A BAYESIAN APPROACH TO THE SYMMETRIC MULTIPLE COMPARISONS PROBLEM IN THE TWO-WAY BALANCED DESIGN

by

Liwen Alice Sun
Purdue University and TRW, Inc.

Mimeograph Series #81-10

Department of Statistics
Division of Mathematical Sciences

May 1981

*This research was partially supported by the National Sciences Foundation under grant MCS 79-05815.
A BAYESIAN APPROACH TO THE SYMMETRIC MULTIPLE
COMPARISONS PROBLEM IN THE TWO-WAY BALANCED DESIGN

by

Liwen Alice Sun*
Purdue University and TRW, Inc.

ABSTRACT

A class of Bayes rules is constructed for the comparison of all pairs of means resulting from combinations of treatment levels in a balanced two-factor design. For each pair of means \(u_{ij}, u_{ij'},\) it is decided whether \(\eta = u_{ij} - u_{ij'}\) is positive, negative, or zero; losses for incorrect decision are linear in \(|\eta|\). When considered jointly, decisions made in the component pairwise comparison problems must be consistent with one another in the sense that they produce non-circular rankings of the cell means. The loss for incorrect decision in the overall problem is taken to be the sum of the component losses. Finally, the usual assumptions of independent normally distributed observations \(X_{ijk}\) with means \(u_{ij} = E(X_{ijk})\) and common error variance \(\sigma_e^2, 1 \leq i \leq r, 1 \leq j \leq c, 1 \leq k \leq K,\) are made. The prior distributions selected for this problem have the useful conjugate property that prior information about the magnitudes of contrasts for main effects and interactions in the \(u_{ij}\)'s, and for the magnitude of the variance \(\sigma_e^2,\) are pooled with similar information obtained from the data when forming the joint posterior density of the means \(u_{ij}\) and \(\sigma_e^2.\)

Each Bayes rule for the overall multiple comparisons problem is shown to result from the simultaneous applications of the corresponding

*This research was partially supported by the National Science Foundation under grant MCS 79-05815.
Bayes rules for all component pairwise comparison problems. A computer program for simultaneously implementing the component Bayes rules is constructed. An important feature of this program is the use of bounds on the posterior Bayes risk function which in many cases enable the action with minimum posterior risk to be chosen without having to explicitly calculate these posterior risks. Since exact calculation of the posterior risks requires numerical evaluation of complicated double and/or triple integrals, computer time is drastically reduced by use of these bounds. Nevertheless, the exact Bayes rules are expensive in terms of computer time. For this reason, a large-sample approximation to the Bayes rule is proposed which is much easier (and cheaper) to apply, and which performs similarly to the exact Bayes rule on a diversity of examples of data of moderate sample size (error d.f. = 15, 30) taken from standard statistical textbooks.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Pairwise Multiple Comparisons in One-Factor Designs</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Duncan and Waller's Bayesian Decision-Theoretic Approach</td>
<td>7</td>
</tr>
<tr>
<td>1.3</td>
<td>Multiple Comparisons in Balanced Two-Factor Designs</td>
<td>14</td>
</tr>
<tr>
<td>II</td>
<td>GENERALIZATION OF THE WALLER-DUNCAN FORMULATION TO TWO-FACTOR DESIGNS</td>
<td>21</td>
</tr>
<tr>
<td>2.1</td>
<td>The Decision Structure and Prior Distribution</td>
<td>22</td>
</tr>
<tr>
<td>2.2</td>
<td>Component Bayes Rules</td>
<td>30</td>
</tr>
<tr>
<td>III</td>
<td>PROPERTIES OF THE COMPONENT BAYES RULES</td>
<td>43</td>
</tr>
<tr>
<td>3.1</td>
<td>The Nature of the Component Bayes Rules</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>When $\sigma_A^2, \sigma_B^2, \sigma_{AB}^2$ and σ_e^2 are known</td>
<td></td>
</tr>
<tr>
<td>3.2</td>
<td>Properties of the Component Bayes Rules</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>in the General Model</td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>Mutual Consistency of the Component Bayes Rules</td>
<td>59</td>
</tr>
<tr>
<td>IV</td>
<td>ALGORITHMS FOR COMPUTING THE BAYES RULE</td>
<td>66</td>
</tr>
<tr>
<td>4.1</td>
<td>Algorithm for Computing $a_i, 1 \leq i \leq 3$, and $\Delta(\bar{T})$</td>
<td>67</td>
</tr>
<tr>
<td>4.2</td>
<td>Recursive Method for Computing $P(T)$</td>
<td>78</td>
</tr>
<tr>
<td>V</td>
<td>APPLICATION OF THE BAYES RULE</td>
<td>96</td>
</tr>
<tr>
<td>5.1</td>
<td>Full Application Procedure</td>
<td></td>
</tr>
<tr>
<td></td>
<td>with Description and Illustration</td>
<td>96</td>
</tr>
<tr>
<td>5.2</td>
<td>An Approximate Bayes Rule; Summary and Conclusion</td>
<td>109</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>115</td>
<td></td>
</tr>
<tr>
<td>APPENDICES</td>
<td>121</td>
<td></td>
</tr>
<tr>
<td>Appendix A</td>
<td>121</td>
<td></td>
</tr>
<tr>
<td>Appendix B</td>
<td>123</td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER I
INTRODUCTION

The purpose of this research is to develop and present a Bayes rule for the symmetric multiple comparisons problem in balanced two-factor designs. The model and solution developed here are a generalization of the model and solution of Duncan and Waller (1974) for one-factor designs. The proposed Bayesian procedure is presented in five chapters.

The three objectives of the present chapter are the following:

(i) to give a summary of previous approaches to the multiple comparisons problem in one-factor designs;

(ii) to discuss the one available approach to the multiple comparisons problem in two-factor designs, and to indicate the weaknesses of that approach;

(iii) to indicate the potential usefulness of the proposed Bayes rule.

1.1. Pairwise Multiple Comparisons in One-Factor Designs

The data for a multiple comparisons problem in balanced one-factor designs consists of independent observations \(X_{ij}, 1 \leq i \leq n, 1 \leq j \leq m,\) with

\[X_{ij} = u_i + e_{ij}, \quad 1 \leq i \leq n; \quad 1 \leq j \leq m.\] \hspace{1cm} (1.1.1)

Assuming that the errors \(e_{ij}\) are independent, identically distributed
$N(0, \sigma_e^2)$ random variables, a reduction of the data by sufficiency yields
the sufficient statistic

$$(\bar{X}, S^2) = (\bar{X}_1, \bar{X}_2, \ldots, \bar{X}_n, S^2),$$ \hspace{1cm} (1.1.2)

where the sample means $\bar{X}_1, \bar{X}_2, \ldots, \bar{X}_n$ from the n "cells" of the design are
independent, normally distributed variables with common variance σ_e^2/m, and with means

$$E(\bar{X}_i) = \mu_i, \quad 1 \leq i \leq n$$ \hspace{1cm} (1.1.3)

equal to the true cell means. Also, the sample variance S^2 is independent of $(\bar{X}_1, \bar{X}_2, \ldots, \bar{X}_n)$ and has distribution

$$S^2 \sim \frac{\sigma_e^2}{n(m-1)} \chi^2_{n(m-1)},$$ \hspace{1cm} (1.1.4)

where χ^2_v has the chi-square distribution with v degrees of freedom.

Given this data, the multiple comparisons problem is to make all
$N = \frac{1}{2}n(n-1)$ pairwise comparisons between the true cell means $\mu_1, \mu_2, \ldots, \mu_n$, where for each pair (μ_i, μ_j) of means, $i < j$, one of the following
three decisions is to be made:

$$d_{ij}^+: \text{ say } "u_i > u_j" ,$$

$$d_{ij}^0: \text{ say } "u_i = u_j"$$

\hspace{1cm} or "u_i and u_j are not significantly different", \hspace{1cm} (1.1.5)

$$d_{ij}^-: \text{ say } "u_i < u_j" .$$

The multiple comparisons problem is symmetric if all component comparisons between means u_i and u_j, leading to one of the decisions (1.1.5),
are regarded as being equally important.
Using concepts borrowed from hypothesis testing, the classical approaches to the multiple comparisons problem derive and compare procedures on the basis of their comparisonwise Type I and Type II error rates:

\[\alpha_{ij} = \text{comparisonwise Type I error rate for } u_i \text{ v.s. } u_j \]

\[= P\{\text{taking } d_{ij}^+ \text{ or } d_{ij}^- | u_i = u_j \} \quad (1.1.6) \]

and

\[\beta_{ij} = \text{comparisonwise Type II error rate for } u_i \text{ v.s. } u_j \]

\[= P\{\text{taking } d_{ij}^0 | u_i \neq u_j \} \quad (1.1.7) \]

However, since the individual comparisons are part of an overall summary of the given experiment, experimentwise error rates are also considered. For example,

\[\alpha_E = \text{experimentwise Type I error rate} \]

\[= P\{\text{taking } d_{ij}^+ \text{ or } d_{ij}^- \text{ for some pair } (u_i, u_j) | u_1 = u_2 = \ldots = u_n \}. \quad (1.1.8) \]

If the experiment has only \(n=2 \) treatments (cells), the comparisonwise and experimentwise Type I error rates are equal (i.e., \(\alpha_{12} = \alpha_E \)). In general, it follows from the Bonferroni inequality that

\[\alpha_E \leq \sum_{i<j} \alpha_{ij}, \quad (1.1.9) \]

although the right-hand side of (1.1.9) is typically a very crude bound for \(\alpha_E \).

If \(n>2 \), some true cell means can be equal and others can be unequal, leading to the need to evaluate experimentwise "Type I" error rates which give the probability of falsely saying \(d_{ij}^+ \) or \(d_{ij}^- \) for at least one pair \((u_i, u_j)\), \(i \neq j \), for which \(u_i = u_j \). Such "Type I" error
rates are midway, both in value and in the restrictiveness of their assumptions, between the comparisonwise (1.1.6) and experimentwise (1.1.8) extremes.

Classical multiple comparisons procedures are designed to control one (and sometimes more than one) of the above Type I error rates. Choosing a procedure to control the experimentwise Type I error rate α_E results in a procedure which has low (conservative) comparisonwise Type I error rates α_{ij}, and which also tends to have high comparisonwise Type II error rates whenever the true cell means u_i and u_j are not widely separated. On the other hand, controlling the comparisonwise Type I error rates α_{ij} at a fixed value (say $.05$) results in an experimentwise Type I error rate α_E which increases rapidly with the number n of means to be compared. However, procedures which control the α_{ij}'s typically have comparatively lower comparisonwise Type II error rates β_{ij}. The decision as to which type of Type I error rate to control, and the comparison of resulting procedures in terms of the other Type I (or "Type I") and Type II error rates, requires that one have fairly detailed knowledge of the types of patterns of the true cell means u_1, u_2, \ldots, u_n anticipated to occur for the given problem. Since such detailed information is usually not available, some procedures have been suggested which attempt to use the data to arrive at an insight into the pattern of true cell means u_1, \ldots, u_n which has actually occurred. One such approach will be discussed in Section 1.2.

Examples of the various types of classical multiple-comparison procedures are given in the following.
The Least Significant Difference (LSD) Procedure. The LSD procedure is a purely comparisonwise procedure, in that only the comparisonwise Type I error rates are controlled at a fixed value \(\alpha \) (typically .01, .05, or .10). For each pair of sample means, the LSD procedure decides:

\[
\begin{align*}
\text{d}_{ij}^+ & \quad \text{if} \quad \frac{\sqrt{m}(\bar{x}_i - \bar{x}_j)}{S} > \sqrt{2} t(\alpha, n(m-1)) , \\
\text{d}_{ij}^0 & \quad \text{if} \quad \frac{\sqrt{m}|\bar{x}_i - \bar{x}_j|}{S} \leq \sqrt{2} t(\alpha, n(m-1)) , \\
\text{d}_{ij}^- & \quad \text{if} \quad \frac{\sqrt{m}(\bar{x}_i - \bar{x}_j)}{S} < -\sqrt{2} t(\alpha, n(m-1)) ,
\end{align*}
\]

(1.1.10)

where \(t(\alpha, \gamma) \) is the \(100(1-\frac{\alpha}{2})^{th} \) percentile of the \(t \)-distribution with \(\gamma \) degrees of freedom.

Tukey's Honestly Significant Difference (HSD) Procedure. The HSD procedure controls the experimentwise Type I error \(\alpha_E \) at \(\alpha \). The procedure has the form (1.1.10) except that in place of \(\sqrt{2} t(\alpha, n(m-1)) \), the quantity \(q(\alpha, n, n(m-1)) \) is used, where \(q(\alpha, p, \gamma) \) is the \(100(1-\alpha)^{th} \) percentile of the studentized range for \(p \) means and \(\gamma \) degrees of freedom.

Scheffé Method (SSD). The Scheffé procedure also controls the experimentwise Type I error rate \(\alpha_E \), but is typically more conservative than the HSD procedure since the SSD method is intended to apply to all contrasts (not just pairwise contrasts) of means. The SSD procedure has the form (1.1.10) except that \([2(n-1)F(\alpha, n-1, n(m-1))]^{\frac{1}{2}} \) is used in place of \(\sqrt{2} t(\alpha, n(m-1)) \), where \(F(\alpha, \nu_1, \nu_2) \) is the \(100(1-\alpha)^{th} \) percentile of the \(F \)-distribution with \(\nu_1 \) and \(\nu_2 \) degrees of freedom. The SSD method also can be applied to unbalanced designs, correlated sample means, and general linear contrasts.
Fisher's Protected Least Significant Difference Procedure. In this procedure, the usual F test for $H_0: u_1 = u_2 = \cdots = u_n$ at a specified level of significance α^* is used as a preliminary screening device. If the F test fails to reject H_0, the decision d^0_{ij} is made for all pairs of means $(u_i, u_j), i < j$. Otherwise, the LSD procedure is used at a controlled comparisonwise Type I error rate of $\alpha_{ij} = \alpha, \text{all } i \neq j$. As a consequence of the preliminary F-test, it is guaranteed that $\alpha_E \leq \alpha^*$, thus α^* bounds the experimentwise Type I error rate α_E. Fisher's protected LSD is an example of an adaptive procedure.

Newman-Keuls Multiple Range Test (NKT). The NKT procedure has the form of the HSD procedure, with $q(\alpha, n_{ij}(\bar{x}), n(m-1))$ replacing $q(\alpha, n, n(m-1))$, where $n_{ij}(\bar{x})$ is the number of means between (and including) \bar{x}_i and \bar{x}_j, when the sample means $\bar{x}_k, 1 \leq k \leq n$, are arranged in ascending order. In addition, whenever the difference between \bar{x}_i and \bar{x}_j for some i,j is declared insignificant, all cell pairs of means \bar{x}_k and \bar{x}_λ which appear between \bar{x}_i and \bar{x}_j in the ascending order of sample means are also declared to have insignificant differences. The NKT procedure, like the Fisher protected LSD procedure, is an adaptive procedure having the property that $\alpha_E \leq \alpha$. It differs from the Fisher procedure in attempting to control the experimentwise "Type I" error rates (where $u_1 = u_2 = \cdots = u_n$ is possibly false, but yet groups of means are equal), rather than merely trying to bound α_E.

Another adaptive procedure similar to the NKT, and with similar goals, is Duncan's Multiple Range Test (Duncan 1947, 1951, 1955). Other multiple comparisons procedures, and the classical theory for comparing such procedures, can be found in the textbooks of Federer (1955),
Scheffé (1959), Miller (1966, 1977) and Lindman (1974), and also in review papers of Gill (1973), O'Neall and Wetherill (1971) and Thomas (1973). The last two papers provide extensive bibliographies.

1.2. **Duncan and Waller's Bayesian Decision-Theoretic Approach.**

The classical procedures described in Section 1.1 have in common the attempt to apply hypothesis testing (2 decision) concepts to what is clearly a multiple decision problem. It is not surprising, therefore, that in attempting to compare such procedures, one gets lost in a multitude of types (and rates) of error. Indeed, because the various procedures do not even fix the same kind of Type I error rate, comparing them on the basis of an assumed common rate of error is misleading, and has resulted in confusion in the literature.

Duncan (1961, 1965), building upon earlier theoretical work of Lehmann (1957) concerning multiple decision problems, attempts to formulate the multiple comparisons problem as a multiple decision problem. In a multiple decision formulation, all component decisions for pairs of means \((u_i, u_j)\) are viewed as a whole, and losses are assigned which evaluate how well the decision vector:

\[
d = (d_{12}, d_{13}, \ldots, d_{1n}, d_{23}, \ldots, d_{2n}, \ldots, d_{n-1,n})
\]

(1.2.1)

composed of decisions \(d_{ij}, i < j\) of (1.1.5) conforms to the true state of affairs as described by the vector

\[
\theta = [(u_1, \ldots, u_n), \sigma_e^2] = (u, \sigma_e^2)
\]

(1.2.2)

of true cell means and random error \(\sigma_e^2\). To keep the flavor of the multiple comparisons context, in which individual comparison decisions \(d_{ij}\) have importance in their own right, the formulation of the multiple
comparisons problem must clearly indicate how the overall loss due to the combined decision vector \(\mathbf{d} \) depends upon the component decisions \(d_{ij} \). To this end, Duncan uses an additive-loss model:

\[
L(\mathbf{d}) = \sum_{i<j} L_{ij}(\theta, d_{ij}),
\]

(1.2.3)

in which the overall loss for the decision \(\mathbf{d} \) is expressed as the sum of losses for the \(n(n-1)/2 \) component decisions \(d_{ij} \) which compare \(u_i \) to \(u_j \).

Note that in (1.2.3), the component loss \(L_{ij}(\theta, d_{ij}) \) only depends upon the decision vector \(\mathbf{d} \) through the decision \(d_{ij} \) actually made for that component problem. These properties (additivity and dependence of \(L_{ij}(\cdot, \cdot) \) only on \(d_{ij} \)) provide the clear indication of the contribution of the component decisions to the overall performance of \(\mathbf{d} \) that is desired.

Further, note that each of the classical multiple comparisons procedures discussed in Section 1.1 has the property that the form of the component decision rule is independent of the indices \(i \) and \(j \) of the means being compared. This symmetry, or exchangeability, with respect to the indices implies that the component problems themselves are viewed as being symmetric with respect to the indices. Without any prior opinion concerning the nature (cost, value, importance) of the treatment levels being compared in the design, such an assumption of symmetry is reasonable.

Indeed, the likelihood function \(p(\bar{\mathbf{x}}, \bar{S}^2 | \mathbf{u}, \mathbf{\sigma}^2) \) is symmetric in the cell indices. Let

\[
N_p(z | \eta, \Sigma) = \left[(2\pi)^p |\Sigma| \right]^{\frac{p}{2}} \exp\left\{-\frac{1}{2} (z-\eta)^\prime \Sigma^{-1} (z-\eta) \right\}
\]

(1.2.4)
be the density function of a p-variate normally distributed random vector \(\mathbf{z} \) with mean vector \(\mathbf{\eta} \) and covariance matrix \(\Sigma \). Let

\[
f(w|\nu, \tau) = \frac{w^{\frac{3}{2} \nu - 1} \exp\{-w/2\tau\}}{\Gamma(\frac{3}{2} \nu) (2\tau)^{\frac{3}{2} \nu}}, \quad w > 0,
\]

be the density function of a random variable \(w \sim \chi_{\nu}^2 \). Then, from the Section 1.1,

\[
p(\mathbf{\bar{x}}, \mathbf{S}^2 | u, \sigma_e^2) = N_n(\mathbf{\bar{x}} | u, \frac{\sigma_e^2}{m} \mathbf{I}_n) f(S^2 | n(m-1), \frac{\sigma_e^2}{n(m-1)}).
\]

Interchanging the indices is equivalent to transforming \(\mathbf{\bar{x}}, u \) to \(Q \mathbf{\bar{x}}, Q u \), where \(Q \) is an \(n \times n \) permutation matrix. It now follows from (1.2.4) and (1.2.6), and the fact that \(Q^{-1} Q = \mathbf{I}_n \), that

\[
p(Q \mathbf{\bar{x}}, S^2 | Q u, \sigma_e^2) = p(\mathbf{\bar{x}}, S^2 | u, \sigma_e^2)
\]

for all permutation matrices \(Q \).

