ISOTONIC PROCEDURES FOR SELECTING POPULATIONS BETTER THAN A CONTROL UNDER ORDERING PRIOR*

by
Shanti S. Gupta
Purdue University

and

Hwa-Ming Yang
The University of Toledo
Mimeograph Series #81-24

Department of Statistics
Division of Mathematical Sciences
Mimeograph Series #81-24

July 1981
(Revised November 1981)

*This research was supported by the Office of Naval Research contract N00014-75-C-0455 at Purdue University. Reproduction in whole or in part is permitted for any purpose of the United States Government.
Isotonic Procedures for Selecting Populations
Better Than a Control under Ordering Prior**

by

Shanti S. Gupta and Hwa-Ming Yang
Purdue University University of Toledo
W. Lafayette, Toledo, Ohio, U.S.A.
Indiana, U.S.A.

Abstract*
The problem of selecting a subset containing all populations
closer than a control under an ordering prior is considered. Three
new selection procedures which satisfy a desirable basic requirement
on the probability of a correct selection are proposed and studied.
Two of the three procedures use the isotonic regression over the
sample means of the k-treatments with respect to the given ordering
prior. Tables of constants which are necessary to carry out the
selection procedures with isotonic approach for the selection of
unknown means of normal populations are given. The results including
Monte Carlo studies indicate that, in general, the stepwise procedure
δ₁ based on isotonic estimators is the best.

*This paper will be presented by Professor Shanti S. Gupta at the
Golden Jubilee Conference of the Indian Statistical Institute,

**Research supported by the Office of Naval Research Contract
N00014-75-C-0455 at Purdue University.
Isotonic Procedures for Selecting Populations
Better Than a Control under Ordering Prior

by
Shanti S. Gupta
Purdue University

and
Hwa-Ming Yang
The University of Toledo

1. Introduction

In this paper, three new selection procedures are given for the problem of selecting a subset which contains all populations better than a standard or control under simple or partial ordering prior. Here by simple or partial ordering prior we mean that there exist known simple or partial order relationships (defined more specifically later in Section 2) among unknown parameters. The procedures described do meet the usual requirement that the probability of a correct selection is greater than or equal to a predetermined number P^*, the so-called P^*-condition.

Many authors have considered the problem of comparing populations with a control under different types of formulations (see Gupta and Panchapakesan (1979)). Dunnett (1955) considered the problem of separating those treatments which are better than the control from those that are worse. Gupta and Sobel (1958), Gupta (1965), Naik (1975), Broström (1977) studied the problem of selecting a subset containing all populations better than the control. Lehmann (1961) discussed similar problems with emphasis on the derivation of a restricted minimax procedure. Gupta and Kim (1980), Gupta and Hsiao (1980) studied the problem of

*This research was supported by the Office of Naval Research contract N00014-75-C-0455 at Purdue University. Reproduction in whole or in part is permitted for any purpose of the United States Government.
selecting populations close to a control. In all these papers it is assumed that all populations are independent and that there is no information about the ordering of unknown parameters. However, in many situations, we may know something about the unknown parameters. What we know is always not the prior distributions but some partial or incomplete prior information, such as the simple or partial order relationship among the unknown parameters. This type of information about the ordering prior may come from the past experiences; or it may arise in the experiments where, for example, higher dose level of a drug always has larger effect on the patients.

In Section 2 definitions and notations used in this paper are introduced. In Section 3 we consider the problem for location parameters. We propose three types of selection procedures for the cases when the control parameter is known or not known (the scale parameter may or may not be assumed known). Some equivalent forms of the procedures are given, and their properties are discussed. In Section 3 simple ordering priors are assumed and some theorems in the theory of random walks are used. A selection procedure for the problem of selecting all populations better than the control under partial ordering prior is given in Section 4. Section 5 deals with the use of Monte Carlo techniques to make comparisons among the selection procedures proposed in Section 3 and those in Section 4, respectively.
2. Notations and Definitions

Suppose we have \(k + 1 \) populations \(\pi_0, \pi_1, \ldots, \pi_k \). The population treatment \(\pi_0 \) is called the control or standard population. Assume that the random variable \(X_{ij} \) is associated with \(F(\cdot; \theta_i) \) and \(X_{ij}, \ldots, X_{in_i} \), \(i = 1, \ldots, k \), are independent samples from \(\pi_1, \ldots, \pi_k \). Assume that we have an ordering prior of \(\theta_1, \ldots, \theta_k \). First we assume that the ordering prior is the simple order, so that without loss of generality, we may assume that, \(\theta_1 \leq \ldots \leq \theta_k \). In Section 4 we will consider the partial ordering prior case. Note that the values of \(\theta_i \)'s are unknown.

Suppose our goal is to select a non-trivial (small) subset which contains all populations with parameters larger (smaller) than the control \(\theta_0 \) (known or unknown) with probability not less than a given value \(P^* \).

The action space \(G \) is the class of all subsets of the set \{1, 2, \ldots, k\}. An action \(A \) is the selection of some subset of the \(k \) populations. \(i \in A \) means that \(\pi_i \) is included in the selected subset.

Let \(\Theta = (\theta_0, \theta_1, \ldots, \theta_k) \). Then the parameter space is denoted by \(\Omega \), where \(\Omega = \{ \theta \in \mathbb{R}^{k+1} \mid \theta_1 \leq \theta_2 \leq \ldots \leq \theta_k ; -\infty < \theta_0 < \infty \} \) is a subset of \(k + 1 \) dimensional Euclidean space \(\mathbb{R}^{k+1} \).

The sample space is denoted by \(\mathbb{X} \) where

\[
\mathbb{X} = \{ x \in \mathbb{R}^{n_1 + \ldots + n_k} \mid x = (x_{11}, \ldots, x_{1n_1}, \ldots, x_{kn_k}) \}.
\]

(Here \(\theta_0 \) is assumed to be known).

Definition 2.1. A (non-randomized) selection procedure (rule) \(\delta(x) \) is a mapping from \(\mathbb{X} \) to \(G \).
A population \(\pi_i \) \((i = 1, \ldots, k)\) is called a good population if
\(\theta_i \geq \theta_0 \). A correct selection (CS) is the selection of a subset which
contains all good populations. A selection procedure \(\delta \) satisfies the
\(P^* \)-condition if

\[
\inf_{\theta \in \Theta} P_{\theta} (\text{CS} | \delta) \geq P^*. \tag{2.1}
\]

Let \(\mathcal{D} = \{ \delta | \inf_{\theta \in \Theta} P_{\theta} (\text{CS} | \delta) \geq P^* \} \) be the collection of all selection
procedures satisfying the \(P^* \)-condition.

In the sequel we will use the isotonic estimators (see Barlow,
Bartholomew, Bremner and Brunk (1972)). Hence we give the following def-
initions and theorems.

Definition 2.2. Let the set \(\mathcal{J} \) be a finite set. A binary relation

"\(\preceq \)" on \(\mathcal{J} \) is called a **simple order** if it is

1. reflexive: \(x \preceq x \) for \(x \in \mathcal{J} \)
2. transitive: \(x, y, z \in \mathcal{J} \) and \(x \preceq y, y \preceq z \) imply \(x \preceq z \)
3. antisymmetric: \(x, y \in \mathcal{J} \) and \(x \preceq y, y \preceq x \) imply \(x = y \)
4. every two elements are comparable: \(x, y \in \mathcal{J} \) imply either
\(x \preceq y \) or \(y \preceq x \).

Definition 2.3. A partial order on \(\mathcal{J} \) is a binary relation "\(\preceq \)" on \(\mathcal{J} \), such that
it is (1) reflexive, (2) transitive, and (3) antisymmetric. Thus every
simple order is a partial order. We use poset \((\mathcal{J}, \preceq) \) to denote the set
\(\mathcal{J} \) that has a partial order binary relation "\(\preceq \)" on it.
Definition 2.4. A real-valued function \(f \) is called isotonic on poset \((\mathcal{J}, \leq)\) if and only if (1) \(f \) is defined on \(\mathcal{J} \), (2) if \(x, y \in \mathcal{J} \), \(x \leq y \) imply \(f(x) \leq f(y) \).

Definition 2.5. Let \(g \) be a real-valued function on \(\mathcal{J} \) and let \(W \) be a given positive function on \(\mathcal{J} \). A function \(g^* \) on \(\mathcal{J} \) is called an isotonic regression of \(g \) with weights \(W \) if and only if:

1. \(g^* \) is an isotonic function on poset \((\mathcal{J}, \leq)\)
2. \[
\sum_{x \in \mathcal{J}} [g(x) - g^*(x)]^2 W(x) = \min_{f \in \mathcal{F}} \sum_{x \in \mathcal{J}} [g(x) - f(x)]^2 W(x),
\]

where \(\mathcal{F} \) is the class of all isotonic functions on poset \((\mathcal{J}, \leq)\).

From Barlow, et. al. (1972), (see their Theorems 1.3, 1.6 and the corollary there), we have the following theorems.

Theorem 2.1. There exists one and only one isotonic regression \(g^* \) of \(g \) with weight \(W \) on poset \((\mathcal{J}, \leq)\).

There are some known algorithms, such as the "pool-adjacent-violators" algorithm (see page 13 of Barlow, et. al. (1972)) or Ayer, Brunk, Ewing, Reid and Silverman (1955) or the "up-and-down blocks" algorithm, Kruskal (1964), which show how to calculate the isotonic regression under simple order.

The following max-min formulas were given by Ayer et. al. (1955).

Theorem 2.2. (max-min formulas)

Assume that we have poset \((\mathcal{J}, \leq)\) where \(\mathcal{J} = \{\theta_1, \ldots, \theta_k\} \), \(\theta_1 \leq \cdots \leq \theta_k \), and that function \(g: \mathcal{J} \to \mathbb{R} \), then the isotonic regression \(g^* \) of \(g \) with weight \(W \) has the following formulas:
\[g^*(\theta_i) = \max_{s \leq i} \min_{t > i} \text{Av}(s,t) \]
\[= \max_{s \leq i} \min_{t > s} \text{Av}(s,t) \]
\[= \min_{t > i} \max_{s \leq i} \text{Av}(s,t) \]
\[= \min_{t > i} \max_{s \leq t} \text{Av}(s,t) \]

where

\[\text{Av}(s,t) = \frac{1}{t-s} \sum_{r=s}^{t} g(\theta_r) W(\theta_r) \]

Corollary 2.1. \((g+c)^* = g^* + c,\ (ag)^* = ag^*,\) if \(a > 0,\ c \in \mathbb{R}.\)

Corollary 2.2. \([\rho(g^*)g + \varphi(g^*)]^* = \rho(g^*)g^* + \varphi(g^*),\) where \(\rho\) is a nonnegative function and \(\varphi\) is an arbitrary function.

