v^2} \left[\frac{1}{2} y^4 \{3I_0(y) - 6I_2(y) + I_4(y) \right]$$

$$- \frac{1}{3} y^3 \{I_3(y) - 3I_1(y) \}$$

$$- \frac{1}{2} y^2 \{I_2(y) - I_0(y) \}$$

$$+ \frac{1}{2} yI_1(y)],$$

where

$$I_j(y) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{(x-y)^2}{2}} (x-y)^j \phi(x) dx.$$
It should be noted that \(I_0(\sqrt{H}) \) is the probability that the maximum of \(p \) equally correlated standard normal variates with the correlation equal to 0.5 does not exceed \(H \). This probability for several values of \(H \) and the values of \(H \) corresponding to several probability levels are tabulated by Gupta, Nagel and Panchapakesan (1973).

In Table 1 below we give the values of \(y(P^*) \) obtained in different ways for \(P^* = .90, .95; p = 1, 4, 9 \) and \(v = 17, 18, 20, 60 \). For each combination of the values of \(P^* \), \(p \) and \(v \), the first three entries correspond to the values obtained by taking four, six and eight adjustment terms, respectively, in the Cornish-Fisher expansion. The last entry is obtained by evaluating \(P[Y \leq y] \) in (6.4) using Gauss-Hermite quadrature formula and bisection method. All these computations except those based on Cornish-Fisher expansion with four adjustment terms are new with this paper.

\(\nu \)	\(P^* \) = .90		
17	1.89	2.75	3.18
	1.88824	2.75879	3.19306
	1.86438	2.53829	2.62070
	1.88570	2.74894	3.18010
	1.88	2.74	3.17
	1.88323	2.74729	3.17778
	1.86846	2.59753	2.78203
	1.88147	2.74023	3.16854
18	1.87	2.72	3.15
	1.87525	2.72949	3.15419
	1.86881	2.65339	2.95164
	1.87433	2.72557	3.14908
20	1.83	2.64	3.04
	1.83257	2.64050	3.03672
	1.83256	2.64018	3.03602
	1.83257	2.64048	3.03670
TABLE 1 (cont.)

\(p^* = .95 \)

<table>
<thead>
<tr>
<th>(\nu)</th>
<th>(p)</th>
<th>1</th>
<th>4</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>2.46</td>
<td>3.29</td>
<td>3.72</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.47450</td>
<td>3.32350</td>
<td>3.76197</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.41414</td>
<td>3.30553</td>
<td>3.90291</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.46047</td>
<td>3.29995</td>
<td>3.73373</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>2.45</td>
<td>3.28</td>
<td>3.70</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.46248</td>
<td>3.30146</td>
<td>3.73310</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.42389</td>
<td>3.30025</td>
<td>3.84884</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.45258</td>
<td>3.28516</td>
<td>3.71421</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>2.44</td>
<td>3.25</td>
<td>3.67</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.44463</td>
<td>3.26891</td>
<td>3.69093</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.42682</td>
<td>3.27674</td>
<td>3.76500</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.43929</td>
<td>3.26042</td>
<td>3.68176</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>2.36</td>
<td>3.12</td>
<td>3.50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.36268</td>
<td>3.12065</td>
<td>3.50159</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.36264</td>
<td>3.12092</td>
<td>3.50225</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.36267</td>
<td>3.12065</td>
<td>3.50162</td>
<td></td>
</tr>
</tbody>
</table>

We can see from Table 1 some general indications about the effect of increasing the number of adjustment terms. It appears that

(1) the approximations based on four adjustment terms are generally quite good, certainly to two decimal places;

(2) adding additional terms may not produce desirable results for small values of \(\nu \), large values of \(p \), and \(p^* \) values closer to 1;

(3) as \(\nu \) gets larger than 20, the terms in the expansion stabilize faster and more so for small \(p \); and

(4) the values obtained by using Hartley's result with two adjustment terms seem to be adequate.
7. Concluding Remarks. In the previous sections, we discussed asymptotic expansions for the distribution functions of random variables which have a limiting normal distribution. However, there are test statistics of practical importance which have nonnormal limiting distributions, for example, the statistics that arise in likelihood ratio, goodness of fit, Kolmogorov-Smirnov, Cramér-von Mises and Pearson chi-square tests. We will briefly refer to expansions in some of these cases.

Let X have a continuous d.f. $F(x)$ and let $F_n(x)$ denote the empirical distribution corresponding to n independent observations on X. Define $D_n^+ = \sup_{-\infty<x<\infty} \sqrt{n} |F_n(x)-F(x)|$ and $D_n = \sup_{-\infty<x<\infty} \sqrt{n} |F_n(x)-F(x)|$. Smirnov (1944) studied the distribution of D_n^+ and showed that, for $0 < x < O(n^{1/6})$,

$$\phi_n^+(x) = P[D_n^+ < x] = 1 - e^{-2x^2} \left[1 + \frac{2x}{3\sqrt{n}} \right] + O(1/n).$$