If the decision problem is to be symmetric in the indices, then the loss function \(L(e, d) \) must be symmetric in the indices. The loss function (1.2.3) with

\[
L_{ij}(u, \sigma_e^2, d_{ij}^+) = \begin{cases}
0 & , \ u_i > u_j , \\
\chi_1 |u_i - u_j| & , \ u_i \leq u_j ,
\end{cases}
\]

\[
L_{ij}(u, \sigma_e^2, d_{ij}^0) = \chi_0 |u_i - u_j| ,
\]

\[
L_{ij}(u, \sigma_e^2, d_{ij}^-) = \begin{cases}
\chi_1 |u_i - u_j| & , \ u_i > u_j , \\
0 & , \ u_i \leq u_j ,
\end{cases}
\]

with \(\chi_1 > \chi_0 \), is Duncan's choice for such a symmetric loss function.
Finally, in Section 1.1, it was also mentioned that evaluation of competing multiple comparisons procedures would require some knowledge of the configuration of the means u_i in n-dimensional space, and that an investigator might hope to obtain such knowledge from the data. A Bayesian formulation of the decision problem, expressing prior information on y in the form of a prior distribution $p(y)$, and incorporating information about y from the data in terms of the posterior distribution $p(y|x, s^2, \sigma^2_e)$, is one intuitively appealing way to quantitatively provide the desired input. Duncan chooses the (conjugate) prior density

$$p(y|m_u, \sigma^2_u) = N_n(y|m_u, \sigma^2_u I_n), \quad (1.2.8)$$

where m_u is the "grand mean" of the population of u_i's and σ^2_u is the variance of that population. Here, 1_t represents the t-dimensional column vector, all of whose elements are equal to 1. It is easy to see that for any permutation matrix Q,

$$p(Qy|m_u, \sigma^2_u) = p(y|m_u, \sigma^2_u),$$

so that $p(y|m_u, \sigma^2_u)$ defined by (1.2.8) has the necessary property of being symmetric in the indices. Also note that the marginal distribution of \bar{x} is

$$p(\bar{x}|m_u, \sigma^2_u, \sigma^2_e) = N_n(\bar{x}|m_u, \sigma^2_e I_n + \sigma^2_u I_p), \quad (1.2.9)$$

which is the familiar Model II ANOVA distribution for \bar{x}.

Having formulated the multiple comparisons problem as a symmetric, multiple decision problem with additive loss, and having chosen a symmetric conjugate prior for y, Duncan uses the additive loss theorem of Lehmann (1957), specialized to his particular problem, to show that the Bayes rule....
\[\hat{\psi}(\bar{x}, S^2) = (\phi_{12}(\bar{x}, S^2), \ldots, \phi_{n-1,n}(\bar{x}, S^2)) \quad (1.2.10) \]

for the problem is that rule whose components \(\phi_{ij}(\bar{x}, S^2) \) are the Bayes rules for the component decision problems having data \((\bar{x}, S^2)\), actions \(\{d_{ij}^+, d_{ij}^0, d_{ij}^-\}\), loss \(L_{ij}(y, \sigma^2_e, d_{ij})\) defined by (1.2.7), and prior \(p(y|m_u, \sigma^2_u)\). In so doing, Duncan assumes that \(\sigma^2_u, \sigma^2_e\) are known. If these parameters are unknown, Duncan suggests estimating them in the usual way from an ANOVA table – thus defining an Empirical Bayes procedure. Waller (1967) and Waller and Duncan (1969, 1974) generalize this result by defining the prior \(p(u, \sigma^2_e)\) as a mixture

\[p(u, \sigma^2_e) = \int \int p(y|m_u, \sigma^2_u) p(\sigma^2_u, \sigma^2_e) p(m_u) \, d\sigma^2_u \, dm_u \quad (1.2.11) \]

of priors of the form (1.2.8), with the mixing distribution being the product \(p(\sigma^2_u, \sigma^2_e) p(m_u)\) of a certain truncated conjugate joint inverse chi-squared distribution \(p(\sigma^2_u, \sigma^2_e)\) for \(\sigma^2_u, \sigma^2_e\), and an arbitrary (not necessarily proper) distribution \(p(m_u)\) for \(m_u\).

All of the Bayes (or Empirical Bayes) rules resulting from this approach have the form of (1.1.10), with \(S^2\) replaced by a posterior estimate \(S^2_e\) of \(\sigma^2_e\), and with \(\sqrt{2} \, t(\alpha, n(m-1))\) replaced by the critical value

\[\sqrt{2} \, t(\kappa, \hat{F}^*, \nu_1, \nu_2) \quad (1.2.12) \]

This critical value depends on four arguments. The first is

\[\kappa = \frac{\kappa_1}{\kappa_0}, \]

which can be interpreted as reflecting the relative seriousness of comparisonwise Type I to comparisonwise Type II errors. The second is a posterior estimate

\[\hat{F}^*(\bar{x}, S^2) \]
of the ratio

$$F^* = \frac{m\sigma_u^2 + \sigma_e^2}{\sigma_e^2} \quad (1.2.13)$$

of the expected mean squares (EMS) of the between mean square and within mean square in the ANOVA table. The last two are the numerator and denominator degrees of freedom ν_1 and ν_2 which are, respectively, pooled from the degrees of freedom appropriate for the data and from prior degrees of freedom for estimates of $m\sigma_u^2 + \sigma_e^2$ and σ_e^2 given by the prior. If σ_u^2 and σ_e^2 are known,

$$\hat{F}^*(\bar{x}, S^2) = F^*, \quad \nu_1 = \nu_2 = \infty. \quad (1.2.14)$$

In the case of the prior of indifference on σ_u^2 and σ_e^2,

$$\hat{F}^*(\bar{x}, S^2) = F, \quad \nu_1 = n-1, \nu_2 = n(n-1), \quad (1.2.15)$$

where F is the usual F-statistic for testing $H_0: u_1 = u_2 = \cdots = u_n$. In the former case (1.2.14),

$$\sqrt{2} t(\bar{x}, \hat{F}^*, \nu_1, \nu_2) = t_{\infty}(\lambda)[F^*/(F^*-1)]^{\frac{1}{2}} \quad (1.2.16)$$

where $t_{\infty}(\lambda)$ is taken from tables in Duncan (1965). In general, the critical value (1.2.12) is found from tables in Waller and Duncan (1969).

As was anticipated, the Waller-Duncan Bayes rules are (except when σ_u^2 and σ_e^2 are known) adaptive, in that the critical value (1.2.12) depends upon the data. Indeed, when $\hat{F}^*(\bar{x}, S^2)$ is large (indicating heterogeneous treatment means u_1, u_2, \cdots, u_n), the critical value is reduced, converging, as $\hat{F}^* \to \infty$, to the critical value of the LSD procedure for some α. In other words, a large value of \hat{F}^* allows the investigator to concentrate on controlling the comparisonwise Type I error rates, thereby
decreasing comparisonwise Type II error rates and increasing the power of the individual comparisons. When \(\hat{F}^* \) is small (indicating homogeneous treatment means), the critical value is increased, thereby allowing the procedure to control the experimentwise Type I error rate. The fact that the data is used to select the type of Type I error rate to be controlled, and the fact that the critical value is a function of all the data rather than only the number \(n \) of treatments compared (in contrast with the HSD and SSD procedures) makes the Waller-Duncan Bayesian procedure intuitively attractive. Indeed, of the procedures discussed in Section 1.1, only the Fisher protected LSD procedure has the comparable property of incorporating the observed F-value into the decision process. However, in contrast to the Fisher protected LSD, which uses the observed F value only in a 0-1 "go, no go" fashion, the Waller-Duncan procedure uses the F value in a smooth fashion to choose the critical level.

There have been many simulation studies comparing the properties of multiple comparison procedures; for example, Chen (1960), Balaam (1963), Broadman and Moffitt (1971), Thomas (1974), Ury and Wiggins (1976), Keselman and Rogan (1978, 1979). However, only the simulation studies of Carmer and Swanson (1971, 1973), have included the Waller-Duncan procedures in the list of procedures to be compared. Although these studies are done from a classical perspective, using rates of error, and suffer from a failure to put all procedures on a common ground (e.g., fix a common kind of Type I error rate for all), they do have the merit of attempting to compare procedures in terms of their overall (over component pairwise comparisons) ability to make correct
decisions. Consequently, it is of interest to note that in the Carmer-Swanson (1973) study, the two types of adaptive procedure based on the sample F-statistic (namely, Fisher's protected LSD and the Waller-Duncan procedures) are said to exhibit the best overall performance. Relative to Fisher's LSD, the Waller-Duncan procedures are slightly more sensitive when the F statistic is large, and somewhat more conservative when the F-statistic is small. Although Carmer and Swanson suggest that the Fisher LSD procedure would be preferred because of its simplicity, they fail to note one disadvantage of this procedure. This disadvantage is that it is difficult to generalize the Fisher procedure in a meaningful way to designs more complex than single-factor designs. In contrast, it will be seen in the present study that the Waller-Duncan approach can be usefully generalized to two-factor designs.

1.3. Multiple Comparisons in Balanced Two-Factor Designs.

Suppose that data X_{ijk}, $1 \leq i \leq r$, $1 \leq j \leq c$, $1 \leq k \leq K$, are obtained from a balanced two-factor ANOVA design. Here, the index i, $1 \leq i \leq r$, indicates the level of the row factor (A); the index j, $1 \leq j \leq c$, indicates the level of the column factor (B), and k is the index of replication. It is assumed that

$$X_{ijk} = u_{ij} + e_{ijk} \quad (1.3.1)$$

Here, the u_{ij} are the true cell means resulting from the treatment combination of level i of factor A and level j of factor B. The errors e_{ijk} are assumed to be i.i.d. $N(0, \sigma^2_e)$ random variables.

By sufficiency, the data can be reduced to the sufficient statistic

$$(X, \sigma^2_e) = [((\bar{X}_{ij})), S^2_e] \quad (1.3.2)$$
where the \bar{x}_{ij}'s are the sample cell means, and S^2_e is the pooled sample variance defined by

$$rc(K-1)S^2_e = \sum_{i=1}^{r} \sum_{j=1}^{c} \sum_{k=1}^{K} (x_{ijk} - \bar{x}_{ij})^2.$$

Let

$$U = ((u_{ij})): r \times c$$

be the matrix of true cell means. For any $p \times q$ matrix A with columns $a(1), a(2), \ldots, a(q)$: $p \times 1$, define

$$\text{vec}(A) = \begin{pmatrix} a(1) \\ a(2) \\ \vdots \\ a(q) \end{pmatrix} : pq \times 1.$$ \hspace{1cm} (1.3.4)

Then it is well known that the likelihood of (X, S^2_e) is given by

$$p(X, S^2_e | U, \sigma^2_e)$$

$$= N_{rc}(\text{vec}(X) | \text{vec}(U), K^{-1} \sigma^2_e I_{rc}) \cdot f(S^2_e | rc(K-1), \frac{\sigma^2_e}{rc(K-1)}) \hspace{1cm} (1.3.5)$$

In the form (1.3.1), the multiple comparisons problem is identical to that for the one-factor problem discussed in Sections 1.1 and 1.2. For each pair of cell means u_{ij} and $u_{i'j'}$, one of the following three decisions is to be made:

$$d^+_{ij,i'j'}: \text{ say } "u_{ij} > u_{i'j'}"$$

$$d^0_{ij,i'j'}: \text{ say } "u_{ij} = u_{i'j'}" \text{ or } "u_{ij} \text{ and } u_{i'j'} \text{ are not significantly different}"$$

$$d^-_{ij,i'j'}: \text{ say } "u_{ij} < u_{i'j'}".$$

The choice of one of these three decisions defines the action space for
any component problem of the multiple decision problem.

However the two-factor nature of the design introduces the possibility of a simpler model than (1.3.1) — namely, the additive or no-interaction model

\[X_{ijk} = \mu + \alpha_i + \beta_j + \epsilon_{ijk}, \quad 1 \leq i \leq r, \quad 1 \leq j \leq c, \quad 1 \leq k \leq K. \quad (1.3.7) \]

Comparing (1.3.1) and (1.3.7), it is seen that

\[u_{ij} - u_{i'j'} = \alpha_i - \alpha_i' + \beta_j - \beta_j'. \quad (1.3.8) \]

Thus, under the model (1.3.7), comparing true cell means \(u_{ij} \) and \(u_{i'j'} \) for \(j = j' \) is the same as comparing the main effects \(\alpha_i \) and \(\alpha_i' \) for factor A. Similarly, when \(i = i' \), comparing \(u_{ij} \) and \(u_{i'j'} \) is the same as comparing main effects \(\beta_j \) and \(\beta_j' \) for factor B. In general, when \(i \neq i' \), \(j \neq j' \), comparison of \(u_{ij} \) and \(u_{i'j'} \) involves comparison of both types of main effects.

In the model (1.3.7), the differences \(\alpha_i - \alpha_{i'} \) are estimated by \(\bar{X}_i - \bar{X}_{i'} \), and the differences \(\beta_j - \beta_{j'} \) are estimated by \(\bar{X}_j - \bar{X}_{j'} \), where \(\bar{X}_i \) and \(\bar{X}_j \) are, respectively, the \(i \)th row mean and \(j \)th column mean of \(X \). Hence under the model (1.3.7), more accurate estimates of \(u_{ij} - u_{i'j'} \) can be made, thereby lessening the possibility of error when deciding among the actions (1.3.6).

In the literature, the following two-stage process for making multiple comparisons among the means \(u_{ij} \) has been recommended: See Anderson and McLean (1974), Hicks (1973):

Stage 1. Test the model (1.3.7) versus the model (1.3.1) using the usual ANOVA F-test for no interaction.

Stage 2. If the model (1.3.7) cannot be rejected by the data, perform separate (and independent) multiple comparisons among
the \(\alpha_i \)'s (equivalently among the means \(\bar{u}_{i.} \)) and among
the \(\beta_j \)'s (equivalently among the means \(\bar{u}_{.,j} \)). Otherwise,
compare the means \(u_{ij} \) directly by means of the usual
one-factor approaches.

Anderson and McLean, and Hicks, specifically advocate use of the Newman-
Keuls (NKT) approach in Stage 2, but actually each of the procedures in
Section 1.1 (and also the Waller-Duncan procedures in Section 1.2) is
applicable. If the \(\alpha_i \)'s and \(\beta_j \)'s are to be compared [Model (1.3.7) is
not rejected by the data], these procedures apply since \(\bar{X}_{i.}, 1 \leq i \leq r, \)
and \(\bar{X}_{.,j}, 1 \leq j \leq c, \) satisfy the assumptions of Section 1.1, where in the
former case \(n=r, m=ck, \) and in the latter case \(n=c, m=rk. \)

Unfortunately, this recommended approach has two major flaws. The
first, and most obvious, flaw is that comparison of \(u_{ij} \) and \(u_{i'j'} \) in-
volves both the difference \(\alpha_i - \alpha_{i'} \) and the difference \(\beta_j - \beta_{j'} \) when
\(i \neq i', j \neq j', \) and conclusions about the relative values of \(\alpha_i \) vs.
\(\alpha_{i'} \) and \(\beta_j \) vs. \(\beta_{j'} \) do not clearly combine to yield conclusions about
the relative values of \(u_{ij} \) and \(u_{i'j'} \) [See (1.3.8)]. For example, if
one decides that \(\alpha_i > \alpha_{i'} \), and \(\beta_j < \beta_{j'} \), any of the decisions \(d_{ij,i'j'}, d_{i,j,i'j'}, d_{ij,i'j'}. \)
is still possible for \(u_{ij} \) vs. \(u_{i'j'}: \)

\[\alpha_i - \alpha_{i'} = 5, \beta_j - \beta_{j'} = -3 \Rightarrow u_{ij} > u_{i'j'}, \]
\[\alpha_i - \alpha_{i'} = 5, \beta_j - \beta_{j'} = -5 \Rightarrow u_{ij} = u_{i'j'}, \]
\[\alpha_i - \alpha_{i'} = 5, \beta_j - \beta_{j'} = -7 \Rightarrow u_{ij} < u_{i'j'}. \]

It is possible to use the method to compare \(u_{ij} \) to \(u_{i'j} \) or \(u_{ij} \) to \(u_{ij'}, \)
but if the cell means to be compared do not lie in the same column, or
in the same row, no conclusions about \(u_{ij} \) vs. \(u_{i'j'} \) can be reached by
this method.
It should be noted that the two-stage procedure described above usually is used to choose the best combination of factor levels. However, if the best combination is \((i^*, j^*)\) and \(i \neq i^*, j \neq j^*\), it may still not be possible to decide whether to take the action \(d^+_{i^*j^*}\) or \(d^0_{i^*j^*}\) for comparing \(u_{i^*j^*}\) to \(u_{ij}\). Thus a minimal subclass of treatment combinations \((i, j)\) not significantly different from \((i^*, j^*)\) may not be identifiable.

The second objection to the above proposed method is that the initial test of no interaction can reach the wrong conclusion. This is particularly serious if the F-test makes a Type II error [fails to reject model (1.3.7) when model (1.3.1) is correct]. If interactions among the factors levels are present, the \(u_{ij}\)'s cannot possibly be compared by comparing row means \(\bar{u}_i\) and column means \(\bar{u}_j\), as the following 2x2 example indicates:

<table>
<thead>
<tr>
<th></th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

Here, \(u_{12} > u_{11}\), but \(\bar{u}_{2} < \bar{u}_{1}\). If, contrary to the interaction among the factors exhibited in this table, the F-test falsely declared no interaction, and if the multiple comparison procedure on the column means of the \(u_{ij}\)'s correctly decided that \(\bar{u}_{2} < \bar{u}_{1}\), the false conclusion \(d^+_{11,12}\) would result. As a consequence, the component comparison of \(u_{11}\) and \(u_{12}\) would result in a very serious Type III error (deciding \(d^+\) when \(d^-\) is correct, or vice versa).
The comparison of cell means under the additive model (1.3.7) has been relatively unexplored in the literature. It can be shown that this problem is equivalent to a problem in which the cell means \bar{x}_{ij} are replaced by the dependent mean-like quantities

$$\mu + \alpha_i + \beta_j = \bar{x}_{..} + \bar{x}_{i..} - \bar{x}_{..}, \quad 1 \leq i \leq r, 1 \leq j \leq c,$$

(1.3.9)

where

$$\bar{x}_{..} = \frac{1}{r} \sum_{i=1}^{r} \bar{x}_{i..} = \frac{1}{c} \sum_{j=1}^{c} \bar{x}_{..j}.$$

For this problem, the Scheffé (SSD) procedure is directly applicable. However, the Scheffé procedure is very conservative, and it should be possible to improve upon it. One could also use a LSD procedure, since the test for [see (1.3.8)]

$$H_0: \alpha_i - \alpha_i - \beta_j + \beta_j = 0$$

is still a t-test. This LSD procedure could be protected by a preliminary simultaneous F-test of

$$H_0: \alpha_1 = \alpha_2 = \cdots = \alpha_r = 0; \beta_1 = \beta_2 = \cdots = \beta_c = 0.$$

However, because of the dependence among the quantities (1.3.9), the properties of the LSD and protected LSD procedures would not be easy to derive, and would likely be qualitatively different than the corresponding properties of the LSD and protected LSD procedures in the one-factor model.

Even if a satisfactory classical multiple comparisons procedure for the additive model (1.3.7) is available, the objections raised against the use of the preliminary F-test in Stage I would still give compelling reasons against using the two-stage procedure. In
addition, it is doubtful whether the model (1.3.7) ever precisely describes real data. The real question that an investigator should be asking is whether the true configuration of the means \(u_{ij} \) is close enough to the model (1.3.7) that information from the row means \(\bar{x}_i \), \(\bar{x}_i \), and column means \(\bar{x}_j \), \(\bar{x}_j \) will provide useful information to help in comparing \(u_{ij} \) and \(u_{ij} \). This last point strongly argues for a Bayesian approach (see Section 1.2), and motivates the extension of Waller and Duncan's Bayesian approach to the two-factor case. This extension will be the subject of the remaining four chapters of this study.
CHAPTER II
GENERALIZATION OF THE WALLER-DUNCAN FORMULATION
TO TWO-FACTOR DESIGNS

In this chapter, Waller and Duncan's (1969, 1974) Bayesian decision theoretic formulation of the multiple comparisons problem in one-factor designs is generalized to two-factor designs. Two basic changes are made in the structure of the decision problem to take account of the multi-factorial nature of the design. First, symmetry is now defined by invariance of the decision problem over permutations of row indices and column indices. Second, the prior distribution is generalized to include prior opinion about the magnitudes of possible interactions between the row factor (A) and column factor (B). The new Bayesian decision structure is described in Section 2.1. In Section 2.2, it is shown that the Bayes decision rules can be given by simultaneous application of Bayes rules for the component pairwise comparison problems, and that such component Bayes rules have one of three basic forms, depending upon whether the means compared come from the same row (Type I), the same column (Type II) or from different rows and columns (Type III) of the design. An initial representation for these Bayes rules is also given in Section 2.2.
2.1. The Decision Structure and Prior Distribution

As remarked in Section 1.3, the data of a balanced two-factor design with normally distributed errors can be reduced by sufficiency to (X, S^2_e), or equivalently to (X, SSE), where $X = ((\bar{x}_{ij}))$ is the matrix of sample means \bar{x}_{ij} for the cells, $1 \leq i \leq r, 1 \leq j \leq c$, and where

$$SSE = rc(K-1)S^2_e$$

is the error sum of squares obtained from the usual ANOVA table. Here, $K = \text{the number of replications per cell}$.