3. Proposed Selection Procedures for the Normal Means Problem

We are interested in the (subset) selection problem of the unknown means of \(k\) normal populations in comparison with a standard or control normal with its mean known or unknown. Thus observations are taken on \(X_{ij}\) which are independently distributed normal random variables \(N(\mu_i, \sigma^2),\ j = 1, \ldots, n_i;\ i = 1, \ldots, k.\) The values of \(\mu_1, \mu_2, \ldots, \mu_k\) are unknown, but their ordering, say, \(\mu_1 \leq \mu_2 \leq \ldots \leq \mu_k\) is known. Note that in this case we replace \(\theta\) in the parameter space \(\Omega\) by \(\mu,\) all other quantities remaining the same.
Let us define the subspace $\Omega_i = \{\mu \in \Omega | \mu_{k-i} < \mu_0 \leq \mu_{k-i+1}\}$ for $i = 1, \ldots, k-1$, the subspace $\Omega_k = \{\mu \in \Omega | \mu_0 = \mu_1\}$, and the subspace $\Omega_0 = \{\mu \in \Omega | \mu_k < \mu_0\}$; then we have $\Omega = \bigcup_{i=0}^{k} \Omega_i$. Note that the control μ_0 could be known or unknown. If μ_0 is unknown, we assume that the distribution of population π_0 is $N(\mu_0, \sigma^2)$ and we take independent observations X_{01}, \ldots, X_{0n_0} from π_0 and the sample space \mathcal{X} becomes $\{x \in \mathbb{R}^{n_0+\cdots+n_k} | x = (X_{01}, \ldots, X_{0n_0}, X_{11}, \ldots, X_{1n_1}, \ldots, X_{kn_k})\}$. Using the partition $\{\Omega_0, \ldots, \Omega_k\}$ of parameter space Ω, we have

$$\inf_{\mu \in \Omega} P(\text{CS} | \delta) = \inf_{\nu \in \Omega} \inf_{1 \leq i \leq k} \inf_{\mu \in \Omega_i} P(\text{CS} | \delta),$$

for any selection procedure $\delta \in \mathcal{A}$. Hence the $P*$-condition is equivalent to

$$\inf_{\mu \in \Omega_i} P(\text{CS} | \delta) \geq P^*, \text{ for } i = 1, \ldots, k.$$

Note that $\inf_{\mu \in \Omega_0} P(\text{CS} | \delta) = 1$ for any selection procedure δ since there exists no good population in this case.

Let $X_i = x_i$ be the observed sample mean from population π_i, $i = 1, \ldots, k$. Let \mathcal{M} denote the set $\{\mu_1, \mu_2, \ldots, \mu_k\}$ where $\mu_1 \leq \ldots \leq \mu_k$, and let $W(\mu_i) = n_i \sigma^{-2} = w_i$, $g(\mu_i) = x_i$, $i = 1, \ldots, k$. Then by the max-min formulas, the isotonic regression of g is g^*, where

$$g^*(\mu_i) = \max_{1 \leq s \leq i} \min_{l \leq t \leq k} \frac{1}{\sum_{j=s}^{t} w_j} \sum_{j=s}^{t} x_j w_j,$$

$i = 1, \ldots, k$.

The isotonic estimator of μ_i is denoted by $\hat{\mu}_{i:k}$, $i = 1, \ldots, k$ where
\[
\hat{X}_{i:k} = \max_{1 \leq i \leq t} \min_{1 \leq s \leq t \leq k} \frac{\sum_{j=s}^{t} X_i w_j}{\sum_{j=s}^{t} w_j},
\]

where
\[
\hat{X}_{s:k} = \min\{X_s, \frac{X_s w_s + X_{s+1} w_{s+1}}{w_s + w_{s+1}}, \ldots, \frac{X_s w_s + \ldots + X_k w_k}{w_s + \ldots + w_k}\}.
\]

It is known that the isotonic estimators \(\hat{X}_{i:k}, i = 1, \ldots, k\) are also the maximum likelihood estimators of \(\mu_i, i = 1, \ldots, k\).

3.1. Proposed Selection Procedure \(\delta_1\)

Case I. \(\mu_0\) known, common variance \(\sigma^2\) known, and common sample size \(n\).

Definition 3.1. We define the procedure \(\delta_1\) as follows:

Step 1. Select \(\pi_1, i = 1, \ldots, k\) and stop, if

\[
\hat{X}_{1:k} \geq \mu_0 - d_{1:k}^{(1)} \frac{\sigma}{\sqrt{n}},
\]

otherwise reject \(\pi_1\) and go to Step 2.

Step 2. Select \(\pi_2, i = 2, \ldots, k\) and stop, if

\[
\hat{X}_{2:k} \geq \mu_0 - d_{2:k}^{(1)} \frac{\sigma}{\sqrt{n}},
\]

otherwise reject \(\pi_2\) and go to Step 3.

\[\vdots\]

Step \(k-1\). Select \(\pi_{k-1}, i = k-1, k\) and stop, if

\[
\hat{X}_{k-1:k} \geq \mu_0 - d_{k-1:k}^{(1)} \frac{\sigma}{\sqrt{n}},
\]

otherwise reject \(\pi_{k-1}\) and go to Step \(k\).

Step \(k\). Select \(\pi_k\) and stop, if

\[
\hat{X}_{k:k} \geq \mu_0 - d_{k:k}^{(1)} \frac{\sigma}{\sqrt{n}},
\]

otherwise reject \(\pi_k\).

Here \(d_{i:k}^{(1)}\)'s are the smallest values such that \(\delta_1 \in \Delta\), that is \(\delta_1\) satisfies the \(p^*\)-condition.
3.2. On the Evaluation of \(\inf_{\mu \in \Omega_i} P_{\mu} (CS|\delta_1) \) and the Values of the Constants \(d^{(1)}_{1:k}, \ldots, d^{(1)}_{k:k} \)

For any \(\mu \in \Omega_i \), \(1 \leq i \leq k \), let \(Z_i \)'s be i.i.d. \(N(0,1) \) and let \(\hat{Z}_{r:k} = \frac{Z_r + Z_{r+1} + \ldots + Z_k}{k-r+1} \). Then \(P_{\mu} (CS|\delta_1) \)

\[
= P_{\mu} \left(\bigcup_{j=1}^{k-i+1} \{ \hat{X}_{j:k} \geq \mu_0 - d^{(1)}_{j:k} \sigma_j / \sqrt{n} \} \right) \\
= P_{\mu} \left(\bigcup_{j=1}^{k-i+1} \bigcup_{r=1}^{j} \{ \hat{Z}_{r:k} \geq \mu_0 - d^{(1)}_{j:k} \sigma_j / \sqrt{n} \} \right) \\
\geq P \left(\bigcup_{j=1}^{k-i+1} \bigcup_{r=1}^{j} \{ \hat{Z}_{r:k} + \frac{\mu_r - \mu_0}{\sigma / \sqrt{n}} \geq - d^{(1)}_{j:k} \} \right)
\]

which is increasing in \(\mu_r \), \(r = 1, \ldots, k-i+1 \).

Hence

\[
\inf_{\mu \in \Omega_i} P_{\mu} (CS|\delta_1) \geq P(\hat{Z}_{k-i+1:k} \geq - d^{(1)}_{k-i+1:k}).
\]

On the other hand,

\[
\inf_{\mu \in \Omega_i} P_{\mu} (CS|\delta_1) \\
\leq P_{\mu^*} \left(\bigcup_{j=1}^{k-i+1} \{ \hat{X}_{j:k} \geq \mu_0 - d^{(1)}_{j:k} \sigma_j / \sqrt{n} \} \right) \\
= P(\hat{Z}_{k-i+1:k} \geq - d^{(1)}_{k-i+1:k})
\]

whenever \(\mu^* = (\mu_0, -\infty, \ldots, -\infty, \mu_0, \ldots, \mu_0) \in \Omega_i \).

Thus, we have

\[
\inf_{\mu \in \Omega_i} P_{\mu} (CS|\delta_1) = P(\hat{Z}_{k-i+1:k} \geq - d^{(1)}_{k-i+1:k}).
\]
Since $\hat{Z}_{k-i+1:k}$ has the same distributions as $\hat{Z}_{1:i}$

letting

$$V_i = \hat{Z}_{1:i} \quad (3.3)$$

we have

$$\inf_{\mu \in \Omega_1} P_{\mu}(CS|\delta_1) = P(V_i \geq -d(1)_{k-i+1:k}, \ i = 1, \ldots, k) \quad (3.4)$$

It is clear from the above that $d^{(1)}_{k-i+1:k} = d^{(1)}_{1:i}$ for all

$i = 1, 2, \ldots, k$, and $d^{(1)}_{1:i}$ is increasing in i.

Theorem 3.1. In case I, $(\mu_0$ known, common known σ^2 and common sample size $n)$, if $d^{(1)}_{k-i+1:k}$ is the solution of equation

$$P(V_i \geq -x) = P^* \quad (3.5)$$

where

$$V_i = \min_{1 \leq r \leq i} \frac{1}{r} \sum_{j=1}^{r} Z_j \quad \text{and} \quad Z_i \text{ are i.i.d. } N(0,1), \quad i = 1, \ldots, k,$$

then δ_1 satisfies the P^*-condition.

Proof. For any $i, 1 \leq i \leq k$,

$$\inf_{\mu \in \Omega_1} P_{\mu}(CS|\delta_1) = P(V_i \geq -d^{(1)}_{i-i+1:k}) = P^*,$$

so δ_1 satisfies the P^*-condition.

Therefore, the problem of finding the $d^{(1)}_{i:k}$'s reduces to finding the distributions of V_1, \ldots, V_k. This is achieved by using some results in the theory of random walk.
3.3. Some Theorems in the Theory of Random Walk

Suppose Y_1, Y_2, \ldots are independent random variables with a common distribution H not concentrated on a half-axis, i.e. $0 < P(Y_1 < 0)$, $P(Y_1 > 0) < 1$. The induced random walk is the sequence of random variables

$$S_0 = 0, S_n = Y_1 + \ldots + Y_n, \ n = 1, 2, \ldots$$

Let

$$\tau_n = P(S_1 \leq 0, \ldots, S_{n-1} \leq 0, S_n > 0) \quad (3.6)$$

and

$$\tau(s) = \sum_{n=1}^{\infty} \tau_n s^n, \ 0 \leq s \leq 1. \quad (3.7)$$

Then we have the following theorem which was discovered by Andersen (1953). Feller (1971) gave an elegant short proof.

Theorem 3.2. (Feller (1971))

Let

$$p_n = P(S_1 > 0, \ldots, S_n > 0),$$

then

$$p(s) = \sum_{n=1}^{\infty} p_n s^n = \frac{1}{1 - \tau(s)}, \quad (3.8)$$

hence

$$\log p(s) = \sum_{n=1}^{\infty} \frac{s^n}{n} p(S_n > 0). \quad (3.9)$$
By symmetry, the probabilities

\[q_n = P(S_1 \leq 0, \ldots, S_n \leq 0) \]

have the generating function \(q \) given by

\[\log q(s) = \sum_{n=1}^{\infty} \frac{s^n}{n} P(S_n \leq 0). \]

(3.11)

Note: The above theorem remains valid if the signs > and \(\leq \) are replaced by \(\geq \) and <, respectively.

