ON BROWNIAN SLOW POINTS

by

Burgess Davis
Purdue University

Technical Report #82-1

Department of Statistics
Purdue University

February 1982
On Brownian Slow Points
Burgess Davis

Abstract

It is shown that, for a Wiener process X_t, both the quantities
\[\inf_t \lim_{h \to 0^+} \frac{|X_{t+h} - X_t|}{\sqrt{h}} \text{ and } \sup_t \lim_{h \to 0^+} \frac{(X_{t+h} - X_t)}{\sqrt{h}} \] are almost surely equal to 1.

1. Introduction. Let W_t, $t \geq 0$, be standard Brownian motion. In the 1932 paper where they showed that almost every Brownian path is nowhere differentiable ([7]), Paley, Wiener, and Zygmund proved the stronger result that, for each $\varepsilon > 0$,
\[P(\lim_{h \to 0^+} \frac{|W_{t+h} - W_t|}{h^{1/2} + \varepsilon} = \infty \forall \, t) = 1, \]
and in 1963 A. Dvoretzky ([1]) improved this by establishing
\[P(\lim_{h \to 0^+} \frac{|W_{t+h} - W_t|}{\sqrt{h}} > c_0 \forall \, t) = 1, \]
for a positive constant c_0. The natural question, whether (1.1) holds for all constants, was settled by J.-P. Kahane in 1974 ([2]). The answer is no. Kahane showed
\[P(\forall \, t: \lim_{h \to 0^+} \frac{|W_{t+h} - W_t|}{\sqrt{h}} < c_1) = 1, \]
for a constant $c_1 < \infty$.

Here, note that h may be allowed to approach 0 from either the left or the right, giving a better result. (The two sided version of (1.1) is of course
weaker than (1.1).) Kahane calls those \(t \) which satisfy
\[
\lim_{h \to 0} \frac{|W_{t+h} - W_t|}{\sqrt{h}} < \infty
\]
slow points.

The law of the iterated logarithm implies that the slow points almost surely have Lebesgue measure 0, but Kahane has proved ([2], [3]) that their Hausdorff dimension a.s. equals 1 and that the Hausdorff dimension of those slow points which are also zeros of \(W_t \) is a.s. \(\frac{3}{2} \), so that the slow points are a fairly thick set. Kahane has very recently given another, simpler, proof of (1.2) and the two sided version of (1.1), together with related results for other Guassian processes, in [4].

Following Kahane, we will call a point \(t \) **slow from the right** if
\[
\lim_{h \to 0^+} \frac{|W_{t+h} - W_t|}{\sqrt{h}} < \infty.
\]

In Section 2 we investigate the question: How slow from the right can a point be? It is shown that

\[
(1.3) \quad \inf_{t} \lim_{h \to 0^+} \frac{|W_{t+h} - W_t|}{\sqrt{h}} = 1 \text{ a.s.}
\]

The proof that the expression to the left of the equality in (1.3) is no smaller than 1 is a refinement of Dvoretzky's proof in [1], while the proof that it is no larger than 1 is not related to Kahane's arguments.

Let \(z \) be the smallest positive 0 of \(M(-\frac{3}{2}, \frac{1}{2}, x^2/2) \), where \(M \) is the confluent hypergeometric function \(z \approx 1.3069 \). In Section 4 it is shown that
\[
(1.4) \quad P(\inf_t \lim_{h \to 0} \frac{|W_{t+h} - W_t|}{\sqrt{|h|}} < z) = 0,
\]

but we cannot prove

\[
P(\inf_t \lim_{h \to 0} \frac{|W_{t+h} - W_t|}{\sqrt{|h|}} = z) = 1.
\]

Nonetheless, this is probably true. Not only does (1.4) hold, but also it is shown in Section 4 that, if \(X_t\) and \(Y_t\) are independent Brownian motions, and if \(D_r^X = \{t: \lim_{h \to 0^+} \frac{|X_{t+h} - X_t|}{\sqrt{h}} < r\}\) and \(D_r^Y\) is defined similarly, then \(D_r^X \cap D_r^Y\) is almost surely empty if \(r < z\) and not empty if \(r > z\).