The likelihood function for (U, σ^2_e) obtained from (X, SSE) is

$$p(X, SSE|U, \sigma^2_e) = N_{rc} (\text{vec}(X)|\text{vec}(U), K^{-1} \sigma^2_e I_{rc}) f(SSE|rc(K-1), \sigma^2_e), (2.1.1)$$

where $U = ((u_{ij}))$ is the matrix of true cell means, and the functions $N_n(\cdot|\cdot, \cdot), f(\cdot|\cdot, \cdot)$ are defined by (1.2.4) and (1.2.5) respectively.

It sometimes will be notationally convenient to index the cell means \bar{x}_{ij}, u_{ij} by the index t of the location of these means in vec(X), vec(U), respectively. Thus, for example, u_{ij} will be alternatively denoted by u_{t}, where

$$t = (j-1)r + i, \quad 1 \leq i \leq r, 1 \leq j \leq c. \quad (2.1.2)$$

Conversely, the t-th coordinate u_t of vec(U) is the (i,j)th coordinate of U, where

$$i = t - r \lceil \frac{t-1}{r} \rceil, \quad j = \lceil \frac{t-1}{r} \rceil + 1, \quad t=1,2,\ldots,n, \quad (2.1.3)$$

$n = rc$, and $[v]$ is the greatest integer $\leq v$. Note from (2.1.3) that u_{t_1} and u_{t_2} correspond to cell means u_{ij_1}, u_{ij_2} in the same row of U (i.e. $i_1 = i_2$) if and only if $t_1 (\text{mod } r) = t_2 (\text{mod } r)$, while u_{t_1} and u_{t_2}
correspond to cell means in the same column of U if and only if
\[
\begin{bmatrix}
\frac{t_1-1}{r-1}
\end{bmatrix} = \begin{bmatrix}
\frac{t_2-1}{r-1}
\end{bmatrix}.
\]

Under the above notational conventions, the action space for the problem of comparing all pairs of means (u_{t_1}, u_{t_2}), $t_1 \neq t_2$ from $\text{vec}(U)$ consists of vectors
\[
d = (d_{12}, d_{13}, \ldots, d_{t_1t_2}, \ldots, d_{n-1,n}),
\]
whose components $d_{t_1t_2}$, $1 \leq t_1 < t_2 \leq n$, can be any one of the following component actions:

\[
d_{t_1t_2}^+ : \text{say } "u_{t_1} > u_{t_2}",
\]

\[
d_{t_1t_2}^0 : \text{say } "u_{t_1} = u_{t_2}" \text{ or } "u_{t_1} \text{ and } u_{t_2} \text{ are not significantly different},"
\]

\[
d_{t_1t_2}^- : \text{say } "u_{t_1} < u_{t_2}".
\]

The possible component actions are identical to those considered in Equation (1.3.6) in Section 1.3.

One aspect of the action space not emphasized in Section 1.2 is that action vectors d with inconsistent component actions are to be excluded from the action space. An action vector d has inconsistent components if there exist indices t_1, t_2, t_3 for which any one of the following assertions is true:

(i) $d_{t_1t_2} = d_{t_1t_2}^+, d_{t_2t_3} = d_{t_2t_3}^+, d_{t_1t_3} \neq d_{t_1t_3}^+$,

(ii) $d_{t_1t_2} = d_{t_1t_2}^-, d_{t_2t_3} = d_{t_2t_3}^-, d_{t_1t_3} \neq d_{t_1t_3}^-$.
(iii) \(d_{t_1 t_2} = d^{+}_{t_1 t_2}, d_{t_2 t_3} = d^{0}_{t_2 t_3}, d_{t_1 t_3} = d^{-}_{t_1 t_3} \),

(iv) \(d_{t_1 t_2} = d^{-}_{t_1 t_2}, d_{t_2 t_3} = d^{0}_{t_2 t_3}, d_{t_1 t_3} = d^{+}_{t_1 t_3} \).

The above definition of inconsistency is motivated by the transitivity property of the orderings \(< \) and \(\leq \) for real numbers.

Paralleling Section 1.2, the loss for taking action vector \(\overrightarrow{d} \) when the true state of nature is \(\theta = (U, \sigma^2) \) is defined to be the sum

\[
L(\theta, \overrightarrow{d}) = \sum_{1 \leq t_1 < t_2 \leq n} L_{t_1 t_2}(\theta, d_{t_1 t_2}) \tag{2.1.6}
\]

of the losses for the component actions \(d_{t_1 t_2} \), defined in (2.1.5), where

\[
L_{t_1 t_2}(\theta, d^{+}_{t_1 t_2}) = \left\{ \begin{array}{ll}
0, & \text{if } u_{t_1} > u_{t_2}, \\
\chi_1 |u_{t_1} - u_{t_2}|, & \text{if } u_{t_1} \leq u_{t_2}
\end{array} \right.
\]

\[
L_{t_1 t_2}(\theta, d^{0}_{t_1 t_2}) = \chi_0 |u_{t_1} - u_{t_2}|
\]

\[
L_{t_1 t_2}(\theta, d^{-}_{t_1 t_2}) = \left\{ \begin{array}{ll}
\chi_1 |u_{t_1} - u_{t_2}|, & \text{if } u_{t_1} > u_{t_2}, \\
0, & \text{if } u_{t_1} \leq u_{t_2}
\end{array} \right.
\tag{2.1.7}

The decision structure for the multiple comparisons problem for the two-factor design is now complete. Because all component loss functions (2.1.7) have identical form, it is apparent from (2.1.6) that the loss function \(L(\theta, \overrightarrow{d}) \) is invariant (symmetric) under permutation of either the row indices \(i \) or column indices \(j \) of the design. To demonstrate that the likelihood function (2.1.1) is similarly symmetric under permutation of row and column indices, it is sufficient to show that
\[p(Q_1 X Q_2, \sigma_e^2 | U, \sigma_e^2) = p(X, S_e^2 | U, \sigma_e^2) \]
(2.1.8)

for all \(X, U \), and all permutation matrices \(Q_1 : r \times r, Q_2 : c \times c \). It is well known that

\[\text{vec}(Q_1 A Q_2) = (Q_2 \otimes Q_1) \text{vec}(A) \]
(2.1.9)

for any matrix \(A : r \times c \), where "\(\otimes \)" is the Kronecker product. Using the fact that \(Q_2 \otimes Q_1 \) is an \(n \times n \) orthogonal matrix, the result (2.1.8) now follows directly from (2.1.1), (2.1.9) and Theorem 1.3.2 of Bickel and Doksum (1977).

Attention can now be turned to finding a prior distribution for \(\theta = (U, \sigma_e^2) \) which is symmetric under row and column permutations, and which incorporates prior opinions about the magnitudes of the interactions (if any) between the row and column factors.

We will use prior distributions for \((U, \sigma_e^2) \) that are conjugate to the model (2.1.1). This will allow prior opinion about the magnitudes of main effects, interactions and error to be pooled with sample information (taken from the usual ANOVA table) in forming a posterior distribution for \((U, \sigma_e^2) \). Although the model (2.1.1) is intended to be a Model I ANOVA representation, where the \(u_{ij} \)'s are regarded as fixed unknown constants, the fact that the \(u_{ij} \)'s in a Bayesian approach are given a joint (prior) distribution allows us to utilize Model II theory in constructing and analyzing such a prior model. In Model II ANOVA, the elements \(u_{ij} \) of \(U \) are assumed to have the joint density defined by

\[\text{vec}(U) \sim N_n(\mu 1_n, \Sigma_U), \]

where \(\mu \) is any constant,
\[
\Sigma_u = \sigma_A^2 [I_c I_c] + \sigma_B^2 [I_c \otimes I_r] + \sigma_{AB}^2 [I_c \otimes I_r],
\]
(2.1.10)

and \(\sigma_A^2, \sigma_B^2, \sigma_{AB}^2\) are nonnegative constants. In such a case, it is known
that the marginal distribution of \(X\) is given by
\[
\text{vec}(X) \sim N(\mu^n, \Sigma_X),
\]
(2.1.11)

where
\[
\Sigma_X = \Sigma_u + \frac{\sigma_e^2}{k} I_n.
\]

Define \(H_x\) to be any \(k\times k\) orthogonal matrix whose first row is
\[
\frac{1}{\sqrt{2}} (1,-1,0,\ldots,0)
\]
and whose \(k\)-th row is \(-\frac{1}{\sqrt{2}} I_k\). Using (2.1.10), the definition of \(H_x\), and
known facts about Kronecker products, it is straightforward to show that
the matrix \((H_C^- \otimes H_r^-)\) is an \(n\times n\) orthogonal matrix whose columns are eigen-
\[\text{vectors of } \Sigma_X.
\]

Also, the distinct eigenvalues of \(K \Sigma_X\) are
\[
E_A = c \sigma_A^2 + \sigma_{AB}^2 + \sigma_e^2, \\
E_B = r \sigma_B^2 + \sigma_{AB}^2 + \sigma_e^2, \\
E_{AB} = \sigma_{AB}^2 + \sigma_e^2,
\]
(2.1.12)
having respective multiplicities \(r-1\), \(c-1\), and \((r-1)(c-1)\); plus one
additional eigenvalue \(E_A + E_B - E_{AB}\) of multiplicity 1. The quantities
\(E_A, E_B, E_{AB}\) are recognizable as the expected values of the mean squares
MSA, MSB, MSAB for A, B and AB, respectively, that would appear in the
usual ANOVA table for the two-factor design under model II assumptions.

The columns of \((H_C^- \otimes H_r^-)\) are also eigenvectors for \(\Sigma_u\). The distinct
eigenvalues of \(K \Sigma_u\) are \(E_A - \sigma_e^2, E_B - \sigma_e^2, E_{AB} - \sigma_e^2,\) and \(E_A + E_B - E_{AB} - \sigma_e^2).\)
Since $H_c \otimes H_r$ is a constant (known) matrix, Σ_u depends functionally only upon E_A, E_B, E_{AB} and σ_e^2; that is,

$$\Sigma_u = \Sigma_u(E_A, E_B, E_{AB}, \sigma_e^2).$$

For Model II ANOVA, Box and Tiao (1973) define a class of conjugate prior distributions for E_A, E_B, E_{AB} and σ_e^2

$$g(E|S,f) = \frac{(S)^{\frac{3f}{2}} \exp\left(-\frac{S}{E}\right)}{E^{\frac{3f}{2}} + 1 \Gamma\left(\frac{f}{2}\right)^2 \frac{3f}{2}}, \quad E > 0. \quad (2.1.13)$$

The functions (2.1.13) define density functions when $S > 0$, $f > 0$. Indeed, $g(E|S,f)$ is a member of the family of inverse chi-squared densities. These densities form a class of conjugate prior densities for the family of chi-squared densities (1.2.5). The constant S may be thought of as being a sample sum of squares from a previous experiment which yielded an estimate of E. The constant f can be regarded as the degrees of freedom for S in this prior experiment - that is, as a measure of the strength of our prior belief. If a prior estimate S of E is not available, then the Jeffreys' prior of indifference

$$g(E|0,0) = \frac{1}{E}, \quad E > 0 \quad (2.1.14)$$

for scale parameters can be used. The function $g(E|0,0)$ is not a density function, but can be regarded as the limiting function of (2.1.13) as S and f approach 0.
Define

$$g(E_A, E_B, E_{AB}, \sigma_e^2 | \Sigma_p, f)$$

$$= g(E_A | SSA_p, f) g(E_B | SSB_p, f_B) g(E_{AB} | SSAB_p, f_{AB}) g(\sigma_e^2 | SSE_p, f_p)$$

(2.1.15)

where

$$\Sigma_p = (SSA_p, SSB_p, SSAB_p, SSE_p)^\prime, \quad f = (f_A, f_B, f_{AB}, f_e)^\prime.$$

Let

$$\Xi = (E_A, E_B, E_{AB}, \sigma_e^2)^\prime, \quad \mathcal{E} = \{\Xi : 0 < \sigma_e^2 < E_{AB} < E_A, E_B\}.$$

(2.1.16)

By (2.1.12), any density for Ξ can be positive only when $\Xi \in \mathcal{E}$. Thus, the prior density for Ξ is defined to be the truncation of the joint density $g(\Xi | \Sigma_p, f)$ of (2.1.15) to the region \mathcal{E}. That is,

$$\pi(\Xi | \Sigma_p, f) = \begin{cases}
Dg(\Xi | \Sigma_p, f), & \text{if } \Xi \in \mathcal{E}, \\
0, & \text{otherwise},
\end{cases}$$

(2.1.17)

where

$$D = D(\Sigma_p, f) = \begin{cases}
\left[\int_{\mathcal{E}} g(\Xi | \Sigma_p, f)d\Xi \right]^{-1}, & \text{if } f_A, f_B, f_{AB}, f_e > 0, \\
1, & \text{if } f_A \text{ or } f_B \text{ or } f_{AB} \text{ or } f_e = 0.
\end{cases}$$

If $f_A, f_B, f_{AB}, f_e > 0$, the function (2.1.17) is a prior joint density function for Ξ. Otherwise, (2.1.17) is a formal (diffuse, improper) prior. Box and Tiao (1973) note that under Model II ANOVA assumptions, the family of distributions (2.1.17) is conjugate to the family of joint distributions of the sums of squares SSA, SSB, SSAB, SSE in the usual
ANOVA table obtained from \((X, SSE)\). Thus, the posterior density of \(E\) given \((X, SSE)\) is
\[
p(E|X, SSE) = \pi(E|SSE^*, f^*)
\]
(2.1.18)
where
\[
SSE^* = (SSA^*, SSB^*, SSAB^*, SSE^*)' = (SSA_p + SSA, SSB_p + SSB, SSAB_p + SSAB, SSE_p + SSE)',
\]
\[
f_* = (f_A^*, f_B^*, f_{AB}^*, f_e^*)',
\]
\[
= (f_A + r - 1, f_B + c - 1, f_{AB} + (r - 1)(c - 1), f_e + rc(K - 1))'.
\]
(2.1.19)

It is obvious that when \(K = 1\), the prior density of \(\sigma_e^2\) should be of the form (2.1.13). In this problem, \(\theta = (U, \sigma_e^2)\) is the parameter of interest, and \(E_A, E_B, E_{AB}\) (and also \(\mu\)) serve as variables of integration (hyper-parameters) by which to define the family of prior distributions for \(\theta\) as
\[
\lambda(\theta|SS_p, f) = \lambda(U, \sigma_e^2|SS_p, f)
\]
\[
= \int_{\sigma_e^2} \int_{E_{AB}} \int_{E_{AB}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} N_n(\text{vec}(U)|\mu|n, \Sigma_U(E)) \cdot \pi(E|SS_p, f) h(\mu) d\mu dE_A dE_B dE_{AB}
\]
(2.1.20)

for \((U, \sigma_e^2)\). In (2.1.20), \(h(\mu)\) is permitted to be any probability density function on \((-\infty, \infty)\), or even the indifference prior \(h(\mu) \equiv 1, -\infty < \mu < \infty\). The matrix \(\Sigma_U(E)\) is defined by (2.1.10) and (2.1.12).

To show that the family of prior distributions (2.1.20) is symmetric under row and column permutations of \(U\), it is enough [see (2.1.1)] to demonstrate that
\[
N_n(\text{vec}(U)|\mu|n, \Sigma_U) = N_n(\text{vec}(Q U Q_2)|\mu|n, \Sigma_U).
\]
(2.1.21)
Note that for any integer $k > 0$, and any $k \times k$ permutation matrix Q,

$$Q I_k = I_k, Q I_k Q^T = I_k.$$

The equality (2.1.21) now follows from (2.1.9), (2.1.10) and (1.2.4).

Having defined the data (X, SSE), parameter $\Theta = (U, \sigma^2_e)$, likelihood function $p(X, SSE|U, \sigma^2_e)$, actions d, loss function $L(\Theta, d)$, and prior distribution $\lambda(\Theta|SS_p, f)$, we have completed our formulation of the multiple comparisons problem for the means in a balanced two-factor design as a Bayesian multiple decision problem. Further, this Bayesian decision problem has been shown to be symmetric under permutation of row and column indices of X and U, a fact that is exploited in Section 2.2.

2.2. Component Bayes Rules

Any component problem of the multiple decision problem described in Section 2.1 can be formally defined as follows:

Data: (X, SSE);

Parameter Space: $\Theta = \{ \Theta = (U, \sigma^2_e) : U$ a real $r \times c$ matrix, $\sigma^2_e > 0 \}$;

Likelihood Function: $p(X, SSE|\Theta) = p(X, SSE|U, \sigma^2_e)$ defined by (2.1.1);

Actions: $d^+_{t_1t_2}, d^0_{t_1t_2}, d^-_{t_1t_2}$ defined by (2.1.5);

Loss Function: $L(\Theta, d)_{t_1t_2}$ defined by (2.1.7);

Prior Density: $\lambda(\Theta) = \lambda(\Theta|SS_p, f)$ defined by (2.1.20).

Except where it is necessary to identify a particular component problem, we will omit the subscripts t_1, t_2 on the actions and loss function.

Thus, respectively,

$$d^+, d^0, d^- = d^+_{t_1t_2}, d^0_{t_1t_2}, d^-_{t_1t_2}; L(\Theta, d) = L_{t_1t_2}(\Theta, d_{t_1t_2}).$$
The component Bayes Rule $\varphi^{(\lambda)}(X,\text{SSE}) = \varphi^{(\lambda)}_{t_1 t_2}(X,\text{SSE})$ can be described as a 3-dimensional vector of probabilities,

$$(\varphi^{(\lambda)}(\cdot))^+=\varphi^{(\lambda)}(0),\varphi^{(\lambda)}(-),$$

for taking actions d^+, d^0, d^- when (X,SSE) is observed. It follows from the theory of Bayes decision procedures that

$$\varphi^{(\lambda)}(X,\text{SSE}) = \begin{cases}
(1,0,0), & \text{if } r^{(\lambda)}(d^+) < r^{(\lambda)}(d^0), r^{(\lambda)}(d^-), \\
(0,1,0), & \text{if } r^{(\lambda)}(d^0) < r^{(\lambda)}(d^+), r^{(\lambda)}(d^-), \\
(0,0,1), & \text{if } r^{(\lambda)}(d^-) < r^{(\lambda)}(d^+), r^{(\lambda)}(d^0),
\end{cases}$$

(2.2.1)

where

$$r^{(\lambda)}(d) = r^{(\lambda)}(d|X,\text{SSE}) = \int \mathcal{L}(\theta,d)\lambda(\theta|X,\text{SSE})d\theta$$

(2.2.2)

is the posterior Bayes risk for the component problem. Here

$$\lambda(\theta|X,\text{SSE}) = \frac{p(X,\text{SSE}|\theta)\lambda(\theta)}{\int \Theta p(X,\text{SSE}|\theta)\lambda(\theta)d\theta} = \frac{p(X,\text{SSE},\theta)}{p(X,\text{SSE})}$$

(2.2.3)

is the posterior density of θ. If two or more actions yield the same minimum posterior Bayes risk, $\varphi^{(\lambda)}(X,\text{SSE})$ randomizes among these actions. However, it is shown in Chapter 3 that such ties have probability zero [over the distribution of (X,SSE) given θ] for all θ. Hence, $\varphi^{(\lambda)}(X,\text{SSE})$ can be described as a nonrandomized decision rule.

Our motivation for deriving the component Bayes rules comes from the following theorem.