Theorem 3.3. The generating function \(\phi(s) \) of \(P(V_j \geq x), j = 1, 2, \ldots \) is

\[\sum_{j=1}^{\infty} s^j P(V_j \geq x) = \exp \left\{ \sum_{n=1}^{\infty} \frac{1}{n} s^n P(S_n \geq 0) \right\} \]

(3.12)

where

\[S_n = \sum_{i=1}^{n} (Z_i - x), \quad n = 1, 2, \ldots \]

Proof. Since the distribution of random variable \(Y_i = Z_i - x \) is not concentrated on a half-axis, and \(Y_i \)'s are i.i.d. let \(S_r = \sum_{i=1}^{r} (Z_i - x), \) \(r = 1, \ldots, k. \) Then

\[\{V_j \geq x\} = \{ \min_{1 \leq r \leq j} \frac{1}{r} S_r \geq 0 \} = \{S_1 \geq 0, \ldots, S_j \geq 0\}. \]

By Feller's Theorem 3.2, we complete the proof.
Now let
\[\Delta_j(x) = \Delta_j = \text{P}(S_j \geq 0) = \varphi(-x\sqrt{j}), \quad j = 1, 2, \ldots, \]
\[a(s) = \sum_{n=1}^{\infty} \frac{s^n}{n!} \Delta_n, \]
then we have
\[p(s) = \sum_{j=1}^{\infty} s^j \text{P}(V_j \geq x) = \exp(a(s)). \]

Lemma 3.1. \(p^{(n+1)}(s) = \sum_{j=0}^{n} \binom{n}{j} p^{(j)}(s) a^{(n+1-j)}(s), \quad \text{for all } n \geq 1. \)

Proof. Since \(p'(s) = p(s) \cdot a'(s), \) the result can be proved by induction on \(n. \)

Theorem 3.4. Under the assumption of Theorem 3.3
\[
\text{P}(V_{n+1} \geq x) = \frac{1}{(n+1)!} \lim_{s \to 0^+} \frac{d^{n+1} p(s)}{ds^{n+1}} \\
= \frac{1}{n+1} \sum_{j=0}^{n} \text{P}(V_j \geq x) \Delta_{n-j+1}, \quad \text{for } n = 0, 1, 2, \ldots \quad (3.13)
\]
where
\[\text{P}(V_0 \geq x) = 1, \quad \text{for all } x. \]

Proof. By Lemma 3.1, we have
\[
\text{P}(V_{n+1} \geq x) = \frac{1}{(n+1)!} \lim_{s \to 0^+} p^{(n+1)}(s) \\
= \sum_{j=0}^{n} \frac{1}{(n+1)! \cdot j! \cdot (n-j)!} p^{(j)}(0) \left[(n-j)! \Delta_{n+1-j} \right] \\
= \frac{1}{n+1} \sum_{j=0}^{n} \frac{p^{(j)}(0)}{j!} \Delta_{n+1-j} \\
= \frac{1}{n+1} \sum_{j=0}^{n} \text{P}(V_j \geq x) \Delta_{n+1-j}.
\]
Let \(G_n(x) = P(V_n \geq x) \) and \(1-G_n(x) \) denote the limiting distribution function as \(n \to \infty \) of \(V_n \). Suppose the distribution of random variable \(Y_1 = Z_1 - x \) is not concentrated on a half axis, then we have from Andersen-Feller Theorem

\[
G_n(x) = \exp\left\{- \sum_{r=1}^{\infty} \frac{1}{r} P(S_r \leq 0)\right\}.
\]

Now, let

\[
G_\infty(-d_{1:1}^{(1)}) = p^*.
\]

(3.14)

Now we can use the recurrence formula of Theorem 3.4 to solve the equations \(P(V_i \geq -d_{k-i+1:k}^{(1)}) = p^*, i = 1, \ldots, k \).

Remark 3.1. From Section 3.2 we know that \(d_{k-i+1:k}^{(1)} = d_{i:i}^{(1)} \) (i = 1, \ldots, k).

The values of \(d_{1:k}^{(1)} \) for \(k = 1, 2, 3, 6, 10, \infty \) and \(p^* = .99, .975, .95, .925, .90 \) are tabulated in Table I.

Definition 3.2. We define a selection procedure \(\delta_1 \) by replacing the inequality in the ith step of procedure \(\delta_1 \) by the inequality

\[
\hat{\chi}_{i:k} \geq \nu_0 - d_{i:k}^{1} \frac{\sigma}{\sqrt{n}}, \quad i = 1, \ldots, k
\]

where \(d_{i:k}^{1}, \ldots, d_{k:k}^{1} \) are the smallest values such that \(\delta_1 \) satisfies the \(p^* \)-condition.

Then it can easily be shown that the selection procedure \(\delta_1 \) and \(\delta_1' \) are identical and \(d_{i:k}^{(1)} = d_{i:k}^{1} \), i = 1, 2, \ldots, k.

3.4. Some Other Proposed Selection Procedures \(\delta_2, \delta_3, \delta_4 \)

In Case I, we propose some other selection procedures:
Definition 3.3. We define a selection procedure δ_2 by

$$\delta_2: \text{Select } \pi_i \text{ if and only if } \hat{X}_{i:k} \geq \mu_0 - d \frac{\sigma}{\sqrt{n}} \quad i = 1, \ldots, k$$

where d is the smallest value such that δ_2 satisfies the P^*-condition.

Note that under assumptions of Case I, and selection procedure δ_2, if we select population π_i, then we will select populations π_j, for all $j \geq i$, since $\hat{X}_{i:k} \leq \hat{X}_{j:k}$.

Evaluation of the d-Values of δ_2

For any i, $1 \leq i \leq k$, we have from a similar argument as for δ_1 that

$$\inf_{\mu \in \Omega_i} P_{\mu} (\text{CS}|\delta_2) = \inf_{\mu \in \Omega_i} P_{\mu} (\hat{X}_{k-i+1:k} \geq \mu_0 - d \frac{\sigma}{\sqrt{n}})$$

$$= P(V_i \geq -d).$$

We need the constant d such that $P(V_i \geq -d) \geq P^*$ holds for all i, $1 \leq i \leq k$. By Theorem 3.1 we have $d = d_{1:k}^{(1)}$. It also follows that if S_1 and S_2 are the selected subsets associated with selection procedures δ_1 and δ_2, respectively, then $S_1 \subseteq S_2$. Thus δ_1 is better than δ_2.

Definition 3.4. The procedure δ_3 is defined as follows: Let $\tilde{X}_j = \max(X_1, \ldots, X_j)$.

Step 1. Select π_i, $i \geq 1$ and stop, if

$$\tilde{X}_1 \geq \mu_0 - d_1 \frac{\sigma}{\sqrt{n}},$$

otherwise reject π_1 and go to Step 2.

Step 2. Select π_i, $i \geq 2$ and stop, if

\[\tilde{x}_2 \geq \mu_0 - d_2 \frac{\sigma}{\sqrt{n}}, \]
otherwise reject \(\pi_2 \) and go to Step 3.

\[\vdots \]

Step \(k-1 \). Select \(\pi_i \), \(i \geq k - 1 \) and stop, if
\[\tilde{x}_{k-1} \geq \mu_0 - d_{k-1} \frac{\sigma}{\sqrt{n}}, \]
otherwise reject \(\pi_{k-1} \) and go to Step \(k \).

Step \(k \). Select \(\pi_k \) and stop, if
\[\tilde{x}_k \geq \mu_0 - d_k \frac{\sigma}{\sqrt{n}}, \]
otherwise reject \(\pi_k \).

Here \(d_i \)'s are the smallest values such that \(\delta_3 \) satisfies the \(P^* \)-condition.

Evaluation of \(d_i \)'s

For any \(i, 1 \leq i \leq k, \)

\[\inf_{\mu \in \Omega_i} P_{\mu}(CS | \delta_3) = \inf_{\mu \in \Omega_i} \left(\inf_{j=1}^{k-1+1} P_{\mu} \left(\bigcup_{j=1}^{k-i+1} \{ \tilde{x}_j \geq \mu_0 - d_j \frac{\sigma}{\sqrt{n}} \} \right) \right) \]

\[= P_{\mu^*} \left(\bigcup_{j=1}^{k-i+1} \{ \tilde{x}_j \geq \mu_0 - d_j \frac{\sigma}{\sqrt{n}} \} \right) \]

\[= P(Z_{k-i+1} \geq -d_{k-i+1}) \]

whenever \(\mu^* = (\mu_0, -\infty, \ldots, -\infty, \mu_0, \ldots, \mu_0) \in \tilde{\Omega}_i \).

Since \(Z_i \) is \(N(0,1) \), it implies \(d_{k-i+1} = d \) for all \(i \), and
\[d = \phi^{-1}(p^*). \]

Hence, we have the following theorem:
Theorem 3.5. Selection procedure δ_3 satisfies the P*-condition with $d_i = d$, $i = 1, \ldots, k$, which do not depend on i. Hence the procedure is not changed if the statistics \bar{X}_i are replaced by X_i, the sample mean of population π_i for $i = 1, \ldots, k$.

The following procedure δ_4 was given by Gupta and Sobel (1958), without assuming any ordering prior:

Definition 3.5. The selection procedure δ_4 is defined as follows:

δ_4: Select π_i if and only if $X_i \geq \mu_0 - d \frac{\sigma}{\sqrt{n}}$, $i = 1, \ldots, k$

where d is the smallest constant such that δ_4 satisfies the P*-condition.

It was shown that the value d is determined by the equation

$$\frac{1}{\Phi(-d)} = 1 - P^* \text{i.e. } d = \phi^{-1}(P^*)$$

3.5. Some Proposed Selection Procedures $\delta_i^{(2)}$, $i = 1, 2, 3, 4$

When μ_0 is Unknown

Case II. μ_0 unknown, common σ^2 known, common sample size n.

Definition 3.6. We define a selection procedure $\delta_i^{(2)}$ by replacing the inequalities

$$\hat{X}_{i:k} \geq \mu_0 - d_i^{(1)} \frac{\sigma}{\sqrt{n}}, \quad i = 1, \ldots, k$$

in procedure δ_1 (Definition 3.1) with

$$\hat{X}_{i:k} \geq X_0 - d_i^{(2)} \frac{\sigma}{\sqrt{n}}, \quad i = 1, \ldots, k$$

Here $X_0 = \frac{n}{i=1} X_{0i}/n$, $d_i^{(2)}$, $i = 1, \ldots, k$ are the smallest constants such that the selection procedure $\delta_i^{(2)}$ satisfies the P*-condition.

Similar to the Case I, we have the following theorem:
Theorem 3.6. For any \(i, 1 \leq i \leq k, \) \(d_{k-1+i:k}^{(2)} \) is determined by the equation

\[
\int_{-\infty}^{\infty} P(V_i \geq t - d_{k-1+i:k}^{(2)} - \theta(t)) \, d\theta(t) = P^*. \tag{3.15}
\]

It is easy to see that \(d_{k-1+i:k}^{(2)} = d_{i:1}^{(2)} \) and it is increasing in \(i \). The following theorem gives us an identical form of the selection procedure \(\delta_1^{(2)} \).

Theorem 3.7. The selection procedure \(\delta_1^{(2)} \) is not changed if the statistics \(\hat{X}_{i:k}, i = 1, \ldots, k \), are replaced by \(\hat{X}_{i:k}, i = 1, \ldots, k \), respectively.

Proof. The proof is straightforward and hence it is omitted.

The values \(d_{i:1}^{(2)}, i = 1, \ldots, k \) are tabulated in Table II for \(k = 1, 6, 8, 10, \infty \) and \(P^* = .99, .975, .95, .925, .90 \).

Similar to the Case I, we propose a selection procedure \(\delta_2^{(2)} \) as follows:

Definition 3.7. We define a selection procedure \(\delta_2^{(2)} \) by

\[
\delta_2^{(2)}: \text{Select } \pi_i \text{ if and only if } \hat{X}_{i:k} \geq X_0 - d \frac{\sigma}{\sqrt{n}}, \text{ } \text{ } i = 1, \ldots, k
\]

where \(d \) is the smallest value such that \(\delta_2^{(2)} \) satisfies the \(P^* \)-condition. Then, similar to procedure \(\delta_2 \) we have \(d = d_{i:1}^{(2)} \).