S. Orey and J. Taylor have shown how rapid a point can be by proving (see [5])

\[
sup_t \lim_{h \to 0^+} \frac{|W_{t+h} - W_t|}{\sqrt{2h \log \frac{1}{h}}} = 1 \text{ a.s.}
\]

This is equivalent to

\[
(1.5) \quad \sup_t \lim_{h \to 0^+} \frac{W_{t+h} - W_t}{\sqrt{2h \log \frac{1}{h}}} = 1 \text{ a.s.,}
\]

giving a global upper bound for the lim sup, as \(h \to 0^+\), of \(W_{t+h} - W_t\). In his book ([5], p.148) F. Knight asks for a global lower bound for this lim sup. Precisely, Knight asks for a function \(\phi(h) > 0\) such that, almost surely, for all \(t\)

\[
\lim_{h \to 0^+} (W_{t+h} - W_t)/\phi(h) \geq -1, \text{ and } \lim_{h \to 0^+} (W_{t+h} - W_t)/\phi(h) = -1 \text{ for some } t.
\]

In Section 3 we come pretty close to solving this problem, and do give a lower bound in the sense that (1.5) gives an upper bound. We prove
(1.6) \[\inf_t \lim_{h \to 0^+} \frac{W_{t+h} - W_{t}}{\sqrt{h}} = -1 \text{ a.s.} \]

We do not know if the \(\lim \) equals \(-1\) for some \(t \).

The two sided version of (1.6) is essentially known and not hard to prove. It is

(1.7) \[\inf_t \lim_{h \to 0^+} \frac{W_{t+h} - W_{t}}{M_{t+h}} = 0 \text{ a.s.} \]

Note that the existence of times for which \(W_t \) has a local maximum shows that \(0 \) can not be replaced by a larger number in (1.7). Only strict maxima need be considered, and, these being countable, the proof of (1.7) can be completed by examining the behavior of \(W_t \) around an absolute maximum. See [5] for a treatment of such ideas, which yields sharper results than (1.7).

Define the sets

\[A_c = \{ \exists t \in [0,1]: |W_{t+h} - W_{t}| < c\sqrt{h} \quad \forall h \in (0,1] \} \]

and

\[B_c = \{ \exists t \in [0,1]: (W_{t+h} - W_{t}) > c\sqrt{h} \quad \forall h \in (0,1] \} . \]

We will prove that \(P(A_c) = 0 \) if \(c < 1 \) and \(P(A_c) > 0 \) if \(c > 1 \), implying (1.3), and that \(P(B_c) = 0 \) if \(c > 1 \) and \(P(B_c) > 0 \) if \(c < 1 \), implying

\[\sup_t \lim_{h \to 0^+} (W_{t+h} - W_t) / \sqrt{h} = 1 \text{ a.s., which is equivalent to (1.6).} \]

For the remainder of the paper the qualifier a.s. will usually be omitted.
2. Proof of (1.3). First the following lemma is established. Let \(\wedge \) denote minimum.

Lemma 2.1. If the nonnegative random variable \(X \) satisfies

\[
\lim_{n \to \infty} n P(X \geq n) / EX \wedge n = 0,
\]

then \(EX^p < \infty, 0 < p < 1 \).

PROOF. Note that the example \(P(X \geq t) = t^{-1}, t \geq 1 \), shows that (2.1) can hold and \(EX = \infty \).

Now for any nonnegative random variable \(Z \) and any \(p > 0 \), \(EZ^p \) is finite or infinite depending on whether \(\sum_{n=1}^{\infty} 2^{np} P(Z \geq 2^n) \) is finite or infinite.

Let \(\gamma_n = 2^n P(X \geq 2^n) \). Then (2.1) implies

\[
\lim_{n \to \infty} \gamma_n / \sum_{i=1}^{n-1} \gamma_i = 0.
\]

For \(\varepsilon > 0 \) let \(N(\varepsilon) = N \) satisfy \(\gamma_n / \sum_{i=1}^{n-1} \gamma_i < \varepsilon \), \(n > N \). Put \(\sum_{i=1}^{N} \gamma_i = y \).