Theorem 2.2.1. Simultaneous application of the component Bayes rules $\varphi^{(\lambda)}_{t_1 t_2}(X,\text{SSE})$ in all component problems, $1 \leq t_1 < t_2 \leq n$, yields the Bayes rule for the multiple comparisons decision problem of Section 2.1.
Proof In Section 3.3 of Chapter 3, it will be shown that simultaneous application of the component Bayes rules yields consistent action vectors \(\gamma \) (see Section 2.1 for the definition of consistent action vectors) with probability one, for all \(\theta \in \Theta \). [Here, the probability referred to is taken over the conditional distribution of \((X, SSE)\) given \(\theta \).] The assertion of the theorem is now an immediate consequence of the additive structure (2.1.6) of the experimentwise loss function \(L(\theta, \gamma) \) and Duncan's (1965) Additive Loss Theorem. \(\square \)

We now seek to simplify the form of the posterior Bayes risk function (2.2.2). Recall that

\[
\lambda(\theta) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} p(U|\mu, \xi)h(\mu)\pi(\xi) d\mu dE_A dE_B dE_{AB},
\]

where

\[
\pi(\xi) = \pi(\xi|SS_p, f^*), \quad p(U|\mu, \xi) = N_n(\text{vec}(U)|\mu_1^T, \Sigma_u(\xi)). \quad (2.2.4)
\]

Thus, in a formal sense (since neither \(\pi(\xi) \) nor \(h(\mu) \) need to be proper densities), \(p(X, SSE, \theta) \) in Equation (2.2.3) is the marginal density of \(X, SSE, \theta \) obtained from the joint density

\[
p(X, SSE, U, \mu, \xi) = p(X, SSE|U, E_{\xi}^2) p(U|\mu, \xi) h(\mu) \pi(\xi).
\]

However, using an obvious notation, it is also true that

\[
p(X, SSE, U, \mu, \xi) = p(U|X, SSE, \mu, \xi) p(\mu|X, SSE, \xi) p(\xi|X, SSE) p(X, SSE). \quad (2.2.5)
\]

Recall from Section 2.1, Equation (2.1.18), that

\[
p(\xi|X, SSE) = \pi(\xi|SS^*, f^*),
\]

where \(SS^* \) and \(f^* \) are defined by (2.1.19). Also, from (2.1.1) and (2.2.4),

\[
p(X, U|SSE, \mu, \xi) = N_n(\text{vec}(X)|\text{vec}(U), K^{-1} \sigma_{\xi}^2 I_n) N_n(\text{vec}(U)|\mu_1^T, \Sigma_u(\xi)),
\]
from which standard results about the multivariate normal distribution yield
\[p(U|X, \text{SSE}, \mu, \Sigma) = N_n(\text{vec}(U)|\mu \psi(E)I_n + (I_n - \psi(E))\text{vec}(X), \psi(E)\Sigma u(E)), \] (2.2.6)
where
\[\psi(E) = \frac{\sigma^2}{k} (\Sigma u(E) + \frac{\sigma^2}{k} I_n)^{-1}. \] (2.2.7)

From (2.1.5), the component loss function \(L_{t_1} l_{t_2}(\theta, d_{t_1} l_{t_2}) \) for any component problem depends upon \(\theta \) only through
\[\eta = u_{t_1} - u_{t_2}. \] (2.2.8)

Further, it is apparent from (2.2.6) that the conditional distribution of \(\eta \) given \(X, \text{SSE}, \mu, \Sigma \) is a normal distribution, independent of \(\text{SSE} \), determined by its conditional mean \(m(X, \mu, \Sigma) \) and conditional variance \(\sigma^2(\Sigma) \). [That the conditional variance of \(\eta \) is independent of \(X \) and \(\mu \) is obvious from (2.2.6).] Thus, from (2.2.2), (2.2.3), (2.2.5), and (2.2.6),
\[r(\lambda)(d) = \int L(\eta, d) \lambda(\eta|X, \text{SSE}) d\eta, \] (2.2.9)
\[\lambda(\eta|X, \text{SSE}) \]
\[= \int \int \int N_1(\eta|m(X, \mu, \Sigma), \sigma^2(\Sigma)) p(\mu|X, \text{SSE}, \Sigma) \pi(\Sigma|\text{SS}^*, f^*) d\eta \Sigma d\mu. \] (2.2.10)

In (2.2.9), we have now modified our notation for the component loss function to reflect the fact that it depends on \(\theta \) only through \(\eta \).

One last reduction is possible. In Section 2.1, it was noted that the columns of \(H_c \otimes H_r \) are eigenvectors of
\[\Sigma_\chi(\xi) = \Sigma_u(\xi) + \frac{\sigma^2}{K} I_n. \]

Since \(I_n \) is proportional to the last column of \(H_c \otimes H_\gamma \), it follows that
\[
(\Sigma_u(\xi) + \frac{\sigma^2}{K} I_n) I_n = \gamma(\xi) I_n,
\]
where \(\gamma(\xi) \) is the eigenvalue of \(\Sigma_\chi(\xi) \) corresponding to \(I_n \). Thus, from (2.2.7),
\[
\mu_\psi(\xi) I_n = \frac{\mu \sigma^2}{\kappa_\gamma(\xi)} I_n. \tag{2.2.11}
\]

Since
\[
\eta = u_{t_1} - u_{t_2} = (u_{t_1} - \frac{\mu \sigma^2}{\kappa_\gamma(\xi)}) - (u_{t_2} - \frac{\mu \sigma^2}{\kappa_\gamma(\xi)}),
\]
it follows from (2.2.6) and (2.2.11) that the conditional mean \(m(X, \xi, \xi) \) of \(\eta \) does not depend upon \(\mu \); that is,
\[
m(X, \xi, \xi) = m(X, \xi).
\]

Consequently, the integral over \(\mu \) can be taken in (2.2.10), yielding
\[
\lambda(\eta|X, SSE) = \int_{\xi} N_1(\eta|m(X, \xi), \sigma^2(\xi)) \pi(E|SS*, f*) d\xi. \tag{2.2.12}
\]

The component Bayes rule can now be determined from (2.2.1), (2.2.9) and (2.2.12), once we have identified the functional form of \(m(X, \xi) \) and \(\sigma^2(\xi) \). This is not an easy exercise, so that it is fortunate that we need only make this calculation for three component problems, as shown by the following argument.

Recall that the decision problem in Section 2.1 was shown to be symmetric (invariant) in the row and column indices. If the cells \((i_1, j_1), (i_2, j_2)\) whose means are to be compared come from the same row \((i_1 = i_2 = i)\), choose a permutation \(\rho \) of the row indices such that \(\rho(i) = 1 \), and a
permutation τ of the column indices such that $\tau(j_1) = 1$, $\tau(j_2) = 2$.
Choose the $r \times r$ permutation matrix Q_1 and the $c \times c$ permutation matrix Q_2
such that these matrices act to permute the rows and columns of X (and U) in the manner specified by ρ and τ respectively. Then, by symmetry of the problem,

$$
\varphi^{(\lambda)}(i,j_1),(i,j_2)(X,SSE) = \varphi^{(\lambda)}(1,1),(1,2)(Q_1XQ_2,SSE).
$$

Similarly, if the cells $(i_1,j_1), (i_2,j_2)$ come from the same column
$(j_1 = j_2 = j)$, appropriate choice of ρ, τ and the corresponding permutation
matrices Q_1, Q_2 shows that

$$
\varphi^{(\lambda)}(i_1,j),(i_2,j)(X,SSE) = \varphi^{(\lambda)}(1,1),(2,1)(Q_1XQ_2,SSE).
$$

Finally, if the cells come neither from the same row nor from the same column $(i_1 \neq i_2, j_1 \neq j_2)$,

$$
\varphi^{(\lambda)}(i_1,j_1),(i_2,j_2)(X,SSE) = \varphi^{(\lambda)}(1,1),(2,2)(Q_1XQ_2,SSE).
$$

Thus, all **Type I component Bayes rules** $\varphi^{(\lambda)}(X,SSE)$, corresponding to
cells $(i_1,j_1),(i_2,j_2)$ in the same row $(i_1=i_2=i)$ can be obtained from
$\varphi^{(\lambda)}(1,1),(1,2)(X,SSE)$. Similarly, all **Type II component Bayes rules**, cor-
responding to cells in the same column $(j_1=j_2=j)$ can be obtained from
$\varphi^{(\lambda)}(1,1),(2,1)(X,SSE)$. Finally, all **Type III component Bayes rules**, cor-
responding to cells neither in the same column nor in the same row, can
be obtained from $\varphi^{(\lambda)}(1,1),(2,2)(X,SSE)$. Since the above three classes of
component Bayes rules partition the class of all component Bayes rules,
we can confine our derivation of component Bayes rules to the three
prototype cases:
\[\eta_1 = u_{11} - u_{12}, \quad \eta_{II} = u_{11} - u_{21}, \quad \eta_{III} = u_{11} - u_{22}. \quad (2.2.13) \]

For the comparisons specified by the \(\eta \)'s in (2.2.13), we now proceed to find the conditional mean \(m(X, \varepsilon) \) and conditional variance \(\sigma^2(\varepsilon) \). In finding \(m(X, \varepsilon) \) and \(\sigma^2(\varepsilon) \), we can assume without loss of generality (for reasons given above) that \(\mu = 0 \) in (2.2.6). Thus, conditional upon \(X, \varepsilon \), vec(\(U \)) has mean vector \((I_n - \psi(\varepsilon))\)vec(\(X \)) and covariance matrix

\[
\psi(\varepsilon) \Sigma_u(\varepsilon) = \frac{\sigma^2}{\kappa} (\Sigma_u(\varepsilon) + \frac{\sigma^2}{\kappa} I_n)^{-1} \Sigma_u(\varepsilon)
\]

\[
= \frac{\sigma^2}{\kappa} (I_n - \psi(\varepsilon)).
\]

Define

\[
a_1(\varepsilon) = 1 - \frac{\sigma^2}{E_{AB}}, \quad a_2(\varepsilon) = \frac{\sigma^2}{E_{AB}} - \frac{\sigma^2}{E_B}, \quad a_3(\varepsilon) = \frac{\sigma^2}{E_{AB}} - \frac{\sigma^2}{E_A}. \quad (2.2.14)
\]

Theorem 2.2.2. If the random matrix \(U: r \times c \) in vector form as vec(\(U \)) has mean vector \((I_n - \psi(\varepsilon))\)vec(\(X \)) and covariance matrix \(K^{-1} \sigma^2(I_n - \psi(\varepsilon)) \), where \(\psi(\varepsilon) \) is given by (2.2.7), then:

Type I: \(\eta_1 = u_{11} - u_{12} \) has mean and variance:

\[
m_{I}(X, \varepsilon) = a_1(\varepsilon)(\bar{X}_{11} - \bar{X}_{12}) + a_2(\varepsilon)(\bar{X}_{1.} - \bar{X}_{.2}),
\]

\[
\sigma^2_{I}(\varepsilon) = \frac{2\sigma^2}{\kappa}[a_1(\varepsilon) + r^{-1}a_2(\varepsilon)];
\]

Type II: \(\eta_{II} = u_{11} - u_{21} \) has mean and variance:

\[
m_{II}(X, \varepsilon) = a_1(\varepsilon)(\bar{X}_{11} - \bar{X}_{21}) + a_3(\varepsilon)(\bar{X}_{1.} - \bar{X}_{.2}),
\]

\[
\sigma^2_{II}(X, \varepsilon) = \frac{2\sigma^2}{\kappa}[a_1(\varepsilon) + c^{-1}a_3(\varepsilon)];
\]
Type III: \(\eta_{III} = u_{11} - u_{22} \) has mean and variance:

\[
m_{III}(X,E) = a_1(E)(\bar{x}_{11} - \bar{x}_{22}) + a_2(E)(\bar{x}_{11} - \bar{x}_{22}) + a_3(E)(\bar{x}_{11} - \bar{x}_{22})
\]

\[
\sigma^2_{III}(X,E) = \frac{2\sigma^2}{K} [a_1(E) + r^{-1}a_2(E) + c^{-1}a_3(E)].
\]

Proof. We have previously noted that the columns of the n×n orthogonal matrix \(H = H_C \otimes H_r \) are eigenvectors of

\[
E_X(E) = \sum_{\zeta} + \frac{\sigma^2}{K} I_n = \frac{\sigma^2}{K} \psi^{-1}(E).
\]

Indeed,

\[
E_{X}(E)H = HD(E)
\]

where D(\(E \)) is a diagonal matrix with diagonal elements \(d_{tt}(E) \) defined by

\[
Kd_{tt}(E) = \begin{cases}
(E_A + E_B - E_{AB}), & \text{if } t = n = nc, \\
E_A, & \text{if } n - r + 1 \leq t \leq n - 1, \\
E_B, & \text{if } t = r, 2r, \ldots, (c-1)r, \\
E_{AB}, & \text{otherwise}.
\end{cases}
\]

Thus

\[
I_n - \psi(E) = HD^*(E)H^*,
\]

where D^*(\(E \)) is a diagonal matrix with diagonal elements

\[
d^*_t(E) = \frac{Kd_{tt}(E) - \sigma^2}{Kd_{tt}(E)}, \quad 1 \leq t \leq n.
\]

Let \(\zeta \in (0,0,\ldots,0,1)^\top : n \times 1 \). Then it can easily be shown that

\[
D^*(E) = a_1(E)(I_c \otimes I_r) + a_2(E)(I_c \otimes s_r \otimes \bar{s}_{r}) + a_3(E)(s_c \otimes \bar{s}_{c} \otimes I_r). \quad (2.2.16)
\]
Let \(v_\ell = (1,0,0,\ldots,0)^\top \): \(\mathbb{R} \times 1 \) and \(h_\ell = (1,-1,0,0,\ldots,0)^\top \): \(\mathbb{R} \times 1 \). Notice that since \(h_\ell \) is \(\sqrt{2} \) times the first row of \(H_\ell \),

\[
H_\ell h_\ell = \sqrt{2} v_\ell, \quad v_\ell^\top H_\ell = \frac{1}{\sqrt{2}} h_\ell.
\]

Also

\[
H_\ell^\top H_\ell = \frac{1}{\sqrt{2}} I, \quad v_\ell^\top H_\ell^\top H_\ell = \frac{1}{\sqrt{2}} I, \quad v_\ell^\top S_\ell = 0.
\]

The following results now follow by direct multiplication with Kronecker products; using the representations (2.2.15) and (2.2.16),

\[
(h_\ell^C \otimes v_\ell^C)(I_n - \psi(\xi)) = a_1(\xi)(h_\ell^C \otimes v_\ell^C) + \frac{1}{\ell} a_2(\xi)(h_\ell^C \otimes 1_\ell^C),
\]

\[
(v_\ell^C \otimes h_\ell^C)(I_n - \psi(\xi)) = a_1(\xi)(v_\ell^C \otimes h_\ell^C) + \frac{1}{\ell} a_3(\xi)(1_\ell^C \otimes h_\ell^C), \quad (2.2.17)
\]

\[
(h_\ell^C \otimes h_\ell^C)(I_n - \psi(\xi)) = a_1(\xi)(h_\ell^C \otimes h_\ell^C).
\]

Now note that

\[
u_{11} - u_{12} = v_\ell^C U h_\ell^C = (h_\ell^C \otimes v_\ell^C) \text{vec}(U). \tag{2.2.18}
\]

so that, using (2.2.17),

\[
m_I(X, \xi) = (h_\ell^C \otimes v_\ell^C)(I_n - \psi(\xi)) \text{vec}(X)
\]

\[
= a_1(\xi)(h_\ell^C \otimes v_\ell^C) \text{vec}(X) + \frac{1}{\ell} a_2(\xi)(h_\ell^C \otimes 1_\ell^C) \text{vec}(X)
\]

\[
= a_1(\xi)(\tilde{X}_{11} - \tilde{X}_{12}) + a_2(\xi)(\tilde{X}_{11} - \tilde{X}_{22}).
\]

Similarly, since

\[
u_{11} - u_{21} = h_\ell^C U v_\ell^C, \quad u_{11} - u_{22} = v_\ell^C U h_\ell^C + h_\ell^C U v_\ell^C - h_\ell^C U h_\ell^C,
\]

the asserted results for \(m_{II}(X, \xi) \) and \(m_{III}(X, \xi) \) follow from (2.2.17).

From (2.2.17) and (2.2.18), the variance of \(u_{11} - u_{12} \) is

\[
\sigma^2_I(\xi) = \frac{\sigma^2_v}{\ell} (h_\ell^C \otimes v_\ell^C)(I_n - \psi(\xi))(h_\ell^C \otimes v_\ell^C).
\]
\[
\sigma_{II}^2(E) = \frac{\sigma^2}{K} [a_1(E) \chi_c \otimes \nu_r] + \frac{1}{r} a_2(E) (h_c \otimes 1_r) (h_c \otimes \nu_r) \\
= 2\sigma^2 \frac{\sigma^2}{K} [a_1(E) + \frac{1}{r} a_2(E)].
\]

The formula for \(\sigma_{II}^2(E)\) is established in a corresponding fashion.

Finally, since
\[
\begin{align*}
\begin{aligned}
u_{11} - \nu_{22} &= [(h_c \otimes \nu_r) + (\nu_c \otimes h_r) - (h_c \otimes h_r)] \text{vec}(U), \\
&\equiv w \text{vec}(U),
\end{aligned}
\end{align*}
\]

it follows from (2.2.17) that
\[
\sigma_{III}^2(E) = w^* \frac{\sigma^2}{K} (I_n - \psi(E)) w
\]
\[
= \frac{\sigma^2}{K} [a_1(E) w^* w + \frac{1}{r} a_2(E) (h_c \otimes 1_r) w + \frac{1}{c} a_3(E) (1_c \otimes h_r) w]
\]
\[
= 2\sigma^2 \frac{\sigma^2}{K} [a_1(E) + \frac{1}{r} a_2(E) + \frac{1}{c} a_3(E)],
\]
as asserted. \(\square\)

Up to this point, we have not used the explicit form of the component loss function \(L(\theta,d)\). Only the fact that \(L(\theta,d)\) is a function of \(\theta\) only through \(\eta\) has been used. However, using the explicit form (2.1.7) of \(L(\theta,d)\) as a function of \(\eta\), together with (2.2.9) and (2.2.12),
\[
r^{(\lambda)}(d^+) = \chi_1 \int_{E} \left[\int_{-\infty}^{0} |n| N_1(n|m(X,E),\sigma^2(E)) d\eta \right] \eta^* S^* f^* dE,
\]
\[
r^{(\lambda)}(d^0) = \chi_0 \int_{E} \left[\int_{-\infty}^{\infty} |n| N_1(n|m(X,E),\sigma^2(E)) d\eta \right] \eta^* S^* f^* dE,
\]
and
\[
r^{(\lambda)}(d^-) = \chi_1 \int_{E} \left[\int_{0}^{\infty} |n| N_1(n|m(X,E),\sigma^2(E)) d\eta \right] \eta^* S^* f^* dE.
\]
Define
\[
\Delta = \Delta(X, SS^*, f^*) = \int_{\mathcal{E}} m(X, \xi) \pi(\xi|SS^*, f^*) d\xi,
\]
(2.2.19)

\[
r = r(X, SS^*, f^*) = \int_{\mathcal{E}} \left[\int_{-\infty}^{\infty} n|N_1(n|m(X, \xi), \sigma^2(\xi))dn\right] \pi(\xi|SS^*, f^*) d\xi.
\]
(2.2.20)

Note that
\[
r^{(\lambda)}(d^-) - r^{(\lambda)}(d^+) = \kappa_1 \int_{\mathcal{E}} \left[\int_{-\infty}^{\infty} n|N_1(n|m(X, \xi), \sigma^2(\xi))dn\right] \pi(\xi|SS^*, f^*) d\xi
\]
\[
= \kappa_1 \Delta,
\]

while
\[
r^{(\lambda)}(d^-) - r^{(\lambda)}(d^0) = \frac{\kappa_1}{2}(r^{(\lambda)}(d^-) - r^{(\lambda)}(d^+)) + \frac{\kappa_1}{2}(r^{(\lambda)}(d^-) + r^{(\lambda)}(d^+)) - r^{(\lambda)}(d^0)
\]
\[
= \frac{\kappa_1}{2} \left[\Delta + \left(\frac{\kappa_1 - 2\kappa_0}{\kappa_1} \right) r \right],
\]

\[
r^{(\lambda)}(d^0) - r^{(\lambda)}(d^+) = \frac{\kappa_1}{2} \left[\Delta - \left(\frac{\kappa_1 - 2\kappa_0}{\kappa_1} \right) r \right].
\]

It now follows from (2.2.1) that
\[
\varphi^{(\lambda)}(X, SSE) = \begin{cases}
(1,0,0), & \text{if } \Delta > \left(\frac{\kappa_1 - 2\kappa_0}{\kappa_1} \right) r, \\
(0,1,0), & \text{if } |\Delta| < \left(\frac{\kappa_1 - 2\kappa_0}{\kappa_1} \right) r, \\
(0,0,1), & \text{if } \Delta < - \left(\frac{\kappa_1 - 2\kappa_0}{\kappa_1} \right) r.
\end{cases}
\]
(2.2.21)

Remark 1. The notation in (2.2.19) and (2.2.20) is somewhat imprecise, since we know from Theorem 2.2.2 that in the component problem where \(u_{i_1j_1} \) is compared to \(u_{i_2j_2} \), \(\Delta \) and \(r \) depend upon \(X \) only through \(SS^* \) and the quantities:
\[T_1(X) = \bar{x}_{i_1 j_1} \bar{x}_{i_2 j_2}, \quad T_2(X) = \bar{x}_{j_1} \bar{x}_{j_2}, \quad T_3(X) = \bar{x}_{i_1} \bar{x}_{i_2}. \]
(2.22)

However, in different component problems, \(T_1(X), T_2(X), \) and \(T_3(X) \) depend upon different elements of \(X \). Thus, at the level of generality here, where a general form for the Bayes rule is being described, the notation (2.2.19) and (2.2.20) suffices.