Next, we define a selection procedure \(\delta_3^{(2)} \) which is similar to \(\delta_3 \).
Definition 3.8. The selection procedure $\delta_3^{(2)}$ is defined by replacing $\tilde{X}_i \geq \nu_0 - d_i \frac{\sigma}{\sqrt{n}}$ in δ_3 (Definition 3.4) by $X_i \geq X_0 - d_i \frac{\sigma}{\sqrt{n}}$, $i = 1, \ldots, k$ where d_1, \ldots, d_k are the smallest values such that $\delta_3^{(2)}$ satisfies the P^\ast-condition.

Similar to Theorem 3.5 we have:

Theorem 3.8. The selection procedure $\delta_3^{(2)}$ satisfies the P^\ast-condition with $d_i = d$, $i = 1, \ldots, k$ where d is determined by the equation

$$\int_{-\infty}^{\infty} \phi(d-t)d\phi(t) = P^\ast. \quad (3.16)$$

And $\delta_3^{(2)}$ is not changed if the statistics \tilde{X}_i is replaced by X_i, the sample mean of population π_i for $i = 1, \ldots, k$.

The following selection procedure $\delta_4^{(2)}$ was proposed by Gupta and Sobel (1958):

Definition 3.9. The selection procedure $\delta_4^{(2)}$ is defined by

$\delta_4^{(2)}$: Select π_i if and only if $X_i \geq X_0 - d \frac{\sigma}{\sqrt{n_i}}$, $i = 1, \ldots, k$

where d is determined by the following equation.

$$\int_{-\infty}^{\infty} \prod_{i=1}^{k} \left[\phi\left(u \frac{\sqrt{n_i}}{\sqrt{n_0}} + d \right) \right] \phi(u) du = P^\ast. \quad (3.17)$$
For the special case \(n_i = n \) (\(i = 0, 1, \ldots, k \))

\[
\int_{-\infty}^{\infty} \phi^k(t+d) \phi(t) dt = P^*.
\]

(3.18)

Under the normal distribution \(N(0,1) \), the tables of \(d \)-values satisfying the Equation \((3.18)\) for several values of \(P^* \) are given in Bechhofer (1954) for \(k = 1 \) (1) 10 and in Gupta (1956) for \(k = 1 \) (1) 50.

3.6. Some Proposed Selection Procedures \(\delta_i^{(3)} \), \(i = 1, 2, 3, 4 \) for the Normal Means Problem When Common Variance \(\sigma^2 \) is Unknown

Case III. \(\mu_0 \) known, common variance \(\sigma^2 \) unknown, \(n_i = n > 1 \).

Definition 3.10. We define the selection procedure \(\delta_1^{(3)} \) by replacing the inequalities

\[
\hat{X}_{1:k} \geq \mu_0 - d_1^{(3)} \frac{\sigma}{\sqrt{n}}
\]

in procedure \(\delta_1 \) (Definition 3.1) by

\[
\hat{X}_{1:k} \geq \mu_0 - d_1^{(3)} \frac{S}{\sqrt{\nu}}
\]

where \(d_1^{(3)} \)'s are the smallest values such that \(\delta_1^{(3)} \) satisfies the \(P^* \)-condition; \(S^2 \) denotes the pooled estimator of \(\sigma^2 \) based on \(\nu = k(n-1) \), that is

\[
S^2 = \sum_{i=1}^{k} \sum_{j=1}^{n} (X_{ij} - \bar{X}_i)^2 / \nu.
\]

(3.19)
Note that \(\frac{V S^2}{\sigma^2} \) has the chi-square distribution \(\chi^2_{\nu} \) with \(\nu \) degrees of freedom. The following theorem then follows:

Theorem 3.9. The equation which determines the constant \(d_{k-1+1:k}^{(3)} \) is

\[
P(V_i \geq - d_{k-1+1:k}^{(3)} \frac{S}{\sigma}) = p^* \quad (3.20)
\]

or

\[
\int_0^\infty P(V_i \geq - d_{k-1+1:k}^{(3)} y) q_{\nu}(y) dy = p^* \quad (3.21)
\]

where \(q_{\nu}(y) \) is the density of \(\frac{S}{\sigma} \).

We can rewrite Formula (3.21) as

\[
\int_0^\infty P(V_i \geq - d_{k-1+1:k}^{(3)} \sqrt{\frac{\nu}{\nu}}) d_{\chi^2_{\nu}}(t) = p^*
\]

or

\[
\int_0^\infty P(V_i \geq - d_{k-1+1:k}^{(3)} \sqrt{\frac{2t}{\nu}}) \frac{\nu^{\frac{\nu}{2}} - 1 - t}{\nu} \frac{e^{-t}}{\Gamma\left(\frac{\nu}{2}\right)} dt = p^*. \quad (3.22)
\]
Remark 3.2. The values of $d_{k-i+1:k}^{(3)}$, $i = 1, \ldots, k$ depend on $\nu = k(n-1)$; also

$$d_{k-i+1:k}^{(3)} \neq d_{1:i}^{(3)}.$$

By using Rabinowitz and Weiss table (1959) (with $N=24$ and n of their table equal to 0) we have evaluated and tabulated the values of $d_{k-i+1:k}^{(3)}$, $i = 1, \ldots, k$, in Table III, for $k = 2 (1) 6$, $p^* = .99$, .975, .95, .925, .90, with common sample size $n = 3, 5, 9, \text{ and } 21$.

For $k \geq 6$ and $n > 21$, i.e. $\nu > 120$ we can reasonably well approximate $d_{k-i+1:k}^{(3)}$ by $d_{1:i}^{(1)}$.

Definition 3.11. We define the selection procedure $\delta_2^{(3)}$ by

$$\delta_2^{(3)}: \text{ Select } \pi_i \text{ if and only if } \hat{X}_{i:k} \geq \mu_0 - d_{i}^{(3)} \frac{S}{\sqrt{n}} \quad i = 1, \ldots, k$$

where S is defined as in procedure $\delta_1^{(3)}$, and $d_{i}^{(3)}$ is the smallest constant such that $\delta_2^{(3)}$ satisfies the P^*-condition.

As before, it can be shown that $d_{i}^{(3)} = d_{1:k}^{(3)}$.

Remark 3.3. In Case III the selection procedure $\delta_1^{(3)}$ will not be changed if we replace the isotonic statistics $\hat{X}_{i:k}$ by $\hat{X}_{i:k}$, respectively. But this is not necessarily true for selection procedure $\delta_2^{(3)}$.

Definition 3.12. The selection procedure $\delta_3^{(3)}$ is defined to have the same form as procedure $\delta_3^{(2)}$ except that the inequality defined in the ith step of procedure $\delta_3^{(2)}$ is replaced by

$$X_i \geq \mu_0 - d_{i} \frac{S}{\sqrt{n}} \quad \text{for } i = 1, \ldots, k.$$
The proof of the following theorem uses the same arguments as that in Case I, hence it is omitted.

Theorem 3.10. The equation which determines the constant \(d \) of selection procedure \(\delta_3^{(3)} \) is

\[
\int_{0}^{\infty} \phi(yd)q_v(y)dy = P^*. \tag{3.23}
\]

Gupta and Sobel (1958) gave a selection procedure \(\delta_4^{(3)} \) in this case. It is as follows:

\(\delta_4^{(3)} \): Select \(\pi_i \) if and only if \(X_i \geq \mu_0 - D \frac{S}{\sqrt{n_i}} \), \(i = 1, \ldots, k \)

and the equation which determines \(D \) is

\[
\int_{0}^{\infty} \phi^{k}(yd)q_v(y)dy = P^*, \tag{3.24}
\]

where \(v = \sum_{i=1}^{k} (n_i-1) \).

3.7. Some Proposed Selection Procedures \(\delta_i^{(4)}, i = 1, 2, 3, 4 \) for the Normal Means Problem When Both Control \(\mu_0 \) and Common Variance \(\sigma^2 \) are Unknown

Case IV. \(\mu_0 \) unknown, common variance \(\sigma^2 \) unknown and common sample size \(n \).

Here we replace \(\mu_0 \) in each selection procedure \(\delta_j^{(3)} \) by \(X_0 \), \(1 \leq j \leq 4 \), and get procedures \(\delta_j^{(4)}, 1 \leq j \leq 4 \), respectively. The constants \(d_k^{(4)} \), \(k \leq i+1 : k \), \(i = 1, \ldots, k \), of procedure \(\delta_1^{(4)} \) are determined by
\[
\int_0^\infty \int_{-\infty}^{\infty} P(V_i \geq u - d_{k-i+1:k}^{(4)} \sqrt{\frac{E}{\nu}}) d\phi(u) d\chi_{\nu}^2(t) = p^* \quad (3.25)
\]

The constant \(d \) of procedure \(\delta_2^{(4)} \) is
\[
d = d_{1:k}^{(4)}.
\]

The constants \(d \) of procedures \(\delta_3^{(4)} \) and \(\delta_4^{(4)} \) are determined by
\[
\int_0^\infty \int_{-\infty}^{\infty} \phi'(u + \sqrt{\frac{E}{\nu}} d) d\phi(u) d\chi_{\nu}^2(t) = p^* \quad (3.26)
\]
with \(r = 1 \) and \(k \), respectively, and their values for selected values of \(P^* \), \(k \) and \(\nu \) are given in Gupta and Sobel (1957) and Dunnett (1955).

3.8. Properties of the Selection Procedures

Under simple ordering prior, it is natural to require that an ideal selection procedure is isotonic as defined below:

Definition 3.13. A selection procedure \(\delta \) is isotonic if it selects \(\pi_i \) with parameter \(\mu_i \), and if \(\mu_i < \mu_j \), then it also selects \(\pi_j \).

Procedure \(\delta \) is weak isotonic or monotone if
\[
P(\pi_i \text{ is selected} | \delta) \leq P(\pi_j \text{ is selected} | \delta) \quad \text{whenever} \quad \mu_i < \mu_j.
\]

It is easy to see that any isotonic selection procedure is weak isotonic, but the converse is not true.

Now, let \(\delta_1^{(4)} = \delta_4^{(1)} \), \(i = 1, 2, 3, 4 \).

Theorem 3.11. The selection procedures \(\delta_1^{(4)} \), \(\delta_2^{(4)} \) and \(\delta_3^{(4)} \) are isotonic and procedure \(\delta_4^{(1)} \) is monotone, for \(i = 1, 2, 3, 4 \).
Proof. The proof follows immediately from the definitions of the procedures.

Given observations $X = x = (x_0, \ldots, x_k)$ where x_0 is the sample mean of population π_0, $i = 1, \ldots, k$, and $x_0 = \mu_0$ if μ_0 is known, otherwise x_0 is the sample mean of population π_0. Let

$$\psi_i(x, \delta) = P(\pi_i \text{ included in the selected subset} | \bar{x} = x, \delta)$$

for $i = 1, \ldots, k$.

Definition 3.14. A selection procedure δ is called translation-invariant if for any $x \in \mathbb{R}^{k+1}$, $c \in \mathbb{R}$

$$\psi_i(x_0 + c, x_1 + c, \ldots, x_k + c; \delta) = \psi_i(x_0, \ldots, x_k; \delta), i = 1, \ldots, k.$$

Theorem 3.12. The selection procedures $\delta_1(i)$, $\delta_2(i)$, $\delta_3(i)$ and $\delta_4(i)$ are translation-invariant for $i = 1, 2, 3, 4$.