Then \(\gamma_{N+1} < \varepsilon y \) and \(\gamma_{N+k} < \varepsilon (y + \sum_{j=1}^{k-1} \gamma_{N+j}) \). If we put \(a_{N+k} = y(1 + \varepsilon)^k \),

then \(a_{N+1} \geq \varepsilon y \) and \(a_{N+k} \geq \varepsilon (y + \sum_{j=1}^{k-1} a_{N+j}) \), and so, by induction,
\(\gamma_{N+k} \leq \alpha_{N+k} = y(1+\varepsilon)^k, \quad k \geq 1. \) Since \(\varepsilon \) is arbitrary, this implies \(\mathbb{E} P < \infty, \quad p < 1, \) as claimed.

Let \(\tau_r(W) = \tau_r = \inf\{t \geq 1: |X_t| = r\sqrt{\varepsilon}\}. \) Precise information concerning the moments of \(\tau_r \) may be found in Shepp, [8]. For our purposes the following lemma suffices. The notation \(P_{a,b} \) and \(\mathbb{E}_{a,b} \) will signify probability and expectation associated with \(W_t \) given \(W_a = b. \)

Lemma 2.2. If \(r > 1 \) there is a \(p = p(r) < 1 \) such that \(\mathbb{E}_{\tau_r} P \) = \(\infty. \) Furthermore \(\mathbb{E}_{1,0} \tau_1 = \infty. \)

PROOF. First the well known proof of the second statement will be supplied. For a stopping time \(T \) we have

\[\mathbb{E} W_T^2 = ET \quad \text{if} \quad ET < \infty, \]

and applying this to the Wiener process \(W_{t+1} \) under \(P_{1,0} \) yields

\[\mathbb{E}_{1,0} \omega_{\tau_1}^2 = \mathbb{E}_{1,0} (\tau_1 - 1) \quad \text{if} \quad \mathbb{E}_{1,0} (\tau_1 - 1) < \infty. \]

Since \(P_{1,0} (W_{\tau_1}^2 = \tau_1) = 1, \) this implies \(\mathbb{E}_{1,0} (\tau_1 - 1) = \infty, \) so \(\mathbb{E}_{1,0} \tau_1 = \infty. \)

To prove the rest of the lemma, fix \(r > 1 \) and define

\[\gamma_1 = \inf\{t \geq 1: W_t = 0 \quad \text{or} \quad |W_t| \geq r\sqrt{\varepsilon}\}, \]

and in general

\[\gamma_{2k} = \inf\{t \geq \gamma_{2k-1}: |W_t| \geq \sqrt{\varepsilon}\}, \quad \text{and} \]

\[\gamma_{2k+1} = \inf\{t \geq \gamma_{2k}: W_t = 0 \quad \text{or} \quad |W_t| \geq r\sqrt{\varepsilon}\}. \]

Note that on \(\{W_{\gamma_{2k-1}} = 0\} \), if \(\lambda > 0, \)

\[P(\gamma_{2k} - \gamma_{2k-1} > \lambda \gamma_{2k-1} \mid W_{\gamma_{2k-1}}) = P_{1,0} (\tau_1 > 1 + \lambda) \]
using the strong Markov property and Brownian scaling. Furthermore, if
\[\varepsilon = P_{1,1}(W_t = 0 \text{ before } |W_t| = r\sqrt{\varepsilon}), \]
then, on \(\{\gamma_{2k-2} < \tau_r\} \), we have, for \(k \geq 2 \) and \(\lambda > 0 \),

\[
P(\gamma_{2k} - \gamma_{2k-1} > \lambda \gamma_{2k-2} | W_{\gamma_{2k-2}})
\geq P(\gamma_{2k} - \gamma_{2k-1} > \lambda \gamma_{2k-1} | W_{\gamma_{2k-2}} = 0) P(W_{\gamma_{2k-1}} = 0 | W_{\gamma_{2k-2}})
= P_{1,0}(\tau_1 > 1 + \lambda) \varepsilon.
\]

Thus, since \(\{\gamma_{2k-2} < \tau_r\} = \{\gamma_{2k-3} < \gamma_{2k-2}\} \), this gives

\[
E(\gamma_{2k} - \gamma_{2k-1})^p \geq \varepsilon E_{1,0}(\tau_{1-1})^p \cdot E_{\gamma_{2k-2}}^P I(\gamma_{2k-2} < \tau_r)
\geq \varepsilon E_{1,0}(\tau_{1-1})^p E(\gamma_{2k-2} - \gamma_{2k-3})^p
\]

and iteration gives

\[
E(\gamma_{2k} - \gamma_{2k-1})^p \geq \varepsilon E_{1,0}(\tau_{1-1})^p \lambda^k \gamma_{2k} - \gamma_{2k-1})^p
\]

Pick \(p < 1 \) such that \(\varepsilon E_{1,0}(\tau_{1-1})^p > 1 \). This is possible since \(E_{1,0}\tau_1 = \infty \).