Remark 2. Since \(r \geq 0 \), as is apparent from (2.2.20), we see that \(\phi_{\lambda}(X, SSE) \) can never take action \(d^0 \) if \(\lambda_1 \leq 2\lambda_0 \). Hence, in the following chapters it is assumed that

\[0 < 2\lambda_0 < \lambda_1, \]

or, equivalently, that

\[0 < \rho = \frac{\lambda_1 - 2\lambda_0}{\lambda_1} < 1. \]
(2.2.23)

Remark 3. \(\Delta = \Delta(X,SS^*,f^*) \) is the posterior mean \(E(\eta|X,SSE) \) of \(\eta \). Note from (2.2.21), (2.2.23) and the fact that \(r \geq 0 \), that when \(\Delta > 0 \), our choice of action lies between \(d^+ \) and \(d^0 \), while when \(\Delta < 0 \), the choice lies between \(d^- \) and \(d^0 \). Thus, the value of \(\Delta \) can be used to eliminate one action (\(d^+ \) or \(d^- \)) from consideration. It follows from Theorem 2.2.2 that

\[\Delta(X,SS^*,f^*) = \sum_{j=1}^{3} T_j(X) \left[\int_{\mathcal{E}} a_i(E)\pi(E|SS^*,f^*)dE \right], \]
(2.2.24)

where the \(a_i(E) \)'s are defined by (2.2.14) and the \(T_j(X) \)'s are defined by (2.2.22). An algorithm for computing \(\Delta = \Delta(X,SS^*,f^*) \) is given in Chapter 4.
Having simplified the form of component Bayes rules to (2.2.21), our basic goal in this section has been achieved. In Chapter 3, Section 3.1, we briefly indicate, in the special context where $\xi = (E_A, E_B, E_{AB}, \sigma_e^2)$ is assumed known, how the component Bayes rules (and thus the experimentwise Bayes rule defined in Theorem 2.2.1) make use of information about main effects and interactions.
CHAPTER III
PROPERTIES OF THE COMPONENT BAYES RULES

This chapter is divided into three sections. Section 3.1 shows how the component Bayes rules explicitly depend upon information about expected patterns of cell means u_{ij} in the simplest case where this information is expressed in terms of known measures of interaction (σ_{AB}^2), main effects for row and column (σ_A^2, σ_B^2) and error (σ_e^2). This special case can be interpreted as the limiting case of the general model of Chapter II, when all pooled degrees of freedom $f_A^*, f_B^*, f_{AB}^*, f_e^*$ [see (2.1.19)] become infinitely large. Study of this special case thus gives insight into the adaptive characteristic of the overall Bayes rule of Theorem 2.2.1 viewed as a multiple comparisons procedure.

Returning to the general model of Chapter II, Section 3.2 establishes some useful properties of the functions $\Delta(X, SS^*, f^*)$ and $r(X, SS^*, f^*)$ which define the component Bayes rules. Bounds are found for $r(X, SS^*, f^*)$, leading to a screening algorithm which serves to reduce the number of component problems in which this function must be calculated. Further, it is shown that with probability one under $p(X, SSE|\theta)$ for all $\theta \in \Theta$, the component Bayes rules are nonrandomized, verifying an assertion made earlier in Chapter II. Finally, in Section 3.3, a proof of the fact that simultaneous application of the component Bayes rules yields consistent action vectors \mathbf{d} with probability one [under
p(X, SSE|θ), all θ ∈ Θ] is given. This proof thus completes the verification of Theorem 2.2.1.

3.1. **The Nature of the Component Bayes Rules when σ^2_A, σ^2_B, σ^2_{AB} and σ^2_e are Known**

Suppose that in place of the prior distribution λ(θ) defined in Equation (2.1.20) of Chapter II, the prior density

\[p(U|E) = N_n(\text{vec}(U)|\mu_{ln}, \Sigma_u(E)) \]

is assigned to U, and it is assumed that \(E = (E_A, E_B, E_{AB}, \sigma^2_e) \) is known. The resulting prior distribution \(λ_0(θ) = λ_0(θ|E) \) is then the product of \(p(U|E) \) and a mass function placing probability one on the known value of \(\sigma^2_e \). Such a prior \(λ_0(θ) \) can be viewed as the limit of the prior distribution \(λ(θ|SS_p, f^*) \) when each element of \(f^* = (f_A, f_B, f_{AB}, f_e) \) tends to infinity, and

\[
\begin{align*}
\frac{SSA}{f_A} &\rightarrow E_A, \quad \frac{SSB}{f_B} \rightarrow E_B, \quad \frac{SSAB}{f_{AB}} \rightarrow E_{AB}, \quad \frac{SSE}{f_e} \rightarrow \sigma^2_e.
\end{align*}
\]

Alternatively, the posterior distribution obtained from \(λ_0(θ) \) can be viewed as the limit of the posterior distribution derived from \(λ(θ|SS_p, f^*) \) when each element of the "pooled" degrees of freedom vector \(f^* \) tends to infinity, and

\[
\begin{align*}
\frac{SSA^*}{f_A^*} &\rightarrow E_A, \quad \frac{SSB^*}{f_B^*} \rightarrow E_B, \quad \frac{SSAB^*}{f_{AB}^*} \rightarrow E_{AB}, \quad \frac{SSE^*}{f_e^*} \rightarrow \sigma^2_e.
\end{align*}
\]

In either case, the known quantities \(E_A, E_B, E_{AB}, \sigma^2_e \) correspond to the "mean squares" that would appear in an ANOVA table derived from "data" pooled from prior information and \((X, SSE)\). Assuming that \(E \in E \), so that
$0 < \sigma^2_e \leq E_{AB} \leq E_A, E_B < \infty,$

de the variance components

$$
\sigma^2_A = \frac{E_A - E_{AB}}{cK}, \quad \sigma^2_B = \frac{E_B - E_{AB}}{rK}, \quad \sigma^2_{AB} = \frac{E_{AB} - \sigma^2_e}{K}, \quad \sigma^2_e
$$

are known constants.

Repeating the steps that led to the component Bayes rules

$\phi(\lambda)(X, SSE)$, in Section 2.2 (except that now no integration over $\xi \in \mathcal{E}$

is necessary) it can be shown that the component Bayes rule

$\phi(\lambda)_{(i_1, j_1), (i_2, j_2)}(X)$\ for comparing $u_{i_1 j_1}$ to $u_{i_2 j_2}$

is the following:

$\phi(\lambda)_{(i_1, j_1), (i_2, j_2)}(X) =

\begin{cases}
(1,0,0) & \text{if } \Delta(\varpi(X), \xi(E)) > \rho \Gamma(\varpi(X), \xi(E)), \\
(0,1,0) & \text{if } |\Delta(\varpi(X), \xi(E))| < \rho \Gamma(\varpi(X), \xi(E)), \\
(0,0,1) & \text{if } \Delta(\varpi(X), \xi(E)) < -\rho \Gamma(\varpi(X), \xi(E)),
\end{cases} \quad (3.1.1)

where $1 - \rho = 2X_0X_1^{-1}$,

$$
\varpi(X) = (T_1(X), T_2(X), T_3(X))^\prime = (X_{i_1 j_1}, X_{i_1 j_2}, \bar{X}_{i_1 j_1} - \bar{X}_{i_1 j_2})^\prime, \quad (3.1.2)
$$

$$
\xi(E) = (a_1(E), a_2(E), a_3(E))^\prime = (1 - \frac{\sigma^2_e}{E_{AB}}, \frac{\sigma^2}{E_{AB}}, \frac{\sigma^2}{E_B}, \frac{\sigma^2}{E_{AB}}, \frac{\sigma^2}{E_A})^\prime, \quad (3.1.3)
$$

$$
\Delta(\varpi(X), \xi(E)) = \xi(E) \varpi(X), \quad (3.1.4)
$$

$$
\Gamma(\varpi(X), \xi(E)) = \int_{-\infty}^{\infty} |n| N_1(n| \Delta(\varpi(X), \xi(E)), \sigma^2(E))dn, \quad (3.1.5)
$$

and

$$
\sigma^2(E) = \frac{2\sigma^2}{K} \left[a_1(E) + \frac{1}{r} \left(1 - \delta_{i_1 j_2} \right) a_2(E) + \frac{1}{c} \left(1 - \delta_{i_1 j_2} \right) a_3(E) \right]. \quad (3.1.6)
$$
Here δ_{st} is the Kronecker delta function:

$$
\delta_{st} = \begin{cases}
1 & \text{if } s = t, \\
0 & \text{if } s \neq t.
\end{cases}
$$

Note that:

(i) In Type I problems ($i_1 = i_2$): $1 - \delta_{i_1 i_2} = 0$, $T_3(X) = 0$.

(ii) In Type II problems ($j_1 = j_2$): $1 - \delta_{j_1 j_2} = 0$, $T_2(X) = 0$.

When $\Delta = \rho r, \varphi^{(\lambda)}(X)$ would randomize between d^+ and d^0, while when $\Delta = -\rho r, \psi^{(\lambda)}(X)$ randomizes between d^- and d^0.

Observe that $\varphi^{(\lambda)}(X) = \psi^{(\lambda)}(I(X))$. That is, the component Bayes rule depends upon X only through the elements of $I(X)$. The first element, $T_1(X) = \bar{x}_{i_1 j_1} - \bar{x}_{i_2 j_2}$ of $I(X)$ is the contrast in the cell means that would be used to make comparisons between $u_{i_1 j_1}$ and $u_{i_2 j_2}$ if the two-factor design were treated as a one-factor design. Under the two-stage approach mentioned in Section 1.3, this approach would be used if it were believed that $\frac{\sigma^2_{AB}}{\sigma^2_e} > 0$, or equivalently if

$$
\frac{E_{AB}}{\sigma^2_e} > 1.
$$

The second and third elements of $I(X)$ are column main effect (T_2) and row main effect (T_3) contrasts which the two-stage approach would use if it were believed that $\sigma^2_{AB} = 0$, or equivalently if

$$
\frac{E_{AB}}{\sigma^2_e} \approx 1.
$$
Note that with $\Delta = \Delta(I(X), \bar{a}(E))$, $\sigma^2 = \sigma^2(E)$,

$$
\Gamma(I(X), \bar{a}(E)) = \int_{-\infty}^{\infty} |n| N_1(n|\Delta, \sigma^2) dn
$$

$$
= \sigma \int_{-\infty}^{\infty} |v| N_1(v|\sigma^2, v) dv,
$$

(3.1.7)

where we have made the change of variables $v = \sigma^{-1} n$. Thus, letting

$$
Q(\omega) = \int_{-\infty}^{\infty} |v| N_1(v|\omega, 1) dv,
$$

(3.1.8)

it is easily seen from (3.1.1) and the fact that $\sigma = \sigma(E) > 0$, that

$$
\varphi(\lambda)(I(X)) = \begin{cases}
(1, 0, 0) & \text{if } \frac{\Delta}{\sigma} - \rho Q(\frac{\Delta}{\sigma}) > 0 \\
(0, 1, 0) & \text{if } \frac{\Delta}{\sigma} - \rho Q(\frac{\Delta}{\sigma}) < 0, \frac{\Delta}{\sigma} + \rho Q(\frac{\Delta}{\sigma}) > 0, \\
(0, 0, 1) & \text{if } \frac{\Delta}{\sigma} + \rho Q(\frac{\Delta}{\sigma}) < 0.
\end{cases}
$$

(3.1.9)

Lemma 3.1.1. If $|c| < 1$, $\omega + cQ(\omega)$ is a strictly increasing function of ω.

Proof. It is easily seen that

$$
\omega + cQ(\omega) = \int_{-\infty}^{\infty} g(v) N_1(v|\omega, 1) dv,
$$

where

$$
g(v) = \begin{cases}
(l+c)v & \text{if } v \geq 0 \\
(l-c)v & \text{if } v < 0
\end{cases}
= v + c|v|,
$$

is (since $|c| < 1$) a strictly increasing function of v. Since $N_1(v|\omega, 1)$ has strict monotone likelihood in v, the assertion follows by modifying the proof of Lemma 2, page 74, of Lehmann (1959) to account for strict inequalities. \(\square\)
Lemma 3.1.2. If $|c| < 1, \omega + cQ(\omega)$ is continuous in ω, and
\[
\lim_{\omega \to \pm \infty} [\omega + cQ(\omega)] = \pm \infty.
\]
(3.1.10)

Thus, there exists a unique $\omega_c, -\infty < \omega_c < \infty$, such that \(\omega_c + cQ(\omega_c) = 0. \)
(3.1.11)

Since $Q(\omega) \geq 0$, it follows that $c\omega_c \leq 0$.

Proof. Continuity of $\omega + cQ(\omega)$ will follow from continuity of $Q(\omega)$. However, for any $\omega_1, \omega_2, -\infty < \omega_1, \omega_2 < \infty$,
\[
|Q(\omega_1) - Q(\omega_2)| = \left| \int_{-\infty}^{\infty} |v|N_1(v|\omega_1,1)dv - \int_{-\infty}^{\infty} |v|N_1(v|\omega_2,1)dv \right|
\]
\[
\leq \int_{-\infty}^{\infty} \left| z + \omega_1 - |z + \omega_2| \right|N_1(z|0,1)dz \quad (3.1.12)
\]
\[
\leq |\omega_1 - \omega_2|,
\]
from which the continuity of $Q(\omega)$ follows. Letting $\omega_1 = \omega, \omega_2 = 0$ in (3.1.12),
\[
0 \leq Q(\omega) \leq |\omega| + \int_{-\infty}^{\infty} |z|N_1(z|0,1)dz = |\omega| + \left(\frac{2}{\pi} \right)\frac{1}{2}.
\]

Using this result, it is straightforward to show that (3.1.10) holds for $|c| < 1$. The existence of ω_c now follows from Lemma 3.1.1, the continuity of $\omega + cQ(\omega)$, and (3.1.10). ∎

Lemma 3.1.3. For all $\omega, -\infty < \omega < \infty$, all $c, |c| < 1$,
\[
-\omega + cQ(-\omega) = -(\omega - cQ(\omega)).
\]
(3.1.13)

Proof. It is easily shown that $Q(-\omega) = Q(\omega)$. The result (3.1.13) now directly follows. ∎
From (3.1.13) it follows that \(\omega_\rho = -\omega_{-\rho} \), where \(\omega_\rho \) and \(\omega_{-\rho} \) are defined by (3.1.11) with \(c = \rho \), \(c = -\rho \), respectively. Thus, from Lemma 3.1.1 and (3.1.11), the component Bayes rule \(\varphi^{(\lambda)}(I(X)) \) has equivalent form:

\[
\varphi^{(\lambda)}(I(X)) = \begin{cases}
(1,0,0), & \text{if } \Delta(I(X),a(E)) > t^*\sigma(E), \\
(0,1,0), & \text{if } |\Delta(I(X),a(E))| < t^*\sigma(E), \\
(0,0,1), & \text{if } \Delta(I(X),a(E)) < -t^*\sigma(E),
\end{cases}
\]

(3.1.14)

where \(t^* \) is the unique solution of the equation

\[
t^* - \rho Q(t^*) = 0.
\]

(3.1.15)

For a given \(\rho = 1 - 2(\chi_0/\chi_1) \), a computer program has been written to find \(t^* \). A listing of this program, together with a table of \(t^* \) for selected values of

\[
\frac{\chi_1}{\chi_0} = \frac{2}{1-\rho} ,
\]

is provided in Appendix A.

Note that if

\[
\Delta(I(X),a(E)) = \pm t^*\sigma(E),
\]

(3.1.16)

the component Bayes rule should randomize over \(d^+ \) and \(d^0 \), or over \(d^- \) and \(d^0 \), respectively. However, since \(\Delta(I(X),a(E)) \) is a linear combination of the continuous variables \(T_i(X), \ 1 \leq i \leq 3 \), the event defined by (3.1.16) has probability 0 under the density \(p(X,SSE|U,\sigma_e^2) \) for all \((U,\sigma_e^2) \). Thus, \(\varphi^{(\lambda)}(I(X)) \) can be written as a nonrandomized rule as in (3.1.14).

The decision made by the component Bayes rule \(\varphi^{(\lambda)}(I(X)) \) depends entirely upon the value of the statistic

\[
\frac{\Delta(I(X),a(E))}{\sigma(E)} = \sum_{i=1}^{3} T_i(X) \frac{a_i(E)}{\sigma(E)} .
\]
The meaning of the functions $T_1(X), T_2(X), T_3(X)$ has already been discussed. From (3.1.3) and (3.1.6) we see that as the ratio $(\sigma_e^2)^{-1}E_{AB}$ increases to infinity

$$\frac{a_1(E)}{\sigma(E)} \to \left(\frac{K}{\sigma_e^2} \right)^{\frac{1}{2}}, \quad \frac{a_i(E)}{\sigma(E)} \to 0, \quad i=2,3,$$

and the decision made by the Bayes rule depends entirely upon the comparison statistic $T_1(X) = \bar{x}_{i_1j_1} - \bar{x}_{i_2j_2}$ for the cell means. Hence, strong evidence of interaction places the burden of the comparison of $u_{i_1j_1}$ to $u_{i_2j_2}$ on cell data. On the other hand, as $\sigma_{AB}^2 \to 0$, so that $(\sigma_e^2)^{-1}E_{AB} \to 1$,

$$\frac{a_1(E)}{\sigma(E)} \to 0,$$

and information from the cell means is ignored. In Type I problems $(i_1 = i_2)$, when $(\sigma_e^2)^{-1}E_{AB} \to 1$,

$$\frac{a_2(E)}{\sigma(E)} \to \left[\frac{rK}{\sigma_e^2} \left(1 - \frac{E_{AB}}{E_B} \right) \right]^{\frac{1}{2}}$$

so that with strong evidence of column effects $(E_{AB}^{-1}E_B \to \infty)$, information from the column comparison $T_2(X) = \bar{x}_{j_1} - \bar{x}_{j_2}$ determines the decision, while with no evidence of column effects $(E_{AB}^{-1}E_B \to 1), \sigma_{AB}^{-1} \Delta \to 0$ and the decision d^0 is taken. Type II problems act similarly, except that the values of $E_{AB}^{-1}E_A$ and $T_3(X) = \bar{x}_{i_1} - \bar{x}_{i_2}$ determine the decision. In Type III problems with $(\sigma_e^2)^{-1}E_{AB} \to 1$, the decision depends upon both row and column effects, with row effects $T_3(X)$ being ignored when $E_{AB}^{-1}E_A \to 1$,
column effects $T_2(X)$ being ignored when $E^{-1}E_B \to 1$, and d^0 being taken always when main effects are not believed to exist. Remember that the specialized prior of this section yields a posterior distribution which approximates the posterior resulting from the more general model of Section 2.1 and a large amount of information pooled from the prior and the data:

$$f^* \to \omega, \quad E = \lim(\frac{SSA^*}{f_A^*}, \frac{SSB^*}{f_B^*}, \frac{SSAB^*}{f_{AB}^*}, \frac{SSE^*}{f_e^*}).$$

We see that the component Bayes rules use information (from prior and data) to adaptively choose, in a continuous fashion, among the alternative procedures advocated in the two-stage classical multiple comparisons procedure described in Section 1.3.