Proof. Proof is straightforward and hence omitted.

Expected Number (Size) of Bad Populations in the Selected Subset

Suppose the control ν_0 is known and we have common sample size n and common known variance σ^2; without loss of generality, we assume that $\nu_0 = 0$ and $\sigma/\sqrt{n} = 1$. Let $E(S' | \delta)$ denote the expected number of bad populations in the selected subset in using the selection procedure.
\[\delta, \text{ then for any } j, 0 \leq j \leq k, \]
\[
\sup_{\mu \in \Omega_{k-j}} \mathbb{E}(S' | \delta_1) = \sup_{\mu \in \Omega_{k-j}} \left(\sum_{r=1}^{j} \sum_{\ell=1}^{r} p(\bigcup_{l=1}^{\ell} \{ \hat{Z}_{\ell} : j \geq d(1) \}) \right) \]
\[
= \sum_{r=1}^{j} \sum_{\ell=1}^{r} p(\bigcup_{l=1}^{\ell} \{ \hat{Z}_{\ell} : j \geq d(1) \}) \quad (3.27) \]

On the other hand, for procedure \(\delta_2 \)
\[
\sup_{\mu \in \Omega_{k-j}} \mathbb{E}(S' | \delta_2) = \sum_{r=1}^{j} \sum_{\ell=1}^{r} p(\bigcup_{l=1}^{\ell} \{ \hat{Z}_{\ell} : j \geq d(1) \}) \quad (3.28) \]

From (3.28) we see that the supremum for \(\delta_2 \) is increasing in \(j \) and is greater than or equal to the supremum for \(\delta_1 \) given in (3.27), since
\[d(1)_{\ell:k} = d(1)_{\ell-\ell+1} \leq d(1)_{1:k} \]

Therefore, we have the following theorem (see also the remark just before Def. 3.4).

Theorem 3.13. For any \(i, 0 \leq i \leq k \)
\[
\sup_{\mu \in \Omega_{i}} \mathbb{E}(S' | \delta_2) \geq \sup_{\mu \in \Omega_{i}} \mathbb{E}(S' | \delta_1),
\]
\[
\sup_{\mu \in \Omega} \mathbb{E}(S' | \delta_2) = \sup_{\mu \in \Omega} \mathbb{E}(S' | \delta_2).
\]

Theorem 3.14. In Section 3.1, Case I, for any \(j, 0 \leq j \leq k \)
\[
\sup_{\mu \in \Omega_{k-j}} \mathbb{E}(S' | \delta_3) = j - q(1-q^j)/p^* \quad (3.29)
\]

where \(q = 1 - p^* \).
Proof.

\[
\sup_{\mu \in \Omega_{k-j}} E(S' | \delta_3) \\
= \sup_{\mu \in \Omega_{k-j}} \sum_{i=1}^{j} P(\text{select } \pi_i | \delta_3) \\
= \sup_{\mu \in \Omega_{k-j}} \sum_{i=1}^{j} P(\max X_r \geq d) \\
= \sum_{i=1}^{j} (1 - \prod_{r=1}^{i} F(-d)) \\
= j - \sum_{i=1}^{j} q^i \\
= j - q(1 - q^j)^{1/p^*}
\]

where \(q = (1 - p^*) \).

Theorem 3.15. \(\sup_{\mu \in \Omega_{k-j}} E(S' | \delta_3) \) is increasing in \(j \), hence

\[
\sup_{\mu \in \Omega_{k-j}} E(S' | \delta_3) = \sup_{\mu \in \Omega_{0}} E(S' | \delta_3) = k - q(1 - q^k)^{1/p^*}. \quad (3.30)
\]

Proof. Since

\[
(j+1) - \sum_{i=1}^{j+1} q^i - (j - \sum_{i=1}^{j} q^i) = 1 - q^{j+1} > 0.
\]

In Case I, Gupta (1965) showed that

\[
\sup_{\mu \in \Omega} E(S' | \delta_4) = \frac{k^{p^*}}{kp^{*k}}. \quad (3.31)
\]
Let us define the event \(A_i = \{ \hat{Z}_{i:k} \geq -d_{i:k}^{(1)} \}, i = 1, \ldots, k \); then we have

Lemma 3.2. \(P(\bigcup_{i=1}^{j} A_i \cap A_{j+1}) > P(\bigcup_{i=1}^{j} A_i) \) \(P^* \) for all \(j, 1 \leq j \leq k-1, k \geq 2 \).

Proof:

\[
P(\bigcup_{i=1}^{j} A_i \cap A_{j+1})
\]

\[
= P(\bigcup_{i=1}^{j} \{ \hat{Z}_{i:j} \geq -d_{i:k}^{(1)} \} \cap A_{j+1})
\]

\[
= P(\bigcup_{i=1}^{j} \{ \hat{Z}_{i:j} \geq -d_{i:k}^{(1)} \}) P(A_{j+1})
\]

\[
> P(\bigcup_{i=1}^{j} A_i) P(A_{j+1})
\]

\[
= P(\bigcup_{i=1}^{j} A_i) P^*.
\]

The above inequality is a result of the fact

\(A_i \subseteq \{ \hat{Z}_{i:j} \geq -d_{i:k}^{(1)} \} \) for all \(i = 1, \ldots, j \); \(j = 1, \ldots, k-1 \).

Theorem 3.16. For all \(k \geq 2 \), \(\sup_{\Omega_0} E(S'|\delta_1) < \sup_{\Omega_0} E(S'|\delta_2) \).

Proof: To prove the theorem it is sufficient to show that for all given \(k \geq 2 \), \(P(\bigcup_{i=1}^{j} A_i) \leq 1 - (1-P^*)^j \) for all \(j \) and strictly inequality holds for some \(j, 1 \leq j \leq k \).

It holds for \(j = 1 \), since \(P(A_1) = P^* \). Suppose \(P(\bigcup_{i=1}^{j} A_i) \leq 1 - (1-P^*)^j \) is true for some \(j, 1 \leq j \leq k-1 \), then
\[P(\bigcup_{i=1}^{j+1} A_i) = P(\bigcup_{i=1}^{j} A_i) + P^* - P(\bigcup_{i=1}^{j} A_i \cap A_{j+1}) \]

\[< P(\bigcup_{i=1}^{j} A_i) + P^* - P(\bigcup_{i=1}^{j} A_i)P^* \]

\[\leq P^* + (1-P^*)(1-(1-P^*)^j) \]

\[= 1 - (1-P^*)^{j+1}. \]

Hence by induction principle, the proof is finished.

This theorem tells us that procedure \(\delta_1 \) is better than \(\delta_3 \) in the sense that in \(\Omega_0 \) it tends to select smaller number of bad populations, however, procedure \(\delta_1 \) is not uniformly better than \(\delta_3 \). In some cases (see Section 5), \(\delta_3 \) is slightly better than \(\delta_1 \).

When the ordering prior among the unknown parameters is unknown, we can use the selection procedure of Gupta and Sobel (1958) or use the ordering of the sample means as the ordering of unknown parameters and apply the selection procedure which is originally used under ordering prior. In the normal case with the latter approach, the substitution implies that the isotonic regression of the sample means turns to the usual ordered sample means, and that the selection procedures \(\delta_2^{(i)} \), \(i = 1, 2, 3, 4 \), are of the same type as \(\delta_4^{(i)} \) (\(i = 1, 2, 3, 4 \)), respectively, and the selection procedures \(\delta_j^{(i)} \), \(j = 1, 3, i = 1, 2, 3, 4 \) are of the same form as \(\delta_5^{(i)} \), \(i = 1, 2, 3, 4 \), respectively, which are equivalent to the procedures proposed by Naik (1975) and Broström (1977), independently (see also Holm (1979)).

4. **Selection Rules for the Location Parameter Under Partial Ordering Prior Assumption**

Assume that we have only a partial ordering prior of \(k \) unknown location parameters, that is the parameter space
\(\Omega' = \{ \emptyset | \emptyset \in \mathbb{R}^k \} \) and there is a partial order relation "\(\preceq \)" among \(\theta_i \)'s.

Our approach is to partition the set \(\{ \theta_1, \ldots, \theta_k \} \) into several subsets, say \(B_0, \ldots, B_\ell \), so that \(B_i \cap B_j = \emptyset \), if \(i \neq j \), \(\bigcup_{j=1}^{\ell} B_j = \{ \theta_1, \ldots, \theta_k \} \)

and for each \(B_j \) (\(j = 1, \ldots, \ell \)) there is a simple order on it and there is no order relation among the elements of subset \(B_0 \).

Let \(b_i = |B_i| \), the number of elements contained in \(B_i \), \(i = 0, \ldots, \ell \), so we have

\[
\sum_{i=0}^{\ell} b_i = k.
\]

If we denote the new induced partial order by "\(\preceq' \)", then we have a parameter space \(\Omega' \supseteq \Omega \). We use an example to illustrate how to find an induced partial order.

Example. Suppose \(k = 8 \), and we have a partial ordering prior \(\theta_1 \leq \theta_5, \theta_1 \leq \theta_8, \theta_1 \leq \theta_2 \leq \theta_3 \leq \theta_4, \) and \(\theta_2 \leq \theta_6 \leq \theta_7 \). We use a "tree" to represent this partial ordering as in Figure 1.

![Figure 1. Original partial ordering](image-url)
Then we have an induced partial ordering $\theta_1 \leq \theta_2 \leq \theta_3 \leq \theta_4$, $\theta_6 \leq \theta_7$ as in Figure 2.

![Figure 2. Induced partial ordering.](image)

And

$B_0 = \{\theta_5, \theta_8\}$

$B_1 = \{\theta_1, \theta_2, \theta_3, \theta_4\}$

$B_2 = \{\theta_6, \theta_7\}$.

It is clear that the induced partial order is not unique, for example, we can partition $\{\theta_1, \ldots, \theta_8\}$ into three other subsets B'_0, B'_1, B'_2 where

$B'_0 = \{\theta_5, \theta_8\}$

$B'_1 = \{\theta_1, \theta_2, \theta_6, \theta_7\}$

$B'_2 = \{\theta_3, \theta_4\}$.

For the location parameter case, a selection procedure δ^p can be defined as follows:

Definition 4.1. We define a selection procedure δ^p as follows:

Suppose B_0, \ldots, B_λ are induced subsets and that for each subset B_j, $j = 1, \ldots, \lambda$ there is a simple order on it. We choose a proper
selection procedure δ for each subset B_j, such that the corresponding probability of a correct selection is not less than $P^*_j = \frac{b_j}{P_0}$. For subset B_0 we may use selection procedure δ_4 or δ_5 with $P^*_0 = \frac{P_0}{k}$.

Theorem 4.1. The selection procedure δ^P satisfies the P^*-condition.

Proof.

\[
\inf_{\theta \in \Omega'} P^*_0 (CS|\delta^P) \\
\geq \inf_{\theta \in \Omega''} P^*_0 (CS|\delta^P) \\
\geq \prod_{i=1}^{l} \inf_{\Omega_{B_i}'} P (CS|\delta^P) \\
\geq \left(\sum_{i=0}^{k} \frac{b_i}{P^*_i} \right) = P^*
\]

where Ω_{B_i}' is the parameter space associated with the subset B_i.