Then \(E_{\tau_r}^P \geq E_{\gamma_{2k}}^P > E(\gamma_{2k} - \gamma_{2k-1})^p \to \infty \) as \(k \to \infty \).

Next put \(M_w = M = \max_{0 \leq t \leq 1} |W_t| \), and \(T_r = T_r = \inf\{t > 1: |W_t| = M + r\sqrt{\varepsilon}\} \).

Lemma 2.3. If \(c < 1 \), \(ET_c < \infty \).

PROOF. For \(t \geq 1 \) the equality (2.2) gives

\[
ET_c^t = EW_{\gamma_{T_c}}^t
\leq E(M + c\sqrt{T_c^\gamma_{T_c}})E^2
= EM^2 + 2cEM\sqrt{T_c^\gamma_{T_c}} + c^2ET_c^t.
\]
Thus $(1-c^2)E_{c^*} \geq EM^2 + 2cEM \sqrt{ET_{c^*} t} \leq EM^2 + 2c(EM^2)^{\frac{3}{2}}(ET_{c^*} t)^{\frac{3}{2}}$.

Since EM^2 is finite, $ET_{c^*} t$ must stay bounded as $t \to \infty$, so $ET_{c^*} < \infty$.

As has been mentioned, the following theorem implies (1.3).

Theorem 2.1. If $c < 1$, $P(A_c) = 0$, and if $c > 1$, $P(A_c) > 0$.

PROOF. Fix $c < 1$, and for a subintervals $[a,b] = I$ of $[0,1]$ let

$\Delta_I = \{ \exists t \in I: |X_{t+h} - X_t| < c\sqrt{h}, 0 < h \leq 1 \}$. Note that, if

$M_I = \max_{a \leq t \leq b} |W_t - W_a|$, then $\Delta_I \subset \{ |W_{a+h} - W_a| < M_I + c\sqrt{h}, b-a \leq h \leq 1 \}$, by a geometrical argument. Thus, conditioning on W_a and changing scale, we have

$P(\Delta_I) \leq P(T_{c} \geq (b-a)^{-1})$,

and especially, if I has length n^{-1}, $P(\Delta_I) \leq P(T_{c} \geq n)$. Divide $[0,1]$ into intervals I_k of length n^{-1}. Then $P(A_c) \leq \sum P(\Delta_{I_k}) \leq nP(T_{c} \geq n)$. Lemma 2.3 gives $ET_{c} < \infty$, so $nP(T_{c} \geq n) \to 0$, proving $P(A_c) = 0$.

Now fix $c > 1$ and put $\Gamma_n = \{ \exists t \in [0,1]: |W_{t+h} - W_t| < c\sqrt{h}, n^{-1} \leq h \leq 1 \}$. Note that $\Gamma_n \subseteq \Gamma_m$ if $n \geq m$. We will show that $\lim_{n \to \infty} P(\Gamma_n) > 0$, implying

$P(\bigcap_{n=1}^{\infty} \Gamma_n) = P(A_c) > 0$. Put $v_{0,n} = v_0 = 0$, and, if $i \geq 1$,

$v_{i,n} = v_i = (v_{i-1} + 1)^{\inf(t \geq v_{i-1} + n^{-1}: |W_t - W_{v_{i-1}}| \geq \sqrt{\varepsilon(v_{i-1})})}$.