3.2. Properties of the Component Bayes Rules in the General Model

In Section 2.2, it was noted that the component Bayes rule for comparing u_{i_1, j_1} to u_{i_2, j_2} depends upon the data (X, SSE) only through SS^*, as defined in (2.1.19), and

$$\mathcal{I} = (T_1, T_2, T_3)^* = (\bar{x}_{i_1, j_1} - \bar{x}_{i_2, j_2}, \bar{x}_{j_1} \bar{x}_{j_2}, \bar{x}_{i_1 \cdot j_1} - \bar{x}_{i_2 \cdot j_2}).$$

It will be notationally convenient not to continually exhibit the dependence of the component Bayes rule on SS^*, and its pooled degrees of freedom (vector) f^*. To this end, let

$$\pi^*(E) = \pi(E | SS^*, f^*).$$

Also define

$$m(\mathcal{I}, E) = m(X, E) = \sum_{i=1}^{3} a_i(E) T_i, \quad (3.2.1)$$
\[\sigma^2_0(E) = \frac{2\sigma_e^2}{K} [a_1(E) + \frac{1}{\rho} (1 - \delta_{1,2}) a_2(E) + \frac{1}{c} (1 - \delta_{1,2}) a_3(E)]; \]

(3.2.2)

where \(a_i(E), 1 \leq i \leq 3, \) are defined in (2.2.14) and \(\delta_{st} \) is the Kronecker delta function. From (2.2.21), the component Bayes rule is then defined by

\[
\varphi^*(\lambda)(\mathcal{I}) = \varphi^*(\lambda)(X, SSE) = \begin{cases}
(1, 0, 0), & \text{if } \Delta(\mathcal{I}) > \rho r(\mathcal{I}), \\
(0, 1, 0), & \text{if } |\Delta(\mathcal{I})| < \rho r(\mathcal{I}), \\
(0, 0, 1), & \text{if } \Delta(\mathcal{I}) < -\rho r(\mathcal{I}),
\end{cases}
\]

(3.2.3)

where

\[
\Delta(\mathcal{I}) = \int_{\mathcal{E}} m(\mathcal{I}, E) \pi^*(E) dE, \\
r(\mathcal{I}) = \int_{\mathcal{E}} \int_{-\infty}^{\infty} |\eta| N_1(\eta| m(\mathcal{I}, E), \sigma^2(E)) d\eta \pi^*(E) dE,
\]

and \(\rho = (\chi_1 - 2\chi_0)/\chi_1, \ 0 \leq \rho < 1. \) In (3.2.3), if \(\Delta(\mathcal{I}) = \rho r(\mathcal{I}), \varphi^*(\lambda)(\mathcal{I}) \) randomizes between the actions \(d^+ \), \(d^0 \), while if \(\Delta(\mathcal{I}) = -\rho r(\mathcal{I}), \varphi^*(\lambda)(\mathcal{I}) \) randomizes between \(d^0 \) and \(d^- \).

For any constant \(c, -1 < c < 1, \) let

\[q_c(\mathcal{I}) = \Delta(\mathcal{I}) + cr(\mathcal{I}). \]

(3.2.4)

It follows from (3.1.7) and (3.1.8) that

\[q_c(\mathcal{I}) = \int_{\mathcal{E}} [\omega(\mathcal{I}, E) + cQ(\omega(\mathcal{I}, E))] \sigma(E) \pi^*(E) dE, \]

(3.2.5)

where

\[
\omega(\mathcal{I}, E) = \frac{m(\mathcal{I}, E)}{\sigma(E)} = \frac{3}{\sum_{i=1}^{3} a_i(E) \mathcal{I}_i.}
\]

(3.2.6)

Hence, from (3.2.3),
\[\varphi(\lambda)(\varpi) = \begin{cases}
(1,0,0), & \text{if } q_{-\rho}(\varpi) > 0, \\
(0,1,0), & \text{if } q_{-\rho}(\varpi) < 0, q_{\rho}(\varpi) > 0, \\
(0,0,1), & \text{if } q_{\rho}(\varpi) < 0.
\end{cases} \]
(3.2.7)

Since \(\varpi(\varpi) > 0 \) and \(\rho \geq 0 \), it is clear from (3.2.4) that
\[q_{\rho}(\varpi) \geq q_{-\rho}(\varpi). \]
(3.2.8)

Some useful properties of the function \(q_c(\varpi) \) follow directly from
(3.2.5) and the results of Section 3.1.

Lemma 3.2.1. For all \(c, -1 < c < 1, q_c(T_1, T_2, T_3) \) is a strictly increasing function in each of its arguments \(T_1, T_2, T_3 \).

Proof. Since \(a_i(E) > 0, 1 \leq i \leq 3, \) and \(\sigma(E) > 0, \) it follows from
(3.2.6) that \(\omega(T, E) \) is strictly increasing in \(T_1, T_2, T_3 \). The assertion
of the lemma now follows from (3.2.5) and Lemma 3.1.1. \(\Box \)

Lemma 3.2.2. For all \(c, -1 < c < 1, q_c(-\varpi) = -q_c(\varpi). \)

Proof. The result is a direct consequence of (3.2.5), (3.2.6) and Lemma
3.1.3. \(\Box \)

Lemma 3.2.3. For all \(c, -1 < c < 1, \) all fixed \(T_2, T_3, \)

(i) \(q_c(\varpi) = q_c(T_1, T_2, T_3) \) is continuous in \(T_1, \)

(ii) \(\lim_{T_1 \to \pm \infty} q_c(\varpi) = \pm \infty. \)

Proof. For any \(T_1, T_1^{\pm}, -\infty < T_1, T_1^{\pm} < \infty, \) it follows from (3.2.5), (3.2.6)
and (3.1.12) that
\[|q_c(T_1, T_2, T_3) - q_c(T_1^*, T_2, T_3)| \]
\[\leq (1 + A_1) |T_1 - T_1^*| \left(\int_{E} \frac{a_1(E)}{\sigma(E)} \left(T_1 - T_1^* \right) + cQ(o(T_1, T_2, T_3, E) - cQ(o(T_1^*, T_2, T_3, E)) \right) \sigma(E) \, dE \right) \]
\[\leq (1 + A_1) |T_1 - T_1^*| \left[\int_{E} a_1(E) \sigma(E) \, dE \right]. \]

Since the integral of \(a_1(E) \) is finite, assertion (i) follows directly.

To verify (ii) when \(T_1 \to \infty \), apply Fatou's lemma and (3.1.10) to (3.2.5), noting from (3.2.6) that \(\lim_{T_1 \to \infty} o(T_1, E) = \infty \). Thus
\[\lim_{T_1 \to \infty} q_c(T) \geq \int_{E} \lim_{T_1 \to \infty} [o(T_1, E) + cQ(o(T_1, E))] \sigma(E) \, dE \]
\[= \infty. \]

For the case \(T_1 \to -\infty \), apply Lemma 3.2.2 and the above result:
\[\infty = \lim_{T_1 \to \infty} q_{-c}(T_1, -T_2, -T_3) = \lim_{T_1 \to \infty} - q_c(-T_1, T_2, T_3) \]
\[= - \lim_{T_1 \to -\infty} q_c(T_1, T_2, T_3). \]

From these two results, assertion (ii) follows. \(\square \)

Theorem 3.2.4. For fixed \(T_2, T_3 \), there exist unique constants \(T_1^{\pm}(T_2, T_3), T_1^{\pm}(T_2, T_3) \) satisfying
\[q_p(T_1^{\pm}(T_2, T_3), T_2, T_3) = 0 = q_{-p}(T_1^{\pm}(T_2, T_3), T_2, T_3) \]
(3.2.9)
and
\[T_1^{L}(T_2, T_3) \leq T_1^{U}(T_2, T_3). \]
Hence

\[
\varphi^{(\lambda)}(\mathcal{T}) = \begin{cases}
(1,0,0), & \text{if } T_1 > T_1^U(T_2,T_3), \\
(0,1,0), & \text{if } T_1^L(T_2,T_3) < T_1 < T_1^U(T_2,T_3), \\
(0,0,1), & \text{if } T_1 < T_1^L(T_2,T_3).
\end{cases}
\]

(3.2.10)

Proof. The existence of \(T_1^L(T_1,T_2), T_1^U(T_1,T_2) \) follows directly from Lemmas 3.2.1 and 3.2.3. The inequality between \(T_1^L(T_2,T_3) \) and \(T_1^U(T_2,T_3) \) follows directly from (3.2.8), Lemma 3.2.1, and (3.2.9). Finally, (3.2.10) follows directly from (3.2.7), Lemma 3.2.1, and (3.2.9).

From (3.2.10) it is easily seen that \(\varphi^{(\lambda)}(\mathcal{T}) \) is almost surely (with respect to \(p(X,SSE|\theta), \forall \theta \in \Theta \)) a nonrandomized rule. Indeed, \(\varphi^{(\lambda)}(\mathcal{T}) \) will randomize between two actions if and only if

\[
T_1 = T_1^L(T_2,T_2), \quad T_1 = T_1^U(T_2,T_3).
\]

(3.2.11)

Since the conditional distribution of \(T_1 \) given \(T_2,T_3 \), as obtained from \(p(X,SSE|\theta) \), is a continuous (indeed, normal) distribution for all \(\theta \in \Theta \), the conditional probability of one of the equalities (3.2.11) holding is zero for all \(\theta \in \Theta \). Hence, unconditionally the equalities (3.2.11) have probability zero to occur, all \(\theta \in \Theta \). This proves the assertion made in Section 2.2 that the component Bayes rules are nonrandomized with probability one.

Having demonstrated the monotonicity of the component Bayes rules in the cell mean contrast \(T_1(X) = \bar{x}_{i_1j_1} - \bar{x}_{i_2j_2} \), it would be very useful to determine the explicit functional forms of \(T_1^L(T_2,T_3), T_1^U(T_2,T_3) \) as functions of \(T_2,T_3 \) (and also of \(S^S \)). Unfortunately, this has proven to be unfeasible, largely due to the extremely complicated nature of \(\tau(\mathcal{T}) \).
as a function of \vec{I}. Consequently, our implementation of the component
Bayes rule proceeds through (3.2.7). This necessitates computation of
$r(\vec{I})$, as can be seen from (3.2.4) and (3.2.7). Since such computation
can be costly in terms of computer time, we seek a way to avoid this
computation wherever possible. To do so, certain bounds on $q_c(\vec{I})$ are
developed in the remainder of this section.

Define
\[
a_i = \int_{\mathcal{E}} a_i(E)\pi^*(E)dE, \quad i=1,2,3
\]
(3.2.12)
and let $\vec{a} = (a_1, a_2, a_3)$'. Note that
\[
\Delta(\vec{I}) = \int_{\mathcal{E}} m(\vec{I}, \vec{E})\pi^*(\vec{E})d\vec{E} = \sum_{i=1}^{3} a_i I_i = \vec{a} \cdot \vec{I}
\]
(3.2.13)
is a linear function of \vec{I}. Define
\[
\sigma_0 = \int_{\mathcal{E}} \sigma(\vec{E})\pi^*(\vec{E})d\vec{E} < \infty.
\]

Lemma 3.2.5. For all $\vec{I},$
\[
q_{-\rho}(\vec{I}) \leq \Delta(\vec{I}) - \rho \sigma_0 Q(\sigma_0^{-1}\Delta(\vec{I})), \quad q_{\rho}(\vec{I}) \geq \Delta(\vec{I}) + \rho \sigma_0 Q(\sigma_0^{-1}\Delta(\vec{I})).
\]

Proof. Recall that
\[
Q(\omega) = \int_{-\infty}^{\infty} |\eta|N_1(\eta|\omega,1)d\eta.
\]
(3.2.14)
Since the density $N_1(\eta|\omega,1)$ is of Polya Type III, and $|\eta|$ is a convex
function of η, it follows from Proposition 3.2, p. 23 of Karlin (1968)
that $Q(\omega)$ is a convex function of ω. Hence $\omega + cQ(\omega)$ is convex in ω
when $c \geq 0$, concave in ω when $c < 0$. Applying Jensen's Inequality to
\[
\sigma_0^{-1} q_c(\vec{I}) = \int_{\mathcal{E}} [\omega(\vec{I}, \vec{E}) + cQ(\omega(\vec{I}, \vec{E}))](\frac{\sigma(\vec{E})\pi^*(\vec{E})}{\sigma_0})d\vec{E},
\]
noting that \(\sigma^{-1}_0 \sigma(\varepsilon) \pi^*(\varepsilon) \) is a density, and that the expected value of \(\omega(T, \varepsilon) \) under that density is \(\sigma^{-1}_0 \Delta(\varepsilon) \), yields the stated inequalities. \(\square \)

Let \(t^* \) be the unique solution of

\[
t^* - \rho Q(t^*) = 0,
\]
guaranteed by Lemma 3.1.2. It follows from Lemmas 3.1.1, 3.1.2 and 3.2.5, and also Equations (3.2.7) and (3.2.13), that

\[
\left| \sum_{i=1}^{3} a_i T_i \right| \leq \sigma_0 t^* = \varphi^*(\lambda)(1) = (0,1,0).
\]

(3.2.15)

Thus if \(\left| \sum_{i=1}^{3} a_i T_i \right| \leq \sigma_0 t^* \), we can make the decision \(d^0 \) without having to compute \(r(1), q_{-\rho}(1) \) or \(q_{\rho}(0) \).

On the other hand, note from (3.2.14) that

\[
Q(\omega) = \int_{0}^{\infty} n N_1(n|\omega,1)dn + \int_{-\infty}^{0} (-n) N_1(n|\omega,1)dn
\]

\[
= \int_{-\omega}^{\infty} (z+\omega) N_1(z|0,1)dz - \int_{-\infty}^{-\omega} (z+\omega) N_1(z|0,1)dz
\]

\[
= \omega [1-2 \int_{-\infty}^{-\omega} N_1(z|0,1)dz] + 2N_1(-\omega|0,1)
\]

where we have let \(z = n - \omega \), and used the fact that for all \(t \),

\[
\int_{t}^{\infty} z N_1(z|0,1)dz = -\int_{-\omega}^{t} z N_1(z|0,1)dz = N_1(t|0,1).
\]

Since it is also true that \(Q(\omega) = Q(-\omega) \), it can straightforwardly be shown that

\[
Q(\omega) = |\omega| [1-2 \int_{|\omega|}^{\infty} N_1(z|0,1)dz] + 2N_1(|\omega|,0,1).
\]

Lemma 2, p. 175 in Feller (1968) can now be applied to yield the following inequality:
\[|\omega| \leq Q(\omega) \leq |\omega| + \frac{2 \exp\left(-\frac{\omega^2}{2}\right)}{\sqrt{2\pi} \omega^2}. \tag{3.2.16} \]

Define
\[\gamma(I) = \frac{1}{\sqrt{2\pi}} \int E \exp\left(-\frac{1}{2} \omega^2(I,E)\right) \sigma(E)^* \sigma(E) dE. \tag{3.2.17} \]

Lemma 3.2.6. If \(T_1, T_2, T_3 \geq 0 \), then
\[-2\rho \gamma(I) \leq q_{-\rho}(I) - (1-\rho)\Delta(I) \leq 0. \tag{3.2.18} \]

If \(T_1, T_2, T_3 \leq 0 \), then
\[0 \leq q_{\rho}(I) - (1-\rho)\Delta(I) \leq 2\rho \gamma(I). \tag{3.2.19} \]

Proof. If \(T_1, T_2, T_3 \) all have the same sign, then since \(a_i(E) > 0 \), \(1 \leq i \leq 3 \), and \(\sigma(E) > 0 \), it follows from (3.2.6) that
\[|\omega(I,E)| = \sum_{i=1}^{3} \frac{a_i(E)}{\sigma(E)} |T_i|. \]

The inequalities (3.2.18) and (3.2.19) now are obtained from (3.2.5), (3.2.6), (3.2.16) and the definition of \(\Delta(I) \). \(\Box \)

Lemma 3.2.6 is used as a screening device in the following fashion.

If \(T_1, T_2, T_3 \geq 0 \), then
\[\Delta(I) = \sum_{i=1}^{3} a_i T_i \geq 0, \]

and, as remarked in Section 2.2, choice can be restricted to the actions \(d^+ \) and \(d^0 \). The lower bound
\[q_{-\rho}(I) \geq (1-\rho)\Delta(I) - 2\rho \gamma(I) \]

to \(q_{-\rho}(I) \) is now calculated. If this lower bound is positive, the action
\(d^+\) can be taken [see (3.2.7)]. Otherwise, the sign of \(q_{-\rho}(I)\) must be determined by calculating the entire expression (3.2.5), \(c = -\rho\), in order to decide between the actions \(d^+\) and \(d^0\). Similarly, if \(T_1, T_2, T_3 \leq 0\), then \(\Delta(I) \leq 0\), and choice can be restricted to the actions \(d^0, d^-\). If the upper bound \((1-\rho)\Delta(I) + 2\rho \gamma(I)\) is negative, the action \(d^-\) can be taken. Otherwise, the entire function \(q_\rho(I)\) must be calculated to decide between \(d^0\) and \(d^-\).

Since \(2\rho \gamma(I) \geq 0\) serves as a correction factor to \(\Delta(I)\) in this screening procedure, it is worth noting that when \(T_1, T_2, T_3\) have the same sign,

\[
\lim_{\max \left| T_i \right| \to \infty} \gamma(I) = 0,
\]

as can be easily shown. This fact leads us to expect that when all of the \(T_i\)'s are of the same sign, and at least one \(T_i\) is large in magnitude, the screening algorithm described above will allow us to make a decision (\(d^+\) when \(T_i > 0\), all \(i\), \(d^-\) when \(T_i \leq 0\), all \(i\)) without the need to calculate the entire function \(q_{-\rho}(I)\) or \(q_\rho(I)\). Use of both screening devices [(3.2.15) and Lemma 3.2.6] thus offers the hope of avoiding expensive calculations in all but marginal cases.

Algorithms for calculating \(a_1, a_2, a_3, \sigma_0\) and \(\gamma(I)\) are given in Chapter 4.

3.3. Mutual Consistency of the Component Bayes Rules

The purpose of this section is to show that the component Bayes rules \(\phi_{t_1, t_2}^{(X)}(X, SSE)\), \(1 \leq t_1 < t_2 \leq n\), when applied simultaneously, yield consistent action vectors \(d\) (see Section 2.1) with probability one. Our proof follows from the following fundamental result.
Lemma 3.3.1. Let \(x_i, a_i, 1 \leq i \leq 3 \), be any real numbers. For a real number \(t \) define
\[
s(t) = |a_1 - x_1 t| + |a_2 - x_2 t| - |a_3 - x_3 t|,
\]
and
\[
q(t) = s(t) + s(-t).
\]
If \(|x_1| + |x_2| \geq |x_3|, |a_1| + |a_2| \geq |a_3| \), then \(q(t) \geq 0 \) for all \(t \).

Proof. It is straightforward to show that for any real numbers \(u \) and \(v \),
\[
|u-v| + |u+v| = |u| + |v| + |u| - |v| = 2 \max(|u|, |v|).
\]
Thus
\[
q(t) = 2[\max\{|a_1|, |x_1 t|\} + \max\{|a_2|, |x_2 t|\} - \max\{|a_3|, |x_3 t|\}].
\]
If \(|a_3| \geq |x_3 t| \), then since \(\max\{|a_i|, |x_i t|\} \geq |a_i|, i=1,2 \), it follows from the assumption that \(|a_1| + |a_2| \geq |a_3| \) that
\[
q(t) \geq 2[|a_1| + |a_2| - |a_3|] \geq 0.
\]
On the other hand, if \(|x_3 t| \geq |a_3| \), then since \(\max\{|a_i|, |x_i t|\} \geq |x_i t|, i=1,2 \), and from the assumption that \(|x_1| + |x_2| \geq |x_3| \),
\[
q(t) \geq 2[|x_1 t| + |x_2 t| - |x t|] = 2|t|[|x_1| + |x_2| - |x_3|] \geq 0.
\]
This completes the proof that \(q(t) \geq 0 \) for all \(t \). \(\square \)

Lemma 3.3.2. If \(w(t) \) is a density function symmetric about \(t=0 \) [i.e., \(w(t) = w(-t) \)], then under the conditions of Lemma 3.3.1,
\[
\int_{-\infty}^{\infty} s(t)w(t)dt \geq 0,
\]
where \(s(t) \) is defined by (3.3.1).
Proof. Using the change of variables $t \to -t$,

\[
\int_{-\infty}^{\infty} s(t)w(t)dt = \int_{0}^{\infty} s(t)w(t)dt + \int_{-\infty}^{0} s(t)w(t)dt
\]

\[
= \int_{0}^{\infty} [s(t)+s(-t)]w(t)dt
\]

\[
= \int_{0}^{\infty} q(t)w(t) \geq 0,
\]

since $q(t) \geq 0$, all t, by Lemma 3.3.1.