5. **Comparisons of the Performance of Basic Rules for the Normal Means Problem**

In this section we describe results of a Monte Carlo study to compare the performance of selection procedures δ_1, δ_2, δ_3, and δ_4. Suppose we have k independent populations, each population with distribution $N(\mu_i, \sigma^2)$, with common known variance σ^2 and common sample size n. Assume that the mean μ_0 of the control is known; without loss of generality we assume that $\mu_0 = 0$ and $\sigma/\sqrt{n} = 1$.
In the simulation study, we used Rubin and Hinkle's RVP-Random Variable Package, Purdue University Computing Center, to generate random numbers. For each k, we generated one random number (variable) for each population, then applied each selection procedure separately and repeated it ten thousand times; we used the relative frequencies as an approximation of the exact values of the associated performance characteristics for each procedure. In Table IV we use the following notations:

\[\bar{\mu} = (\mu_1, \ldots, \mu_k), \mu_i \text{ is the parameter of population } \pi_i. \]

\[PS = P(CS) \]

\[PI = P(\text{correctly rejecting all bad populations}) \]

\[PC = P(\text{correct classification of all population}) \]

where the correct classification means that we select all good populations and reject all bad populations.

\[EI = \text{Expected number (size) of bad populations contained in the selected subset.} \]

\[EJ = \sum_{\mu_i < \mu_0} \frac{1}{N} \left(\mu_i - \mu_0 \right)^2 \cdot P(\pi_i \text{ is selected}) \]

\[ES = \text{Expected size of the selected subset.} \]

Table IV.1 consists of four parts, namely, the four values of $k = 2, 3, 4, 5$, for each value of k we assume that we have two bad populations. In this case based on the performance characteristics PI, PC, EI or EJ, we found the performance ordering as follows:

\[\delta_1 > \delta_2 > \delta_3 > \delta_4. \]

where $\delta_1 > \delta_2$ means that δ_1 is better than δ_2.
In Table IV.2 we assume that we have three bad populations for \(k = 3 \), and that both populations are bad for \(k = 2 \), this table indicates the same trend as Table IV.1, i.e. \(\delta_1 > \delta_2 > \delta_3 > \delta_4 \). If \(k \) is increased by adding strictly good (parameter strictly larger than control) populations, then \(\text{EI}(\delta_i), i = 1,2 \) does not increase. This is because \(\hat{X}_{i:k} > \hat{X}_{i:k+1} \) a.s. \(1 \leq i \leq k \).

In Table IV.3 we assume that for each \(k, k = 2,3,4,5 \) that every population is bad. Based on the quantities PI, PC, EI and EJ, we find that the performance is as follows:

\[
\delta_1 > \delta_2 > \delta_3 > \delta_4.
\]

This is the same result as before.

Table IV.4 has the same structure as before, but for each value of \(k, k = 2,3,4,5 \), we assume that the first population is the one and only one bad population with parameter \(-1\) which is less than the control \(\mu_0 = 0 \). A glance at the table indicates that the performance, based on the characteristics PI, PC, EI and ES, can roughly be ordered as follows:

\[
\delta_3 \succ [\delta_2, \delta_1] > \delta_4.
\]

i.e. procedure \(\delta_3 \) is the best and is slightly better than \(\delta_2 \) and \(\delta_1, \delta_2 \) and \(\delta_1 \) are very close and both are better than \(\delta_4 \). As the number of populations \(k \) increases from two to five and the three additional populations are good populations with parameter 1, 2, and 3, respectively, we find that \(\text{EI}(\delta_i, k = 5) - \text{EI}(\delta_i, k = 2), i = 1,2,3,4, \) is 0.0124, 0.0124, 0.0031, 0.121, respectively. This means that when \(k \) increases and the additional populations are good, then procedure \(\delta_4 \) is the most sensitive procedure with \(k \) and thus not good in terms of EI. \(\delta_3 \) seems to perform better in terms of EI while \(\delta_1 \) and \(\delta_2 \) are about the same.
In Table IV.5 we assume that the ordering prior of unknown parameter is incorrect; i.e. the true configuration (-2, -1,0,1,2) is replaced by (-1,-2,1,0,2). The simulation results indicate that, based on PI, PC, EI and EJ we have performance $\delta_1 > \delta_2 > [\delta_3, \delta_4]$. Thus here again δ_1 is the best. If we compare Table IV.5 with Table IV.1, we see that δ_4 does not change (the small differences are because of random fluctuations), EI(δ_3) and EJ(δ_3) increase quite appreciably.

From these five tables, it appears that, in general, the overall performance of these procedures is $\delta_1 > \delta_2 > \delta_3 > \delta_4$, if the ordering prior is correct. If there is no information regarding the prior ordering, then δ_4 or δ_5 seem to be an appropriate procedure to use.
TABLE I
Table of $d^{(1)}_{1:k}$ values (satisfying (3.5) and (3.14)) necessary to carry out the procedure δ_1 for the normal means problem under the simple ordering prior.

<table>
<thead>
<tr>
<th>$d^{(1)}_{1:k}$</th>
<th>p^*</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>.99</td>
</tr>
<tr>
<td>1</td>
<td>2.3264</td>
</tr>
<tr>
<td>2</td>
<td>2.3337</td>
</tr>
<tr>
<td>3</td>
<td>2.3339</td>
</tr>
<tr>
<td>4</td>
<td>2.3339</td>
</tr>
<tr>
<td>5</td>
<td>2.3339</td>
</tr>
<tr>
<td>6</td>
<td>2.3339</td>
</tr>
<tr>
<td>∞</td>
<td>2.3340</td>
</tr>
</tbody>
</table>

TABLE II
Table of $d^{(2)}_{1:k}$ values (satisfying (3.15)) necessary to carry out the procedure $\delta^{(2)}_1$ for the normal means problem under simple ordering prior.

<table>
<thead>
<tr>
<th>$d^{(2)}_{1:k}$</th>
<th>p^*</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>.99</td>
</tr>
<tr>
<td>1</td>
<td>3.2886</td>
</tr>
<tr>
<td>2</td>
<td>3.3449</td>
</tr>
<tr>
<td>3</td>
<td>3.3605</td>
</tr>
<tr>
<td>4</td>
<td>3.3673</td>
</tr>
<tr>
<td>5</td>
<td>3.3711</td>
</tr>
<tr>
<td>6</td>
<td>3.3734</td>
</tr>
<tr>
<td>8</td>
<td>3.3761</td>
</tr>
<tr>
<td>10</td>
<td>3.3776</td>
</tr>
<tr>
<td>∞</td>
<td>3.3787</td>
</tr>
</tbody>
</table>
TABLE III

Table of $d^{(3)}_{i:k} = D(i:k)$ values (satisfying (3.22)) necessary to carry out the procedure $\delta^{(3)}_1$ for the normal means problem with common sample size n (common variance unknown) under simple ordering prior.

<table>
<thead>
<tr>
<th>p^*</th>
<th>$n = 3$</th>
<th>$n = 5$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>.990</td>
<td>.975</td>
</tr>
<tr>
<td>D(1:2) =</td>
<td>6.6993</td>
<td>4.9977</td>
</tr>
<tr>
<td>D(2:2) =</td>
<td>6.4966</td>
<td>4.8106</td>
</tr>
<tr>
<td>D(1:3) =</td>
<td>4.5435</td>
<td>3.5731</td>
</tr>
<tr>
<td>D(2:3) =</td>
<td>4.5272</td>
<td>3.5534</td>
</tr>
<tr>
<td>D(3:3) =</td>
<td>4.4443</td>
<td>3.4604</td>
</tr>
<tr>
<td>D(1:4) =</td>
<td>3.6058</td>
<td>2.8997</td>
</tr>
<tr>
<td>D(2:4) =</td>
<td>3.6037</td>
<td>2.8965</td>
</tr>
<tr>
<td>D(3:4) =</td>
<td>3.5958</td>
<td>2.8853</td>
</tr>
<tr>
<td>D(4:4) =</td>
<td>3.5480</td>
<td>2.8241</td>
</tr>
<tr>
<td>D(1:5) =</td>
<td>3.0674</td>
<td>2.4966</td>
</tr>
<tr>
<td>D(2:5) =</td>
<td>3.0670</td>
<td>2.4959</td>
</tr>
<tr>
<td>D(3:5) =</td>
<td>3.0659</td>
<td>2.4940</td>
</tr>
<tr>
<td>D(4:5) =</td>
<td>3.0613</td>
<td>2.4865</td>
</tr>
<tr>
<td>D(5:5) =</td>
<td>3.0281</td>
<td>2.4406</td>
</tr>
<tr>
<td>D(1:6) =</td>
<td>2.7100</td>
<td>2.2230</td>
</tr>
<tr>
<td>D(2:6) =</td>
<td>2.7099</td>
<td>2.2228</td>
</tr>
<tr>
<td>D(3:6) =</td>
<td>2.7098</td>
<td>2.2224</td>
</tr>
<tr>
<td>D(4:6) =</td>
<td>2.7091</td>
<td>2.2211</td>
</tr>
<tr>
<td>D(5:6) =</td>
<td>2.7060</td>
<td>2.2156</td>
</tr>
<tr>
<td>D(6:6) =</td>
<td>2.6810</td>
<td>2.1788</td>
</tr>
</tbody>
</table>
TABLE III (continued)
Table of $d_{i:k}^{(3)} = D(i:k)$ values (satisfying (3.22)) necessary to carry out the procedure $\delta_l^{(3)}$ for the normal means problem with common sample size n (common variance unknown) under simple ordering prior.

<table>
<thead>
<tr>
<th>$n = 9$</th>
<th>$n = 21$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P^* = \frac{1}{9} = .900$</td>
<td>$P^* = \frac{1}{9} = .900$</td>
</tr>
<tr>
<td>$D(1:2) = 4.5081$</td>
<td>$D(1:2) = 4.2169$</td>
</tr>
<tr>
<td>$D(2:2) = 4.4746$</td>
<td>$D(2:2) = 4.1973$</td>
</tr>
<tr>
<td>$D(1:3) = 3.5468$</td>
<td>$D(1:3) = 3.3948$</td>
</tr>
<tr>
<td>$D(2:3) = 3.5452$</td>
<td>$D(2:3) = 3.3940$</td>
</tr>
<tr>
<td>$D(3:3) = 3.5245$</td>
<td>$D(3:3) = 3.3801$</td>
</tr>
<tr>
<td>$D(1:4) = 3.0155$</td>
<td>$D(1:4) = 2.9192$</td>
</tr>
<tr>
<td>$D(2:4) = 3.0153$</td>
<td>$D(2:4) = 2.9192$</td>
</tr>
<tr>
<td>$D(3:4) = 3.0143$</td>
<td>$D(3:4) = 2.9187$</td>
</tr>
<tr>
<td>$D(4:4) = 2.9990$</td>
<td>$D(4:4) = 2.9074$</td>
</tr>
<tr>
<td>$D(1:5) = 2.6678$</td>
<td>$D(1:5) = 2.5999$</td>
</tr>
<tr>
<td>$D(2:5) = 2.6678$</td>
<td>$D(2:5) = 2.5999$</td>
</tr>
<tr>
<td>$D(3:5) = 2.6677$</td>
<td>$D(3:5) = 2.5999$</td>
</tr>
<tr>
<td>$D(4:5) = 2.6670$</td>
<td>$D(4:5) = 2.5995$</td>
</tr>
<tr>
<td>$D(5:5) = 2.6546$</td>
<td>$D(5:5) = 2.5899$</td>
</tr>
<tr>
<td>$D(1:6) = 2.4174$</td>
<td>$D(1:6) = 2.3667$</td>
</tr>
<tr>
<td>$D(2:6) = 2.4174$</td>
<td>$D(2:6) = 2.3667$</td>
</tr>
<tr>
<td>$D(3:6) = 2.4175$</td>
<td>$D(3:6) = 2.3667$</td>
</tr>
<tr>
<td>$D(4:6) = 2.4174$</td>
<td>$D(4:6) = 2.3667$</td>
</tr>
<tr>
<td>$D(5:6) = 2.4169$</td>
<td>$D(5:6) = 2.3664$</td>
</tr>
<tr>
<td>$D(6:6) = 2.4064$</td>
<td>$D(6:6) = 2.3578$</td>
</tr>
</tbody>
</table>
TABLE IV.1