Then

(2.3) \hspace{1cm} P(v_{i+1} - v_i = 1|W_{v_i}) = P(T_{c} \geq n), \text{ and}

(2.4) \hspace{1cm} E(v_{i+1} - v_i|W_{v_i}) = n^{-1}E_{\tau_{c}} \tilde{\tau}_{c} n.$
Of course \(v_k \geq 1 \) if \(v_i - v_{i-1} = 1 \) for some \(i \leq k \). Thus

\[
\varphi_{n,m} = \mathbb{P}(v_{i+1} - v_i = 1 \text{ for some } i \leq m \text{ such that } v_i \leq 1)
\]

\[
= \sum_{i=1}^{m} \mathbb{P}(\tau_c \geq n) \mathbb{P}(v_i \leq 1)
\]

\[
\geq m \mathbb{P}(\tau_c \geq n) \mathbb{P}(v_m \leq 1).
\]

Let \(\{n_k\}_{k=1}^{\infty} \) be a sequence of integers approaching infinity such that \(n_k \mathbb{P}(\tau_c \geq n_k)/E_{\tau_c \cap n_k} \overset{\alpha}{\to} > 0 \) for all \(k \), such a choice being possible by Lemmas 2.1 and 2.2. We also assume

\[
E_{\tau_c \cap n_k}/n_k \leq 1/6.
\]

Let the integer \(m_k \) satisfy

\[
1/3 \leq (m_k/n_k)E_{\tau_c \cap n_k} \leq 1/2.
\]

By (2.4),

\[
E_{\tau_{m_k \cap n_k}} = (m_k/n_k)E_{\tau_c \cap n_k},
\]

so

\[
\mathbb{P}(v_{m_k \cap n_k} \geq 1) \leq 1/2,
\]

and, using the left inequality in (2.5), we have

\[
\mathbb{P}(\tau_{n_k} \cap m_k) \geq \varphi_{n_k,m_k}
\]

\[
\geq m_k \mathbb{P}(\tau_c \geq n_k) \mathbb{P}(v_{m_k \cap n_k} \leq 1)
\]

\[
\geq m_k \mathbb{P}(\tau_c \geq n_k)/2
\]

\[
\geq m_k \mathbb{E}_{\tau_c \cap n_k}/2n_k
\]

\[
\geq \alpha/6.
\]
3. Proof of (1.6). The arguments involving B_C are very similar to those
of the last section and proofs will just be sketched. Let
$\eta_a = \inf\{t \geq 0 : W_t < a\sqrt{\xi}\}$. Precise information on the moments of η_a has
been supplied by Novikov in [6]. Here we need only the following analog
of Lemma 2.2.

Lemma 3.1. If $r < 1$ there is a $q = q(r) < 1$ such that $E_{\eta_a}^q = \infty$.
Furthermore $E_{1,2\eta_1} = \infty$.

PROOF. That $E_{0,1\eta_1} = \infty$ follows from $E_{0,1\eta_1} = E_{0,1}(W_{\eta_1} - 1)^2$ if
$E_{0,1\eta_1} < \infty$, because $P_{0,1}(W_{\eta_1}^2 = \eta_1) = 1$. Since $P_{1,2}(\eta_1 - 1 > \lambda) > P_{0,1}(\eta_1 > \lambda)$,
$\lambda > 0$, we get $E_{1,2\eta_1} \geq E_{0,1\eta_1} = \infty$.

The proof of the first assertion of Lemma 3.1 can be patterned on the
proof of the first assertion of Lemma 2.2. The analogs of the times γ_i
here are

$$\tilde{\gamma}_1 = \inf\{t \geq 1 : W_t = 2\sqrt{\xi} \text{ or } W_t \leq r\sqrt{\xi}\},$$

and in general

$$\tilde{\gamma}_{2k} = \inf\{t \geq \tilde{\gamma}_{2k-1} : W_t \leq \sqrt{\xi}\}, \text{ and}$$

$$\tilde{\gamma}_{2k+1} = \inf\{t \geq \tilde{\gamma}_{2k} : W_t = 2\sqrt{\xi} \text{ or } W_t \leq r\sqrt{\xi}\}.$$

Now let $M^* = \min_{0 \leq t \leq 1} W_t$, and let $U_r = \inf\{t \geq 1 : W_t = r\sqrt{\xi} - 1 + M^*\}$

Lemma 3.2. If $c > 1$, $EU_c < \infty$.

PROOF. For each $t > 1$, (2.2) gives
\[\text{EU}_c \cap t = E(W_{U_c} \cap t)^2 \geq E(c \sqrt{U_c} - t + M)^2, \]

and the rest of the proof resembles the proof of Lemma 2.3.