Lemma 3.3.3. Let $Q(\omega)$ be defined by (3.2.14). Then for any real numbers x_i, a_i, $1 \leq i \leq 3$, satisfying the conditions of Lemma 3.3.1,

\[
|x_1|Q\left(\frac{a_1}{x_1}\right) + |x_2|Q\left(\frac{a_2}{x_2}\right) \geq |x_3|Q\left(\frac{a_3}{x_3}\right). \tag{3.3.3}
\]

Proof. Note that

\[
Q(\omega) = \int_{-\infty}^{\infty} |z+\omega|N_1(z|0,1)dz = \int_{-\infty}^{\infty} |-t+\omega|N_1(t|0,1)dt.
\]

Also, recall that the standard normal density is symmetric about 0.

Since

\[
|x|Q\left(\frac{a}{x}\right) = \int_{-\infty}^{\infty} |a-xt|N_1(t|0,1)dt, \tag{3.3.4}
\]

the result (3.3.3) follows from (3.3.1), (3.3.4) and Lemma 3.3.2.

Let α be the component problem which compares u_{1j_1} to u_{1j_2}, let β be the component problem which compares u_{2j_2} to u_{3j_3}, and let γ be the component problem which compares u_{1j_1} to u_{3j_3}. Let $T_\alpha, T_\beta, T_\gamma$ be the respective $T(X) = (T_1(X), T_2(X), T_3(X))$ statistics for these
problems, defined by (3.1.2). Note that $SS^* f^*$ and thus $\pi^*(E) = \pi(E|SS^*, f^*)$ remain the same for all three component problems.

It is easily seen from (3.1.2) that

$$ T_\gamma = T_\alpha + T_\beta. $$

Thus, it follows from (3.2.1) that

$$ m(T_\gamma, E) = m(T_\alpha, E) + m(T_\beta, E) \tag{3.3.5} $$

for all $E \in \mathcal{E}$. Combining (3.3.5) with (2.2.19), it is easily seen that

$$ \Delta(T_\gamma) = \Delta(T_\alpha) + \Delta(T_\beta). \tag{3.3.6} $$

It also follows from (3.3.5) that

$$ |m(T_\gamma, E)| \leq |m(T_\alpha, E)| + |m(T_\beta, E)|. \tag{3.3.7} $$

Let $\sigma^2_\alpha(E), \sigma^2_\beta(E), \sigma^2_\gamma(E)$ be the quantities defined for component problems α, β, γ by (3.2.2). Since

$$ i_1 \neq i_3 \Rightarrow i_1 \neq i_2 \text{ or } i_2 \neq i_3, $$

$$ j_1 \neq j_3 \Rightarrow j_1 \neq j_2 \text{ or } j_2 \neq j_3, $$

it is easily seen from (3.2.2) that

$$ \sigma^2_\gamma(E) \leq \sigma^2_\alpha(E) + \sigma^2_\beta(E), $$

and thus that

$$ \sigma_\gamma(E) \leq \sigma_\alpha(E) + \sigma_\beta(E). \tag{3.3.8} $$

It follows from the definition of $\Gamma(T)$ given at the beginning of Section 3.2, (3.1.7) and (3.1.8) that

$$ \Gamma(T) = \int \sigma(E)Q(\frac{m(T, E)}{\sigma(E)}) \pi^*(E) dE. \tag{3.3.9} $$

Hence, from (3.3.7), (3.3.8), (3.3.9) and Lemma 3.3.3,

$$ \Gamma(T_\alpha) + \Gamma(T_\beta) \geq \Gamma(T_\gamma). \tag{3.3.10} $$
However, it also follows from (3.3.5) that
\[|m(I_B, E)| \leq |m(I_{\alpha}, E)| + |m(I_{\beta}, E)|. \]
(3.3.11)

Noting that
\[i_2 \neq i_3 \Rightarrow i_1 \neq i_3 \text{ or } i_1 \neq i_2, \]
\[j_2 \neq j_3 \Rightarrow j_1 \neq j_3 \text{ or } j_1 \neq j_2, \]
it can be shown that
\[\sigma^2(E) \leq \sigma^2_{\gamma}(E) + \sigma^2_{\alpha}(E), \]
and hence that
\[\sigma_{\beta}(E) \leq \sigma_{\gamma}(E) + \sigma_{\alpha}(E). \]
(3.3.12)

It now follows from (3.3.9), (3.3.11), (3.3.12) and Lemma 3.3.3 that
\[\gamma(I_{\gamma}) + \gamma(I_{\alpha}) \geq \gamma(I_{\beta}). \]
(3.3.13)

Using (3.2.4), (3.3.6), (3.3.10) and (3.3.13), the following inequalities can be obtained:
\[q_p(I_{\beta}) + q_{-p}(I_{\alpha}) \leq q_p(I_{\gamma}) \leq q_p(I_{\alpha}) + q_p(I_{\beta}), \]
(3.3.14)
\[q_{-p}(I_{\alpha}) + q_{-p}(I_{\beta}) \leq q_{-p}(I_{\gamma}) \leq q_{-p}(I_{\beta}) + q_{-p}(I_{\alpha}). \]

From (3.2.7) and (3.3.14), it can be seen that:

(i) If the action d^+ is taken in component problems α and β,
then $q_{-p}(I_{\alpha}) > 0$, $q_{-p}(I_{\beta}) > 0$, which implies that $q_{-p}(I_{\gamma}) > 0$,
forcing action d^+ to be taken in component problem γ.

(ii) If the action d^- is taken in component problems α and β,
then $q_p(I_{\alpha}) < 0$, $q_p(I_{\beta}) < 0$, which implies that $q_p(I_{\gamma}) < 0$,
forcing action d^- to be taken in component problem γ.

(iii) If the actions d^+, d^0 are taken in component problems α, β,

respectively, then
\[q_{-\rho}(T_{-\alpha}) > 0, \quad q_{-\rho}(T_{-\beta}) < 0 < q_{\rho}(T_{-\beta}), \]
implying that
\[q_{\rho}(T_{-\gamma}) > q_{\rho}(T_{-\beta}) + q_{-\rho}(T_{-\alpha}) > 0, \]
and thus that action \(d^- \) cannot be taken in component problem \(\gamma \).

(iv) If the actions \(d^-, d^0 \) are taken in component problems \(\alpha, \beta \), respectively, then
\[q_{\rho}(T_{-\alpha}) < 0, \quad q_{-\rho}(T_{-\beta}) < 0 < q_{\rho}(T_{-\beta}), \]
implying that
\[q_{-\rho}(T_{-\gamma}) \leq q_{-\rho}(T_{-\beta}) + q_{\rho}(T_{-\alpha}) < 0, \]
and thus that action \(d^+ \) cannot be taken in component problem \(\gamma \).

Comparing these conclusions with the definition of inconsistency in Section 2.1, it is seen that the component Bayes rules, when applied simultaneously, cannot produce inconsistent action vectors. This result completes the proof of Theorem 2.2.1.

Using arguments similar to those used to derive (3.3.13), but with the roles of component problems \(\alpha \) and \(\beta \) interchanged, it can be shown that
\[\Gamma(T_{-\gamma}) + \Gamma(T_{-\beta}) \geq \Gamma(T_{-\alpha}) \]
and hence that
\[q_{\rho}(T_{-\alpha}) + q_{-\rho}(T_{-\beta}) \leq q_{\rho}(T_{-\gamma}), \]
\[q_{-\rho}(T_{-\gamma}) \leq q_{-\rho}(T_{-\alpha}) + q_{\rho}(T_{-\beta}). \]
Hence
\[\max \{ q_{\rho}(T_\alpha) + q_{-\rho}(T_\beta) , q_{-\rho}(T_\alpha) + q_{\rho}(T_\beta) \} \leq q_{\rho}(T_\gamma) \leq q_{\rho}(T_\alpha) + q_{\rho}(T_\beta) , \]
\[q_{-\rho}(T_\alpha) + q_{-\rho}(T_\beta) \leq q_{-\rho}(T_\gamma) \leq \min \{ q_{\rho}(T_\alpha) + q_{-\rho}(T_\beta) , q_{-\rho}(T_\alpha) + q_{\rho}(T_\beta) \} . \]

The above inequalities can produce bounds for the quantities \(q_{\pm \rho}(T) \) for one component problem in terms of similar quantities already calculated in other (related) component problems. Hence, these inequalities could be used to obtain screening procedures to replace or supplement those described in Section 3.2. Because the logic needed to program the computer to search for "related" component problems is complex, such screening procedures were not utilized in the computer program described in Section 4.2.
CHAPTER IV

ALGORITHMS FOR COMPUTING THE BAYES RULE

In Chapter 3, it was shown that all component Bayes rules \(\varphi^{(x)}(I) \) choose actions based upon the signs of two functions \(q_p(I) \) and \(q_{-p}(I) \). The present chapter is devoted to deriving computational procedures for these functions, and also to devising an algorithm for implementing the full Bayes decision procedure of Theorem 2.2.1. Such a procedure will use the screening methods of Section 3.2 in order to avoid, as much as possible, the necessity of computing \(q_p(I) \) and \(q_{-p}(I) \) in any given component problem.

Section 4.1 gives an iterative procedure for computing the constants

\[
a_i = \int_{E} a_i(E) \pi(E) dE, \quad 1 \leq i \leq 3.
\]

These constants determine the posterior mean

\[
\Delta(I) = \sum_{i=1}^{3} a_i I_i
\]

of \(\eta = u_{11} j_1 - u_{22} j_2 \) in each comparison problem. In Section 2.2 it was noted that the sign of \(\Delta(I) \) allowed us to eliminate one action \(d^- \) if \(\Delta(I) > 0 \), \(d^+ \) if \(\Delta(I) < 0 \) from our choice of possible actions in any component problem. The \(a_i \)'s also play an important role in the first of the two screening procedures described in Section 3.2. Section 4.2 deals with a method for computing \(q_p(I) \) and \(q_{-p}(I) \), and also the
quantities σ_0 and $\gamma(I)$ defined in Section 3.2. At the end of Section 4.2, the proposed algorithm for implementing the full Bayes rule is described.

4.1. Algorithm for Computing a_i, $1 \leq i \leq 3$, and $\Delta(I)$.

Define

$$M(d ; S) = M(d_1, d_2, d_3, d_4 ; S_1, S_2, S_3, S_4)$$

$$= \int_{v_1}^{\infty} \int_{v_4}^{\infty} \int_{v_3}^{\infty} \int_{v_2}^{\infty} \exp \left\{- \sum_{i=1}^{4} \frac{S_i}{2v_i} \right\} \prod_{i=1}^{4} \left[\frac{1}{2} d_i + 1 \right] dv_1 dv_2 dv_3 dv_4, \quad (4.1.1)$$

where d_1, d_2, d_3, d_4 are positive integers, and S_1, S_2, S_3, S_4 are positive real numbers. From (2.1.13), (2.1.15), (2.1.17), (2.1.18), (3.1.3), the definition of $\pi^*(\xi)$ as $\pi(\xi|SS*, f*)$, and (3.2.12), it can be shown that

$$a_1 = 1 - \frac{M(f^*_{A, B, AB} + 2, f^*_{e, -2} ; SS*)}{M(f_{A, B, AB}^*, f^*_{e} ; SS*)} ,$$

$$a_2 = \frac{M(f^*_{A, B, AB} + 2, f^*_{e, -2} ; SS*) - M(f^*_{A, B, AB} + 2, f^*_{e, -2} ; SS*)}{M(f^*_{A, B, AB}^*, f^*_{e} ; SS*)} , \quad (4.1.2)$$

$$a_3 = \frac{M(f^*_{A, B, AB} + 2, f^*_{e, -2} ; SS*) - M(f^*_{A, B, AB} + 2, f^*_{e, -2} ; SS*)}{M(f^*_{A, B, AB}^*, f^*_{e} ; SS*)} ,$$

where $f^*_{e} = (f^*_{A, B, AB}, f^*_{e})$ and $SS^* = (SSA^*, SSB^*, SSAB^*, SSE^*)$ are defined by (2.1.19). The function $\Delta(I)$ can then be calculated from (4.1.2) and (3.1.4).

The function $M(d ; S)$ is recognizable as an iterated multidimensional integral of incomplete gamma functions. Note that

$$f^*_{e} = rc(K-1) + f_e$$
is an even integer in any of the following cases:

(i) \(r \) or \(c \) are even integers and \(f_e \) is an even integer,

(ii) \(K \) is an odd integer and \(f_e \) is an even integer,

(iii) \(r, c, \) and \(f_e \) are odd integers, \(K \) is an even integer.

When, as is often the case, a prior of indifference is used (in which case \(f_e = 0 \) is even), \(f^* \) will be even in all cases except the one where \(r, c \) are odd and \(K \) is even. From the above considerations, finding an algorithm for \(M(d; S) \) when \(d_4 \) is even will allow computation of the constants \(a_1, a_2, a_3 \) (and of \(\Delta(T) \)) in the majority of applications.

Algorithm for Computing \(M(d; S) \) When \(d_4 \) is Even

Define

\[
G_x(d_1, d_2, d_3; S_1, S_2, S_3) = \int_0^\infty \int_0^\infty \int_0^\infty \exp\left\{ - \sum_{i=1}^{3} \frac{S_i}{2v_i} \right\} \frac{3^{1/2}}{\prod_{i=1}^{3} (v_i + 1/2)} \, dv_1 \, dv_2 \, dv_3. \tag{4.1.3}
\]

Then

\[
M(d; S) = \int_0^\infty \frac{\exp\left\{ - \frac{S_4}{2v_4} \right\}}{v_4^{1/2} \, d_4 + 1} \, G_v(d_1, d_2, d_3; S_1, S_2, S_3) \, dv_4. \tag{4.1.4}
\]

Also note that if

\[
I(x|d, S) = \int_x^\infty \frac{\exp\left\{ - \frac{S}{2w} \right\}}{w^{3/2} \, d + 1} \, dw, \tag{4.1.5}
\]

then
\[G_{v_4}(d_1, d_2, d_3; S_1, S_2, S_3) = \int_{v_4}^{\infty} \frac{\exp\left\{-\frac{S_3}{2v_3}\right\}}{v_3^{\frac{1}{2}d_3 + 1}} I(v_3|d_1, S_1)I(v_3|d_2, S_2)dv_3, \]

(4.1.6)

and

\[- \frac{d}{dv_4} G_{v_4}(d_1, d_2, d_3; S_1, S_2, S_3) = \exp\left\{-\frac{S_3}{2v_4}\right\} I(v_4|d_1, S_1)I(v_4|d_2, S_2). \]

(4.1.7)

Lemma 4.1.1. For \(d_4 \geq 1 \),

\[M(d_1, d_2, d_3, d_4+2; S) = \frac{d_4}{S_4} M(d; S) + \frac{2}{S_4} G_0(d_1, d_2, d_3 + d_4; S_1, S_2, S_3 + S_4). \]

Proof. From (4.1.4)

\[M(d; S) = \int_{0}^{\infty} \left(\frac{1}{v_4^{\frac{1}{2}d_4 + 1}} \right) \left[\exp\left\{-\frac{S_4}{2v_4}\right\} G_{v_4}(d_1, d_2, d_3; S_1, S_2, S_3) \right] dv_4. \]

Integrate by parts, using \(\frac{1}{v_4^{\frac{1}{2}d_4 + 1}} \) as one term, and \(\exp(-S_4/2v_4)G_{v_4}(d_1, d_2, d_3; S_1, S_2, S_3) \) as the other. Use of (4.1.7), (4.1.4) and (4.1.6) then yields

\[M(d; S) = \frac{S_4}{d_4} M(d_1, d_2, d_3, d_4+2; S) - \frac{2}{d_4} G_0(d_1, d_2, d_3 + d_4; S_1, S_2, S_3 + S_4) \]

from which the stated result directly follows. \(\Box \)

Lemma 4.1.2. \(M(d_1, d_2, d_3, 2; S) = (2/S_4)G_0(d_1, d_2, d_3; S_1, S_2, S_3 + S_4). \)
Proof. After changing variables from \(v_4 \) to \(x = v_4^{-1} \),

\[
M(d_1,d_2,d_3,2 ; S) = \int_0^\infty \exp\left\{-\frac{S_4 x}{2}\right\} G_1(d_1,d_2,d_3 ; S_1,S_2,S_3) dx.
\]

Integrate by parts, using \(\exp\{-\frac{x}{2} S_4 x\} \) as one term and

\(G_{x^{-1}}(d_1,d_2,d_3 ; S_1,S_2,S_3) \) as the other, and making use of (4.1.7).

Then, change the variable of integration back from \(x \) to \(v_4 = x^{-1} \), and apply (4.1.6). \(\square \)

Starting with \(d_4 \) any even number, \(d_4 \geq 2 \), the recursive scheme provided by Lemmas 4.1.1 and 4.1.2 enables us to avoid calculation of the fourfold integral (4.1.1), since every term calculated in the recursion is a threefold integral of the form (4.1.3), with \(x = 0 \). However, these threefold integrals also do not have to be calculated, as shown below.

Define

\[
J(t_1,t_2 ; C_1,C_2) = \int_0^\infty \frac{\exp\{-\frac{C_2}{2v}\}}{\sqrt[4]{v^2+t_2+1}} I(v|t_1,C_1) dv. \tag{4.1.8}
\]

Lemma 4.1.3. For all \(d_1,d_2,d_3 \geq 1 \), and \(S_1,S_2,S_3 > 0 \),

\[
G_0(d_1,d_2,d_3+2 ; S_1,S_2,S_3) \]

\[
= \frac{d_3}{S_3} G_0(d_1,d_2,d_3 ; S_1,S_2,S_3)
\]

\[
+ \frac{2}{S_3} \left[J(d_1,d_2+d_3 ; S_1,S_2+S_3)+J(d_2,d_1+d_3 ; S_2,S_1+S_3) \right].
\]
Proof. Integrate by parts in (4.1.6), using \(v_3^{-\left(\frac{S_3}{\alpha} + 1\right)} \) as one term and
\(\exp\{-S_3/2v_3\}I(v_3|d_1,S_1)I(v_3|d_2,S_2) \) as the other. Using the fact that

\[
- \frac{d}{dv} I(v|d,S) = \frac{\exp\{-S/2v\}}{v^{\frac{S}{2}} d+1}
\]

and (4.1.6), and rearranging terms as in the proof of Lemma 4.1.1, yields the stated result. \(\square \)

Note: Lemma 4.1.3 also holds for \(d_3 = 0 \). The proof of this assertion is similar to that of Lemma 4.1.2. Thus,

\[
G_0(d_1,d_2,2;S_1,S_2,S_3) = \frac{2}{5^3} \left[J(d_1,d_2;S_1+S_2+S_3) + J(d_2,d_1;S_2+S_1+S_3) \right].
\]

(4.1.9)

Define

\[
B(\tau;\alpha_1,\alpha_2) = \frac{\Gamma(\alpha_1+\alpha_2)}{\Gamma(\alpha_1)\Gamma(\alpha_2)} \int_0^\tau y^{\alpha_1-1}(1-y)^{\alpha_2-1} dy, \quad 0 \leq \tau \leq 1,
\]

(4.1.10)

and

\[
H(m;\tau) = \frac{\Gamma\left(\frac{\tau m}{\frac{1}{2}}\right)}{\Gamma\left(\frac{m}{2}\right)}.
\]

(4.1.11)

We recognize \(B(\tau;\alpha_1,\alpha_2) \) as being the incomplete Beta function.

Lemma 4.1.4. \(J(t_1,t_2;C_1,C_2) = H(t_1;C_1)H(t_2;C_2)B(\frac{C_1}{C_1+C_2};\frac{t_1}{2},\frac{t_2}{2}) \).

Proof. From (4.1.5) and (4.1.8),

\[
J(t_1,t_2;C_1,C_2) = \int_0^\infty \int_0^\infty \exp\{-\frac{C_2}{2v} - \frac{C_1}{2w}\} dv dw.
\]

Make the change of variables

\[x = \frac{C_2 w + C_1 v}{v w} , \quad y = \frac{C_1 v}{C_2 w + C_1 v} \]

in the above double integral, noting that the range restriction \(w \geq v \) implies that \(y \leq C_1 / (C_1 + C_2) \). Integrating over \(x \) and applying the definitions (4.1.10), (4.1.11), completes the proof. □

The computation of \(M(d; S) \) has now been reduced to a recursion, where at every step the familiar incomplete Beta integral is computed. Although subroutines exist to give this computation, we have found it more feasible to calculate the function \(J(t_1, t_2 ; C_1, C_2) \) recursively. Our procedure is based upon the following well known facts about the incomplete Beta function and the complete gamma function.

Lemma 4.1.5.