Simulation results for the comparative performance of various selection procedures for the normal means problem (notation explained in Section 5) under simple ordering prior.

\[p^* = 0.900 \]

\(k = 2, \mu = (-2, -1) \)

<table>
<thead>
<tr>
<th></th>
<th>(\delta_1)</th>
<th>(\delta_2)</th>
<th>(\delta_3)</th>
<th>(\delta_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
</tr>
<tr>
<td>PI</td>
<td>0.3420</td>
<td>0.3252</td>
<td>0.3001</td>
<td>0.1719</td>
</tr>
<tr>
<td>PC</td>
<td>0.3420</td>
<td>0.3252</td>
<td>0.3001</td>
<td>0.1719</td>
</tr>
<tr>
<td>EI</td>
<td>0.8673</td>
<td>0.8841</td>
<td>0.9389</td>
<td>1.0950</td>
</tr>
<tr>
<td>EJ</td>
<td>1.4952</td>
<td>1.5120</td>
<td>1.6559</td>
<td>2.1831</td>
</tr>
<tr>
<td>ES</td>
<td>0.8673</td>
<td>0.8841</td>
<td>0.9389</td>
<td>1.0950</td>
</tr>
</tbody>
</table>

\(k = 3, \mu = (-2, -1, 0) \)

<table>
<thead>
<tr>
<th></th>
<th>(\delta_1)</th>
<th>(\delta_2)</th>
<th>(\delta_3)</th>
<th>(\delta_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS</td>
<td>0.9535</td>
<td>0.9573</td>
<td>0.9696</td>
<td>0.9632</td>
</tr>
<tr>
<td>PI</td>
<td>0.3437</td>
<td>0.3407</td>
<td>0.3007</td>
<td>0.1233</td>
</tr>
<tr>
<td>PC</td>
<td>0.2972</td>
<td>0.2980</td>
<td>0.2703</td>
<td>0.1175</td>
</tr>
<tr>
<td>EI</td>
<td>0.8585</td>
<td>0.8615</td>
<td>0.9350</td>
<td>1.2131</td>
</tr>
<tr>
<td>EJ</td>
<td>1.4651</td>
<td>1.4681</td>
<td>1.6421</td>
<td>2.4996</td>
</tr>
<tr>
<td>ES</td>
<td>1.8120</td>
<td>1.8188</td>
<td>1.9046</td>
<td>2.1758</td>
</tr>
</tbody>
</table>

\(k = 4, \mu = (-2, -1, 0, 1) \)

<table>
<thead>
<tr>
<th></th>
<th>(\delta_1)</th>
<th>(\delta_2)</th>
<th>(\delta_3)</th>
<th>(\delta_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS</td>
<td>0.9596</td>
<td>0.9606</td>
<td>0.9715</td>
<td>0.9747</td>
</tr>
<tr>
<td>PI</td>
<td>0.3269</td>
<td>0.3254</td>
<td>0.2936</td>
<td>0.0874</td>
</tr>
<tr>
<td>PC</td>
<td>0.2865</td>
<td>0.2860</td>
<td>0.2651</td>
<td>0.0851</td>
</tr>
<tr>
<td>EI</td>
<td>0.8802</td>
<td>0.8817</td>
<td>0.9431</td>
<td>1.3062</td>
</tr>
<tr>
<td>EJ</td>
<td>1.5015</td>
<td>1.5030</td>
<td>1.6532</td>
<td>2.7378</td>
</tr>
<tr>
<td>ES</td>
<td>2.8387</td>
<td>2.8412</td>
<td>2.9142</td>
<td>3.2808</td>
</tr>
</tbody>
</table>

\(k = 5, \mu = (-2, -1, 0, 1, 2) \)

<table>
<thead>
<tr>
<th></th>
<th>(\delta_1)</th>
<th>(\delta_2)</th>
<th>(\delta_3)</th>
<th>(\delta_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS</td>
<td>0.9562</td>
<td>0.9564</td>
<td>0.9690</td>
<td>0.9765</td>
</tr>
<tr>
<td>PI</td>
<td>0.3333</td>
<td>0.3331</td>
<td>0.2984</td>
<td>0.0746</td>
</tr>
<tr>
<td>PC</td>
<td>0.2895</td>
<td>0.2895</td>
<td>0.2674</td>
<td>0.0725</td>
</tr>
<tr>
<td>EI</td>
<td>0.8835</td>
<td>0.8837</td>
<td>0.9480</td>
<td>1.3712</td>
</tr>
<tr>
<td>EJ</td>
<td>1.5339</td>
<td>1.5341</td>
<td>1.6872</td>
<td>2.9450</td>
</tr>
<tr>
<td>ES</td>
<td>3.8386</td>
<td>3.8390</td>
<td>3.9167</td>
<td>4.3477</td>
</tr>
</tbody>
</table>
TABLE IV.2

Simulation results for the comparative performance of various selection procedures for the normal means problem (notation explained in Section 5) under simple ordering prior.

\(p^* = .900 \)

<table>
<thead>
<tr>
<th>(k = 2, \ \mu = (-3,-2))</th>
<th>(\delta_1)</th>
<th>(\delta_2)</th>
<th>(\delta_3)</th>
<th>(\delta_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
</tr>
<tr>
<td>PI</td>
<td>.7551</td>
<td>.7380</td>
<td>.7342</td>
<td>.5912</td>
</tr>
<tr>
<td>PC</td>
<td>.7551</td>
<td>.7380</td>
<td>.7342</td>
<td>.5912</td>
</tr>
<tr>
<td>EI</td>
<td>.2632</td>
<td>.2803</td>
<td>.3035</td>
<td>.4395</td>
</tr>
<tr>
<td>EJ</td>
<td>1.1443</td>
<td>1.2127</td>
<td>1.4025</td>
<td>2.1590</td>
</tr>
<tr>
<td>ES</td>
<td>.2632</td>
<td>.2803</td>
<td>.3035</td>
<td>.4395</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(k = 3, \ \mu = (-3,-2,-1))</th>
<th>(\delta_1)</th>
<th>(\delta_2)</th>
<th>(\delta_3)</th>
<th>(\delta_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
</tr>
<tr>
<td>PI</td>
<td>.3362</td>
<td>.3156</td>
<td>.2837</td>
<td>.1090</td>
</tr>
<tr>
<td>PC</td>
<td>.3362</td>
<td>.3156</td>
<td>.2837</td>
<td>.1090</td>
</tr>
<tr>
<td>EI</td>
<td>.8937</td>
<td>.9166</td>
<td>1.0275</td>
<td>1.3290</td>
</tr>
<tr>
<td>EJ</td>
<td>1.6654</td>
<td>1.6952</td>
<td>2.1746</td>
<td>3.5318</td>
</tr>
<tr>
<td>ES</td>
<td>.8937</td>
<td>.9166</td>
<td>1.0275</td>
<td>1.3290</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(k = 4, \ \mu = (-3,-2,-1,0))</th>
<th>(\delta_1)</th>
<th>(\delta_2)</th>
<th>(\delta_3)</th>
<th>(\delta_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS</td>
<td>.9579</td>
<td>.9616</td>
<td>.9737</td>
<td>.9731</td>
</tr>
<tr>
<td>PI</td>
<td>.3257</td>
<td>.3225</td>
<td>.2801</td>
<td>.0759</td>
</tr>
<tr>
<td>PC</td>
<td>.2836</td>
<td>.2841</td>
<td>.2538</td>
<td>.0736</td>
</tr>
<tr>
<td>EI</td>
<td>.9118</td>
<td>.9160</td>
<td>1.0419</td>
<td>1.4675</td>
</tr>
<tr>
<td>EJ</td>
<td>1.7093</td>
<td>1.7165</td>
<td>2.2324</td>
<td>4.1380</td>
</tr>
<tr>
<td>ES</td>
<td>1.8697</td>
<td>1.8776</td>
<td>2.0156</td>
<td>2.4406</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(k = 5, \ \mu = (-3,-2,-1,0,1))</th>
<th>(\delta_1)</th>
<th>(\delta_2)</th>
<th>(\delta_3)</th>
<th>(\delta_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS</td>
<td>.9582</td>
<td>.9590</td>
<td>.9714</td>
<td>.9796</td>
</tr>
<tr>
<td>PI</td>
<td>.3292</td>
<td>.3281</td>
<td>.2877</td>
<td>.0602</td>
</tr>
<tr>
<td>PC</td>
<td>.2874</td>
<td>.2871</td>
<td>.2591</td>
<td>.0582</td>
</tr>
<tr>
<td>EI</td>
<td>.8962</td>
<td>.8976</td>
<td>1.0172</td>
<td>1.5283</td>
</tr>
<tr>
<td>EJ</td>
<td>1.6554</td>
<td>1.6577</td>
<td>2.1429</td>
<td>4.3912</td>
</tr>
<tr>
<td>ES</td>
<td>2.8536</td>
<td>2.8559</td>
<td>2.9884</td>
<td>3.5078</td>
</tr>
</tbody>
</table>
TABLE IV.3

Simulation results for the comparative performance of various selection procedures for the normal means problem (notation explained in Section 5) under simple ordering prior.