Theorem 3.1. If \(c > 1 \), \(P(B_c) = 0 \) and, if \(c < 1 \), \(P(B_c) \neq 0 \).

PROOF. Note that if \([a,b] = I \) is a subinterval of \([0,1]\), and if \(M_I = \min_{a \leq t \leq b} W_t - W_a \), then

\[
\{a \leq t \leq b: W_{t+h} - W_t > c \sqrt{h} \quad \forall \, h \in (0,1]\}
\subseteq \{W_{t+h} - W_t > c \sqrt{h} - (b-a) + M_I, \, b - a \leq h \leq 1\},
\]

and the rest of the proof that \(P(B_c) = 0, \, c > 1 \), follows from Lemma 3.2 just like the proof that \(P(A_c) = 0, \, c < 1 \), followed from Lemma 3.3. Furthermore, the proof that \(P(B_c) > 0, \, c < 1 \), is almost the same as the proof that \(P(A_c) > 0, \, c > 1 \).

4. Independent Wiener processes. The arguments in this section are similar to those of Section 2, but we make use of Shepp's results in [2]. Fix \(r > 0 \), and for \(0 < t < 2 \) and \(|s| < r \sqrt{t} \) let \(f_{t,s} \) be the continuous version of the density of \(W_2 I(\tau_r > 2) \) under \(P_{t,s} \). Of course \(f \) vanishes off \((-r \sqrt{r}, \, r \sqrt{r})\). Then if \(\alpha(r) = \alpha = 2/P_{1,0}(\tau_r < 2) \), we have

\[(4.1) \quad f_{1,y}(s)/f_{1,0}(s) \leq \alpha, -r \sqrt{r} < s < r \sqrt{r}. \]

To see this let I be a closed subinterval of \((-r \sqrt{2}, \, r \sqrt{2})\) and define the set \(F \subseteq \{(t,s): 1 \leq t \leq 2, |s| < r \sqrt{t} \} \) by \((t,s) \in F\) if \(g(t,s) \geq g(1,y) \), where

\[g(a,b) = P_{a,b}(W_2 \in I \text{ and } \tau_r > 2). \]
Then F is a closed set containing a curve joining $(1, y)$ and the midpoint of I. Let v be the first time $(t, W_t) \in F$. Using the Strong Markov Property, we get $g(1, 0) \geq g(1, y) P_{1, 0}(v < \tau_r^2 - 2)$. For $y > 0$ we have $P_{1, 0}(v < \tau_r^2 - 2) \geq P_{1, 0}(\tau_r < 2, W_{\tau_r} > 0)$ with a similar formula for $y < 0$, so $g(1, 0) \geq \alpha g(1, y)$, implying (4.1).

Similarly, we can prove that for each $y \in (-r, r)$ there is a $K(r, y) = K > 0$ such that

$$(4.2) \quad f_{1, r}(s)/f_{1, 0}(s) \geq K, \quad -\sqrt{2r} < s < \sqrt{2r}.$$

Shepp shows in [8] that if z is as in Section 1 and $r > z$, there exists $\gamma(r) = \gamma \in (0, 2)\setminus \frac{1}{2}$ such that $E_{1, 0}^Y \tau_r^Y = \infty$, and so, using (4.2) and conditioning on $W_{\tau_r^2}$, we have $E_{1, 0}^{Y, \tau_r^Y} = \infty$ for each $y \in (-r, r)$, implying

$$(4.3) \quad \lim_{\lambda \to \infty} P(\tau_r > \lambda) \lambda^p = \infty \text{ for each } p > \gamma.$$

Now let X_t and Y_t be independent Wiener processes. Put $\theta_r = \tau_r(X) \tau_r(Y)$. Then $P(\theta_r > \lambda) = P(\tau_r > \lambda)^2$, so, by (4.3),

$$\lim_{\lambda \to \infty} P(\theta_r > \lambda) \lambda^{2p} = \infty \text{ if } p > \gamma.$$

In particular, there is an $\alpha = \alpha(r) < 1$ such that $E\theta_r^\alpha = \infty$. Now, methods similar to those employed in Section 2 show that, for $r > z$, $P(D_r^X \cap D_r^Y \neq \emptyset) = 1$. Note the set corresponding to A_c is

$$\{ a \in [0, 1]: |X_{t+h} - X_t| + |Y_{t+h} - Y_t| < r\sqrt{n}, \forall \ h \in (0, 1]\},$$

and that $\theta_r = \inf\{ t \geq 1: |X_{t+h} - X_t| + |Y_{t+h} - Y_t| > r\sqrt{n}\}$. The sets A_r and D_r are defined in Section 1.