This result was improved by Li-Tsian Chan (1955) who added two more terms for the same range of x; he showed that

$$\phi_n^+(x) = 1 - e^{-2x^2} \left[1 + \frac{2x}{3\sqrt{n}} + \frac{2x^2}{3n} (1 - \frac{2x^2}{3}) \right] +$$

$$\frac{4x}{9n^{3/2}} \left(\frac{1}{5} - \frac{19x^2}{15} + \frac{2x^4}{3} \right) + O(n^{-2}).$$

These results are discussed in Gnedenko, Koroluk and Skorokhod (1961). Later, Lauwerier (1963) gave the following expansion for $\phi_n^+(x)$:

$$\phi_n^+(x) = 1 - \frac{n!}{n^n e^{n/2\pi}} \sum_{j=0}^{\infty} f_j(H)n^{-j/2},$$

where the symbolic expression $f_j(H)$ stands for a polynomial $f_j(t)$ in which the powers t^m are replaced by the Hermite polynomials $H_m(2x)$. The polynomials f_j are determined by certain generating series. Li-Tsian Chan (1956) obtained also an expansion for the d.f. of D_n with a remainder $O(n^{-2})$. Another
reference in this connection is Borovkov (1970), who treated these as special
cases of more general problems of first passage times of random walks.

For the likelihood ratio criterion, Hayakawa (1977) gave a formal expan-
sion. This was later justified by the results of Chandra and Ghosh (1980),
who gave valid expansions for the likelihood ratio statistic as well as Wald's
and Rao's statistics under contiguous alternatives. The general results of
Chandra and Ghosh are obtained under a set of conditions in an earlier paper
of theirs (1979) besides Cramér's condition and smoothness conditions on
moments.

Robinson (1980) has obtained an asymptotic expansion for permutation tests
with several samples. Let V_n denote the standardized sum of squares of the
means of $r+1$ random samples of sizes $s_0, s_1, \ldots, s_r (n = s_0 + \ldots + s_r)$ taken
without replacement from n numbers. The asymptotic expansion for the d.f. of
V_n has the d.f. of a chi-square random variable with r degrees of freedom
as the first term and has an approximation error which is generally of smaller
order than n^{-1}.

An excellent exposition of Edgeworth and saddle-point approximations for
the densities of sums of independent random vectors has been given by Barndorff-
nielsen and Cox (1979). Besides an earlier paper by Daniels (1954), some
recent papers dealing with saddle-point approximations are Phillips (1978)
and Daniels (1980).

Finally, it is important to remind ourselves that there is no useful
numerical bound for the error term. Any general error bound which might
become available is expected to be a gross overestimate. The only way to
assess the degree of numerical accuracy is to study the actual errors in
particular examples.
Acknowledgements

We are grateful to Ms. Regina Becker and Mr. Joong Kweon Sohn for all programming and computational help.

Thanks are also due to a referee for some useful suggestions.
REFERENCES

Centrum, Diepenbeek.

Ann. Statist. 6, 417-421.

Symposium on Asymptotic Statistics, Amsterdam: North-Holland, pp. 105-
117.

Chan, Li-Tsian (1955). The exact statistical distribution of N. V. Smirnov
and its asymptotic expansion. Shuxue Jinshan 1, 775-790 (In Chinese).
Russian translation in the Mathematika Collection, Vol. 4 (1960), 121-134.

Chan, Li-Tsian (1956). The exact statistical distribution of A. N. Kolmogorov

likelihood ratio statistic and other perturbed chi-square variables.
Sankhyā Ser. A 41, 22-47.

Chandra, T. K. and Ghosh, J. K. (1980). Valid asymptotic expansions for the
likelihood ratio and other statistics under contiguous alternatives.

No. 8.

Chibisov, D. M. (1972a). On the normal approximation for a certain class of

Chibisov, D. M. (1972b). Asymptotic expansions for the distributions of some
17, 563-565.

Chibisov, D. M. (1973a). An asymptotic expansion for a class of estimators

Title: Edgeworth Expansions in Statistics: Some Recent Developments

Author(s): Shanti S. Gupta and S. Panchapakesan

Performing Organization Name and Address:
Purdue University
Department of Statistics
West Lafayette, IN 47907

Controlling Office Name and Address:
Office of Naval Research
Washington, DC

DISTRIBUTION STATEMENT (of this Report):
Approved for public release, distribution unlimited.

Keywords:

Abstract:
Asymptotic expansions for distribution functions are of great importance in statistical inference. The basic aspects and some recent developments regarding Edgeworth expansions and Cornish-Fisher expansions are discussed in Sections 2 and 3, respectively. In recent years, substantial progress has been made in obtaining Berry-Esseen bounds and Edgeworth expansions for test statistics such as linear rank statistics, U-statistics, linear (trimmed and untrimmed) combinations of order statistics. An account of these results is given in Section 4 followed by expansions for minimum contrast estimators and Fisher-consistent estimators.
(Section 5). Some specific applications of Cornish-Fisher expansions to problems in selection and ranking are considered in Section 6. The last section includes a discussion on expansions for distributions of random variables which have nonnormal limiting distributions, such as Kolmogorov-Smirnov statistics and likelihood ratio statistics.