\(p^* = .900 \)

\(k = 2, \mu = (-4,-3) \)

<table>
<thead>
<tr>
<th></th>
<th>(\delta_1)</th>
<th>(\delta_2)</th>
<th>(\delta_3)</th>
<th>(\delta_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
</tr>
<tr>
<td>PI</td>
<td>.9613</td>
<td>.9560</td>
<td>.9585</td>
<td>.9130</td>
</tr>
<tr>
<td>PC</td>
<td>.9613</td>
<td>.9560</td>
<td>.9585</td>
<td>.9130</td>
</tr>
<tr>
<td>EI</td>
<td>.0392</td>
<td>.0445</td>
<td>.0448</td>
<td>.0876</td>
</tr>
<tr>
<td>EJ</td>
<td>.3563</td>
<td>.4040</td>
<td>.4263</td>
<td>.8493</td>
</tr>
<tr>
<td>ES</td>
<td>.0392</td>
<td>.0445</td>
<td>.0448</td>
<td>.0876</td>
</tr>
</tbody>
</table>

\(k = 3, \mu = (-4,-3,-2) \)

<table>
<thead>
<tr>
<th></th>
<th>(\delta_1)</th>
<th>(\delta_2)</th>
<th>(\delta_3)</th>
<th>(\delta_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
</tr>
<tr>
<td>PI</td>
<td>.7587</td>
<td>.7359</td>
<td>.7300</td>
<td>.4997</td>
</tr>
<tr>
<td>PC</td>
<td>.7587</td>
<td>.7359</td>
<td>.7300</td>
<td>.4997</td>
</tr>
<tr>
<td>EI</td>
<td>.2599</td>
<td>.2835</td>
<td>.3201</td>
<td>.5574</td>
</tr>
<tr>
<td>EJ</td>
<td>1.1340</td>
<td>1.2324</td>
<td>1.5547</td>
<td>2.9908</td>
</tr>
<tr>
<td>ES</td>
<td>.2599</td>
<td>.2835</td>
<td>.3201</td>
<td>.5574</td>
</tr>
</tbody>
</table>

\(k = 4, \mu = (-4,-3,-2,-1) \)

<table>
<thead>
<tr>
<th></th>
<th>(\delta_1)</th>
<th>(\delta_2)</th>
<th>(\delta_3)</th>
<th>(\delta_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
</tr>
<tr>
<td>PI</td>
<td>.3348</td>
<td>.3114</td>
<td>.2814</td>
<td>.0747</td>
</tr>
<tr>
<td>PC</td>
<td>.3348</td>
<td>.3114</td>
<td>.2814</td>
<td>.0747</td>
</tr>
<tr>
<td>EI</td>
<td>.9003</td>
<td>.9282</td>
<td>1.0440</td>
<td>1.4745</td>
</tr>
<tr>
<td>EJ</td>
<td>1.7013</td>
<td>1.7437</td>
<td>2.2947</td>
<td>4.3666</td>
</tr>
<tr>
<td>ES</td>
<td>.9003</td>
<td>.9282</td>
<td>1.0440</td>
<td>1.4745</td>
</tr>
</tbody>
</table>

\(k = 5, \mu = (-4,-3,-2,-1,-0.5) \)

<table>
<thead>
<tr>
<th></th>
<th>(\delta_1)</th>
<th>(\delta_2)</th>
<th>(\delta_3)</th>
<th>(\delta_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.0000</td>
</tr>
<tr>
<td>PI</td>
<td>.1117</td>
<td>.1045</td>
<td>.0615</td>
<td>.0036</td>
</tr>
<tr>
<td>PC</td>
<td>.1117</td>
<td>.1045</td>
<td>.0615</td>
<td>.0036</td>
</tr>
<tr>
<td>EI</td>
<td>1.7460</td>
<td>1.7600</td>
<td>1.9734</td>
<td>2.4985</td>
</tr>
<tr>
<td>EJ</td>
<td>1.8147</td>
<td>1.8275</td>
<td>2.4965</td>
<td>5.0978</td>
</tr>
<tr>
<td>ES</td>
<td>1.7460</td>
<td>1.7600</td>
<td>1.9734</td>
<td>2.4985</td>
</tr>
</tbody>
</table>
TABLE IV.4

Simulation results for the comparative performance of various selection procedures for the normal means problem (notation explained in Section 5) under simple ordering prior.

\(p^* = .900 \)

<table>
<thead>
<tr>
<th></th>
<th>(\delta_1)</th>
<th>(\delta_2)</th>
<th>(\delta_3)</th>
<th>(\delta_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>k = 2, (\mu = (-1,0))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PS</td>
<td>.9453</td>
<td>.9490</td>
<td>.9579</td>
<td>.9470</td>
</tr>
<tr>
<td>PI</td>
<td>.3854</td>
<td>.3854</td>
<td>.3937</td>
<td>.2676</td>
</tr>
<tr>
<td>PC</td>
<td>.3307</td>
<td>.3344</td>
<td>.3516</td>
<td>.2530</td>
</tr>
<tr>
<td>EI</td>
<td>.6146</td>
<td>.6146</td>
<td>.6063</td>
<td>.7324</td>
</tr>
<tr>
<td>EJ</td>
<td>.6146</td>
<td>.6146</td>
<td>.6063</td>
<td>.7324</td>
</tr>
<tr>
<td>ES</td>
<td>1.5599</td>
<td>1.5636</td>
<td>1.5642</td>
<td>1.6794</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>(\delta_1)</th>
<th>(\delta_2)</th>
<th>(\delta_3)</th>
<th>(\delta_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>k = 3, (\mu = (-1,0,1))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PS</td>
<td>.9531</td>
<td>.9535</td>
<td>.9638</td>
<td>.9616</td>
</tr>
<tr>
<td>PI</td>
<td>.3741</td>
<td>.3741</td>
<td>.3826</td>
<td>.2044</td>
</tr>
<tr>
<td>PC</td>
<td>.3272</td>
<td>.3276</td>
<td>.3464</td>
<td>.1970</td>
</tr>
<tr>
<td>EI</td>
<td>.6259</td>
<td>.6259</td>
<td>.6174</td>
<td>.7956</td>
</tr>
<tr>
<td>EJ</td>
<td>.6259</td>
<td>.6259</td>
<td>.6174</td>
<td>.7956</td>
</tr>
<tr>
<td>ES</td>
<td>2.5771</td>
<td>2.5777</td>
<td>2.5803</td>
<td>2.7574</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>(\delta_1)</th>
<th>(\delta_2)</th>
<th>(\delta_3)</th>
<th>(\delta_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>k = 4, (\mu = (-1,0,1,2))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PS</td>
<td>.9580</td>
<td>.9682</td>
<td>.9640</td>
<td>.9765</td>
</tr>
<tr>
<td>PI</td>
<td>.3664</td>
<td>.3664</td>
<td>.3834</td>
<td>.1683</td>
</tr>
<tr>
<td>PC</td>
<td>.3244</td>
<td>.3246</td>
<td>.3474</td>
<td>.1640</td>
</tr>
<tr>
<td>EI</td>
<td>.6336</td>
<td>.6336</td>
<td>.6166</td>
<td>.8317</td>
</tr>
<tr>
<td>EJ</td>
<td>.6336</td>
<td>.6336</td>
<td>.6166</td>
<td>.8317</td>
</tr>
<tr>
<td>ES</td>
<td>3.5902</td>
<td>3.5904</td>
<td>3.5801</td>
<td>3.8081</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>(\delta_1)</th>
<th>(\delta_2)</th>
<th>(\delta_3)</th>
<th>(\delta_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>k = 5, (\mu = (-1,0,1,2,3))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PS</td>
<td>.9554</td>
<td>.9554</td>
<td>.9623</td>
<td>.9794</td>
</tr>
<tr>
<td>PI</td>
<td>.3730</td>
<td>.3730</td>
<td>.3906</td>
<td>.1465</td>
</tr>
<tr>
<td>PC</td>
<td>.3284</td>
<td>.3284</td>
<td>.3529</td>
<td>.1431</td>
</tr>
<tr>
<td>EI</td>
<td>.6270</td>
<td>.6270</td>
<td>.6094</td>
<td>.8535</td>
</tr>
<tr>
<td>EJ</td>
<td>.6270</td>
<td>.6270</td>
<td>.6094</td>
<td>.8535</td>
</tr>
<tr>
<td>ES</td>
<td>4.5812</td>
<td>4.5812</td>
<td>4.5714</td>
<td>4.8329</td>
</tr>
</tbody>
</table>
TABLE IV.5

Simulation results for the comparative performance of various selection procedures for the normal means problem (notation explained in Section 5) under simple ordering prior.

\(p^* = .900 \)

\[
\begin{array}{|c|c|c|c|c|}
\hline
k = 2, \mu = (-1,-2) & \delta_1 & \delta_2 & \delta_3 & \delta_4 \\
\hline
PS & 1.0000 & 1.0000 & 1.0000 & 1.0000 \\
PI & .5405 & .5349 & .2937 & .1722 \\
PC & .5405 & .5349 & .2937 & .1722 \\
EI & .8331 & .8387 & 1.3151 & 1.0904 \\
EJ & 2.2116 & 2.2340 & 3.4232 & 2.1578 \\
ES & .8331 & .8387 & 1.3151 & 1.0904 \\
\hline
k = 3, \mu = (-1,-2,1) & \delta_1 & \delta_2 & \delta_3 & \delta_4 \\
\hline
PS & .9932 & .9943 & .9957 & .9976 \\
PI & .5365 & .5349 & .2987 & .1190 \\
PC & .5297 & .5292 & .2944 & .1189 \\
EI & .8347 & .8363 & 1.3116 & 1.2154 \\
EJ & 2.2252 & 2.2316 & 3.4155 & 2.4919 \\
ES & 1.8279 & 1.8306 & 2.3073 & 2.2130 \\
\hline
k = 4, \mu = (-1,-2,1,0) & \delta_1 & \delta_2 & \delta_3 & \delta_4 \\
\hline
PS & .9921 & .9923 & .9973 & .9746 \\
PI & .5271 & .5269 & .2894 & .0873 \\
PC & .5192 & .5192 & .2867 & .0849 \\
EI & .8498 & .8500 & 1.3235 & 1.3077 \\
EJ & 2.2685 & 2.2693 & 3.4553 & 2.7474 \\
ES & 2.8390 & 2.8395 & 3.3207 & 3.2822 \\
\hline
k = 5, \mu = (-1,-2,1,0,2) & \delta_1 & \delta_2 & \delta_3 & \delta_4 \\
\hline
PS & .9906 & .9906 & .9958 & .9795 \\
PI & .5317 & .5316 & .2937 & .0711 \\
PC & .5223 & .5222 & .2895 & .0693 \\
EI & .8461 & .8462 & 1.3217 & 1.3593 \\
EJ & 2.2510 & 2.2514 & 3.4406 & 2.8830 \\
ES & 3.8341 & 3.8342 & 4.3173 & 4.3388 \\
\hline
\end{array}
\]
BIBLIOGRAPHY

Williams, D. A. (1971). A test for differences between treatment means when several dose levels are compared with a zero dose control. *Biometrics*, 27, 103-117.

REPORT DOCUMENTATION PAGE

1. REPORT NUMBER
Mimeograph Series #81-24

2. GOVT ACCESSION NO.

3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle)
Isotonic Procedures for Selecting Populations Better Than a Control under Ordering Prior

5. TYPE OF REPORT & PERIOD COVERED
Technical

6. PERFORMING ORG. REPORT NUMBER
Mimeo. Series #81-24

7. AUTHOR(S)
Shanti S. Gupta and Hwa-Ming Yang

8. CONTRACT OR GRANT NUMBER(S)
ONR N00014-75-C-0455

9. PERFORMING ORGANIZATION NAME AND ADDRESS
Purdue University
Department of Statistics
West Lafayette, IN 47907

10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS

11. CONTROLLING OFFICE NAME AND ADDRESS
Office of Naval Research
Washington, DC

12. REPORT DATE
July 1981

13. NUMBER OF PAGES
45

14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)

15. SECURITY CLASS. (of this report)
Unclassified

15a. DECLASSIFICATION/DOWNGRADING SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)
Approved for public release, distribution unlimited.

17. DISTRIBUTION STATEMENT (if different from Block 15)
ENT (of 'a': abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTE

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)
Selection procedure, Subset selection, P* - condition, Stepwise procedure, Ordering prior, Isotonic regression, Isotonic estimators, Random walk, Isotonic procedure, Monte Carlo comparisons.

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)
The problem of selecting a subset containing all populations better than a control under an ordering prior is considered. Three new selection procedures which satisfy a desirable basic requirement on the probability of a correct selection are proposed and studied. Two of the three procedures use the isotonic regression over the sample means of the k-treatments with respect to the given ordering prior. Tables of constants which are necessary to carry out the selection procedures with isotonic approach for the selection of unknown means of normal populations are given. The results including Monte Carlo studies indicate...
that, in general, the stepwise procedure δ_1, using isotonic estimators, is the best.