Shepp also proves that, if $s < z$, there exists a $\delta = \delta(s) > \frac{1}{2}$ such that $E_{1, 0}^{\delta} < \infty$. Conditioning on $X_{\tau_s^2}$ and using (4.1), this gives
\[
\lim_{\lambda \to \infty} \sup_{y \in (-s, s)} P_{1, y} (\tau_s > \lambda)^{\delta} < \infty
\]

Now fix \(r \in (0, z) \) and let \(s = (r + z)/2 \). Put
\[
\Gamma = \Gamma_{k, n} = \{ \exists t \in [(k/n, (k+1)/n)] : |X_{t+h} - X_t| + |Y_{t+h} - Y_t| < r \sqrt{n} \quad \forall h \in (0, 1) \}.
\]

Let \(M \) be the smallest integer such \((s-r)M \geq r \). Define the events \(C_{j, k, n} = C_j, -M \leq j \leq M \), and \(G_{i, k, n} = G_i, -M \leq i \leq M \), by
\[
C_j = \{ (t, X_t) \in (t, x) : |x - \alpha_j| \leq s \sqrt{t - (k/n)}, (k+1)/n \leq t \leq (k/n) + 1 \},
\]
where \(\alpha_j = (k+1)/n + (s-r)j/\sqrt{n} \), and
\[
G_i = \{ (t, Y_t) \in (t, x) : |x - \beta_i| \leq s \sqrt{t - (k/n)}, (k+1)/n \leq t \leq (k/n) + 1 \},
\]
where \(\beta_i = Y_{(k+1)/n} + (s-r)j/\sqrt{n} \).

Conditioning on \(X_{(k+1)/n} \), and using Brownian scaling, we see both \(P(C_j) \) and \(P(G_i) \) are maximized by \(\sup_{y \in (-r, r)} P_{1, y} (\tau_s > n) \) so that

\[
P(C_j \cap G_i) = o(n^{-2\delta}) = o(n^{-1}) \quad \text{by} (4.4). \]

A geometrical argument gives

\[
r \subset \bigcup_{i,j} C_j \cap G_i, \quad \text{so that} \quad P(r) = o(n^{-1}), \quad \text{yielding}
\]

\[
P_{k=0}^{n-1} (\bigcup_{k=0}^{n-1} \Gamma_{k, n}) = o(1),
\]

which implies

\[
P(D_r^X \cap D_r^Y) = 0.
\]

These arguments easily generalize to \(n \) independent Wiener processes, with the aid of the results in [8]. Let \(z_n \) be the smallest positive zero of \(M(-1/n, 1/2, \sqrt{n}) \), where \(M \) is the confluent hypergeometric function.

Then we have

Theorem 4.1 \(\bigcap_{i=1}^n D_i \) is a.s. empty if \(r < z_n \) and not empty if \(r > z_n \).
A proof of (1.4) can be made which is very similar to that of Theorem 4.1. Here it is convenient to work with a Brownian motion Z_t, $t \in (-\infty, \infty)$. We note that $S_t = Z((k+1)/n + t) - Z(k+1)/n$, $t \geq 0$, and $R_t = Z(k/n - t) - Z(k/n)$, $t \geq 0$, are independent Wiener processes. Furthermore

$$\{\forall \ t \in [\frac{k}{n}, \frac{k+1}{n}]: \ |Z_{t+h} - Z_t| < r \sqrt{h} \ \forall \ h \in (0,1] \cup [-1,0)\}$$

can be shown to be contained in a set defined in terms of S_t and R_t in a manner similar to the way $UC_i \cap G_j$ was defined in terms of X_t and Y_t earlier, and thereby shown to have probability equal to $o(1/n)$ if $r < z$, from which we get

$$P(\forall \ t \in [0,1]: \ |Z_{t+h} - Z_t| < r \sqrt{h} \ \forall \ h \in (0,1] \cup [-1,0)) = 0,$$

which is equivalent to (1.4).
References