(i) \(J(t_1, t_2 ; C_1, C_2) = H(t_1 ; C_1) H(t_2 ; C_2) - J(t_2, t_1 ; C_2, C_1) \),

(ii) \(J(t_1, t_2 + 2 ; C_1, C_2) = \frac{t_2}{C_2} J(t_1, t_2 ; C_1, C_2) + \frac{2}{C_2} H(t_1 + t_2 ; C_1 + C_2) \),

(iii) \(J(t_1 + 2, t_2 ; C_1, C_2) = \frac{t_1}{C_1} J(t_1, t_2 ; C_1, C_2) - \frac{2}{C_1} H(t_1 + t_2 ; C_1 + C_2) \),

(iv) \(H(m+2 ; T) = \frac{m}{T} H(m ; T) \),

Lemma 4.1.6.

(i) \(J(1,1 ; C_1, C_2) = 4 \arctan \left(\frac{\sqrt{C_1}}{\sqrt{C_2}} \right) , \)

\(J(2,2 ; C_1, C_2) = 4 \frac{C_1}{C_2(C_1+C_2)} \).
(ii) \(J(1, 2; C_1, C_2) = \frac{2}{C_2} \sqrt{\frac{2\pi}{C_1+C_2}} \),
\[
J(2, 1; C_1, C_2) = \frac{2\sqrt{2\pi}}{C_1\sqrt{C_2}} \left(1 - \sqrt{\frac{C_2}{C_1+C_2}} \right),
\]

(iii) \(H(2; T) = 2T^{-1}, H(3; T) = \sqrt{2\pi} T^{-3/2}, H(4; T) = 4T^{-2} \).

Before describing the complete computational algorithm, two more useful results about the function \(G_0(d_1, d_2, d_3; S_1, S_2, S_3) \) are given.

Lemma 4.1.7. (Updating first and second indices of \(G_0 \).) For \(d_1, d_2, d_3 \geq 1, S_1, S_2, S_3 > 0, \)
\[
\begin{align*}
(i) \quad G_0(d_1+2, d_2, d_3; S_1, S_2, S_3) &= \frac{d_1}{S_1} G_0(d_1, d_2, d_3; S_1, S_2, S_3) \\
&- \frac{2}{S_1} J(d_2, d_1+d_3; S_2, S_1+S_3),
\end{align*}
(ii) \quad G_0(d_1, d_2+2, d_3; S_1, S_2, S_3) &= \frac{d_2}{S_2} G_0(d_1, d_2, d_3; S_1, S_2, S_3) \\
&- \frac{2}{S_2} J(d_1, d_2+d_3; S_1, S_2+S_3).
\]

Proof. Both of these results follow from the relationship:
\[
I(x|d, S) = \frac{S}{d} I(x|d+2, S) + \frac{2}{d} e^{\frac{-S}{x^2d}},
\]
which can be proven by using integration by parts in (4.1.5). Rewriting this equation in the form
\[I(x|d+2,S) = \frac{d}{S} I(x|d,S) - \frac{2}{S} \frac{e^{-\frac{S}{2}}}{x^d}, \]

with \(x=V_3 \), \(d=d_2 \), \(S=S_1 \) in (i), \(x=V_3 \), \(d=d_2 \), \(S=S_2 \) in (ii), and substituting into (4.1.6) yields the desired results. \(\Box \)

Lemma 4.1.8. For \(S_1, S_2, S_3 > 0 \),

(i) \(G(2,d_2,d_3; S_1,S_2,S_3) = \frac{2}{S_1} \left[J(d_2,d_3; S_2,S_3) - J(d_2,d_3; S_2,S_1+S_3) \right] \),

(ii) \(G(d_1,2,d_3; S_1,S_2,S_3) = \frac{2}{S_2} \left[J(d_1,d_3; S_1,S_3) - J(d_1,d_3; S_1,S_2+S_3) \right] \).

Proof. In (4.1.3) carry out the integration over \(v_1 \) [for (i)] or over \(v_2 \) [for (ii)], and apply (4.1.8). \(\Box \)

Finally, the following results are useful for starting the recursion for \(G_0(d_1,d_2,d_3; S_1,S_2,S_3) \).

Lemma 4.1.9. For \(S_1, S_2, S_3 > 0 \),

\[G_0(1,1,1; S_1,S_2,S_3) = 4 \left(\frac{2\pi}{S_1 S_2 S_3} \right)^{\frac{1}{2}} \arctan \left[\frac{S_1 S_2}{[(S_1+S_3)(S_2+S_3)-S_1 S_2]} \right]^{\frac{1}{2}} \]

Proof. From (4.1.3),

\[G_0(1,1,1; S_1,S_2,S_3) = \int_0^\infty \int_0^\infty \int_0^\infty \exp \left\{ -\sum_{i=1}^3 \frac{S_i}{2v_i} \right\} \frac{dv_1 dv_2 dv_3}{(v_1 v_2 v_3)^{3/2}}. \]

Make the change of variables
\[x_1 = \frac{S_1 v_3}{S_3 v_1 + S_1 v_3}, \quad x_2 = \frac{S_2 v_3}{S_3 v_2 + S_2 v_3}, \quad x_3 = \frac{S_3 v_3}{v_3}, \]

and integrate over \(x_3 \). Then, with \(F_i = S_i (S_i + S_3)^{-1}, \ i=1,2, \)

\[
G_0(1,1,1; S_1, S_2, S_3) = \left(\frac{2\pi}{S_1 S_2 S_3} \right)^{\frac{1}{2}} \int_0^F_1 \int_0^F_2 x_1^{-\frac{1}{2}} x_2^{-\frac{1}{2}} (1-x_1 x_2)^{-3/2} dx_2 dx_1.
\]

Make a further change of variables to \(t_1 = F_2 x_1, t_2 = x_1 x_2 \). Then

\[
G_0(1,1,1; S_1, S_2, S_3) = \left(\frac{2\pi}{S_1 S_2 S_3} \right)^{\frac{1}{2}} \int_0^F_1 \int_0^t_1 \frac{1}{t_1} \left[\int_0^{t_1} \left(t_2^{-\frac{1}{2}} (1-t_2)^{-3/2} \right) dt_2 \right] dt_1
\]

\[
= 2 \left(\frac{2\pi}{S_1 S_2 S_3} \right)^{\frac{1}{2}} \int_0^F_1 \left[(1-t_1)^{1/2} \right]^{-1/2} dt
\]

\[
= 4 \left(\frac{2\pi}{S_1 S_2 S_3} \right)^{\frac{1}{2}} \arctan \left(\frac{\sqrt{F_1 F_2}}{1-F_1 F_2} \right),
\]

and the result follows by substituting for \(F_1, F_2 \), in terms of \(S_1, S_2, S_3 \). \(\Box\)

Lemma 4.1.10. For \(S_1, S_2, S_3 > 0, \)

(i) \(G_0(2,1,1; S_1, S_2, S_3) \)

\[
= \frac{8}{S_1 \sqrt{S_2}} \left[\frac{\arctan \left(\sqrt{\frac{S_2}{S_3}} \right)}{\sqrt{S_3}} - \frac{\arctan \left(\sqrt{\frac{S_2}{S_1+S_3}} \right)}{\sqrt{S_1+S_3}} \right].
\]
(ii) \(G_0(1,2,1; S_1, S_2, S_3) \)
\[
= \frac{8}{S_2 \sqrt{S_1}} \left[\frac{\text{arc tan} \left(\frac{\sqrt{S_1}}{\sqrt{S_3}} \right)}{\sqrt{S_3}} - \frac{\text{arc tan} \left(\frac{\sqrt{S_1}}{\sqrt{S_2 + S_3}} \right)}{\sqrt{S_2 + S_3}} \right],
\]

(iii) \(G_0(2,2,1; S_1, S_2, S_3) \)
\[
= \frac{4/2\pi}{S_1 S_2} \left[\frac{1}{\sqrt{S_3}} - \frac{1}{\sqrt{S_1 + S_3}} - \frac{1}{\sqrt{S_2 + S_3}} + \frac{1}{\sqrt{S_1 + S_2 + S_3}} \right].
\]

Proof. The above equations follow directly from Lemmas 4.1.8 and 4.1.6. □

Algorithm for Computing \(M(d; S) \) When \(d_4 \) is Odd

When \(d_4 \) is odd, computation of \(M(d; S) \) is more complicated. However, if \(d_1 \) and \(d_2 \) are both even, it is possible to express \(M(d; S) \) as a finite sum. First, by a change of variables it can be shown that

\[
I(x | d, S) = H(d; S) \int_0^{\frac{S}{2x}} \frac{u^{d-1} e^{-u}}{r(d)} \, du.
\]
(4.1.12)

We recognize the integral on the right side of (4.1.12) as the incomplete gamma function. When \(d \) is even, we can apply the familiar expansion of the incomplete gamma function in a Poisson series, obtaining

\[
I(x | d, S) = H(d; S) \left(1 - \sum_{i=0}^{\frac{d-1}{2}} \frac{\left(\frac{S}{2x} \right)^i}{i!} \exp \left\{ - \frac{S}{2x} \right\} \right).
\]
(4.1.13)

Substituting (4.1.13) with \(d = d_1, S = S_1 \) and also \(d = d_2, S = S_2 \) into (4.1.6), and this result into (4.1.4), yields

\[
M(d; S) = H(d_1; S_1) H(d_2; S_2) \left[\Sigma_0 - \Sigma_1 - \Sigma_2 + \Sigma_{12} \right],
\]
(4.1.14)
where

\[\Sigma_0 = J(d_3, d_4; S_3, S_4), \]

\[\Sigma_1 = \sum_{i=0}^{\frac{1}{2}d_4-1} \left(\frac{S_1}{2} \right)^i \frac{J(d_3+2i, d_4; S_1+S_3, S_4)}{i!}, \]

\[\Sigma_2 = \sum_{j=0}^{\frac{1}{2}d_2-1} \left(\frac{S_2}{2} \right)^j \frac{J(d_3+2j, d_4; S_2+S_3, S_4)}{j!}, \]

\[\Sigma_{12} = \sum_{i=0}^{\frac{1}{2}d_4-1} \sum_{j=0}^{\frac{1}{2}d_2-1} \left(\frac{S_1}{2} \right)^i \left(\frac{S_2}{2} \right)^j \frac{J(d_3+2(i+j), d_4; S_1+S_2+S_3, S_4)}{i! j!}. \]

Lemmas 4.1.5 and 4.1.6 can be used to evaluate the quantities

\[J(t_1, t_2; C_1, C_2) \]

appearing in the sums \(\Sigma_0, \Sigma_1, \Sigma_2 \), and \(\Sigma_{12} \) in (4.1.14). However, if \(d_3 \) is also even, further simplification can be done by using Lemma 4.1.4, and the well known representation of the incomplete beta function as a sum of binomial probabilities, to represent each

\[J(t_1, t_2; C_1, C_2) \]

as a finite sum of powers of \(C_1/(C_1+C_2) \).

Description of Algorithm

In this section we have described methods for constructing algorithms to compute \(M(d, S) \) in two cases: (i) when \(d_4 \) is even; and (ii) when \(d_4 \) is odd (or even), and \(d_1, d_2 \) are even. Algorithms for computing \(M(d, S) \) in the remaining cases [where \(d_4 \) and either \(d_1 \) or \(d_2 \) (or both) are odd] can be constructed. However, such algorithms are likely to be considerably more cumbersome than those exposted above. The two algorithms described above are sufficient to handle a large number of practical problems, and permit us to apply the Bayes procedure.
described in Chapters 2 and 3 to real data in Chapter 5. If the Bayes procedure proves to be a useful statistical tool, we will then have some justification for improving and extending our algorithms for calculating $M(d; S)$. A flow chart to compute $M(d; S)$ in the aforementioned two cases is given in Figure 4.1.

4.2. Recursive Method for Computing $r(I)$

The functions $\triangle(I)$ and $r(I)$ together determine the component Bayes rules; see, for example, Equations (3.2.5) and (3.2.7). Recall from (3.3.9) that

$$ r(I) = \int_{\mathcal{E}} Q\left(\frac{m(I, E)}{\sigma(E)} \right) \sigma(E) \pi^*(E) dE, \quad (4.2.1) $$

where $m(I, E)$ is defined by (3.2.1), $\sigma^2(E)$ is defined by (3.2.2), $\pi^*(E) = \pi(E| SS^*, f^*)$, and $Q(\omega)$ is defined by (3.1.8).

Lemma 4.2.1. For all ω, $-\infty < \omega < \infty$,

$$ Q(\omega) = \sum_{j=0}^{\infty} \frac{\sqrt{2}}{\Gamma(j+\frac{1}{2})} \left(\frac{\omega^2}{2} \right)^j \exp\left\{ -\frac{1}{2} \omega^2 \right\}. $$

Proof. Note from (3.1.8) that $Q(\omega)$ is the expected value of $|V|$, where $V \sim N_1(\omega, 1)$. It is well known that in this case $U = V^2$ has a noncentral χ^2 distribution with noncentrality parameter $\frac{1}{2} \omega^2$. Thus

$$ Q(\omega) = E(|V|) = E(\sqrt{U}) = \int_0^\infty \sqrt{u} \left[\sum_{j=0}^{\infty} \frac{\left(\frac{\omega^2}{2} \right)^j}{\Gamma(j+\frac{1}{2})} \exp\left\{ -\frac{1}{2} \omega^2 \right\} \frac{u^{\frac{1}{2}+j-1}}{\Gamma(j+\frac{1}{2})} \exp\left\{ -\frac{1}{2} u \right\} \right] du, $$

and the stated result follows after interchanging sum and integral, and integrating term by term. \qed
Enter
Positive Integers d_1, d_2, d_3, d_4
Positive Numbers S_1, S_2, S_3, S_4

Is d_4 even? NO -> A

YES
Set $m_4 = \frac{d_4}{2}$

Is $m_4 = 0$? NO -> B

YES
ERROR

Set $t_1 = d_2, t_2 = d_1,$
$C_1 = S_2$
$C_2 = S_1 + S_3 + S_4$

CALL SUBROUTINE J-FUNCTION

Set JF1 = TF
HF = UF

Is d_3 even? NO -> B

YES
Set $m_3 = \frac{d_3}{2}$

Is $m_3 = 0$? NO

YES
ERROR

Set $t_1 = d_1, t_2 = d_2,$
$C_1 = S_1, C_2 = S_2,$
$C_3 = S_3 + S_4$

CALL SUBROUTINE G-FUNCTION

Set $R_3 = 1$

B

Set $R_3 = 0$

Figure 4.1: Algorithm for Computing $M(d, S)$
Figure 4.1: Continued
Set $I=0$
$I=0$
$MF=0$.

Is $I = m_3$?

YES

I$=I+1$

$GF = \frac{R_3+2I-2}{S_3+S_4} \cdot GF + \frac{2}{S_3+S_4} \cdot (JF1+JF2)$

$JF1 = \frac{d_1+R_3+2I-2}{S_1+S_3+S_4} \cdot JF1 + \frac{2}{S_1+S_3+S_4} \cdot HF$

$JF2 = \frac{d_2+R_3+2I-2}{S_2+S_3+S_4} \cdot JF2 + \frac{2}{S_2+S_3+S_4} \cdot HF$

$HF = \frac{d_1+d_2+R_3+2I-2}{S_1+S_2+S_3+S_4} \cdot HF$

NO

$J+J+1$

$MF = \frac{2(J-1)}{S_4} \cdot MF + \frac{2}{S_4} \cdot GF$

$GF = \frac{2}{S_3+S_4} \cdot [\frac{d_3+2J-2}{2} \cdot GF + JF1+JF2]$

$JF1 = \frac{2}{S_1+S_3+S_4} \cdot [\frac{d_1+d_3+2J-2}{2} \cdot JF1+HF]$

$JF2 = \frac{2}{S_2+S_3+S_4} \cdot [\frac{d_2+d_3+2J-2}{2} \cdot JF2+HF]$

$HF = \frac{d_1+d_2+d_3+2J-2}{S_1+S_2+S_3+S_4} \cdot HF$

NO

Is $J = m_4$?

YES

PRINT M

STOP

Figure 4.1: Continued
SUBROUTINE J-FUNCTION \((t_1, t_2; C_1, C_2; TF, UF)\)

Compute \(TF = J(t_1, t_2; C_1, C_2)\), \(UF = H(t_1 + t_2; C_1 + C_2)\)

Enter
Postive Integers \(t_1, t_2\)
Positive numbers \(C_1, C_2\)

Is \(t_1\) odd? YES

Is \(t_2\) odd? YES

\(m_1 = (t_1 - 1)/2\)
\(m_2 = t_2/2\)

Set \(TF = J(1, 2; C_1, C_2)\)
\(UF = H(3; C_1 + C_2)\)
\(R_1 = 1, R_2 = 0\)
\(II = I = 1, JJ = J = 1\)

Is \(m_1 = I\)? YES

\(I = I + 1\)
\(TF = R_1 + 2(I - 1) \cdot \frac{C_1}{C_1} + \frac{2}{C_1} \cdot UF\)
\(UF = t_2 + R_1 + 2(I - 1) / (C_1 + C_2)\)

STOP

Is \(m_2 = J\)? NO

\(J = J + 1\)
\(TF = R_2 + 2(J - 1) \cdot \frac{C_1}{C_2} + \frac{2}{C_2} \cdot UF\)
\(UF = 2II + R_1 + R_2 + 2(J - 1) / (C_1 + C_2)\)

Is \(t_2\) odd? NO

\(m_1 = t_1/2\)
\(m_2 = (t_2 - 1)/2\)

Set \(TF = J(2, 2; C_1, C_2)\)
\(UF = H(4; C_1 + C_2)\)
\(R_1 = 0, R_2 = 0\)
\(II = I = 1, JJ = J = 1\)

Is \(t_1\) odd? NO

\(m_1 = t_1/2\)
\(m_2 = t_2/2\)

Set \(TF = J(2, 1; C_1, C_2)\)
\(UF = H(3; C_1 + C_2)\)
\(R_1 = 0, R_2 = 1\)
\(II = I = 1, J = JJ = 0\)

Figure 4.1: Continued
SUBROUTINE G-FUNCTION \((t_1, t_2; C_1, C_2, C_3; GF, JF1, JF2, HF)\)

Compute:
\[GF = G_0(t_1, t_2, l; C_1, C_2, C_3), \quad JF1 = J(t_2, t_1+1; C_1, C_2, C_1+C_3) \]
\[JF2 = J(t_2, t_1+1; C_1, C_2+C_3), \quad HF = H(t_1+t_2+1; C_1+C_2+C_3) \]

Enter positive integers \(t_1\), \(t_2\)
positive numbers \(C_1, C_2\)

- Is \(t_1\) odd? YES
- Is \(t_2\) odd? YES

- NO
- Is \(t_2\) odd? NO

- Set \(m_1 = \frac{t_1}{2}\)
 \(m_2 = \frac{t_2}{2}\)

- \(GF = G_0(2, 2; 1; C_1, C_2, C_3)\)
- \(JF1 = J(2, 3; C_2, C_1+C_3)\)
- \(JF2 = J(2, 3; C_1, C_2+C_3)\)
- \(HF = H(5; C_1+C_2+C_3)\)
 \(R1 = 0, I = II = 1\)
 \(R2 = 0, J = JJ = 1\)

- \(GF = G_0(2, 1, 1; C_1, C_2, C_3)\)
- \(JF1 = J(1, 3; C_2, C_1+C_3)\)
- \(JF2 = J(2, 2; C_1, C_2+C_3)\)
- \(HF = H(4; C_1+C_2+C_3)\)
 \(R1 = 0, I = II = 1\)
 \(R2 = 0, J = JJ = 1\)

- \(GF = G_0(1, 2, 1; C_1, C_2, C_3)\)
- \(JF1 = J(2, 2; C_2, C_1+C_3)\)
- \(JF2 = J(1, 3; C_1, C_2+C_3)\)
- \(HF = H(3; C_1+C_2+C_3)\)
 \(R1 = 0, I = II = 0\)
 \(R2 = 1, J = JJ = 0\)

- \(GF = G_0(1, 1, 1; C_1, C_2, C_3)\)
- \(JF1 = J(1, 2; C_2, C_1+C_3)\)
- \(JF2 = J(1, 2; C_1, C_2+C_3)\)
- \(HF = H(3; C_1+C_2+C_3)\)
 \(R1 = 0, I = II = 0\)
 \(R2 = 1, J = JJ = 0\)

- NO
- Is \(m_2 = J\)?
 \(GF = \frac{R2+2J-2}{C_2} \quad GF = \frac{2}{C_2} \quad JF2\)
- \(JF1 = \frac{R2+2J-2}{C_2} \quad JF1 = \frac{2}{C_2} \quad HF\)
- \(JF2 = \frac{J+2J+2R2}{C_2+C_3} \quad JF2 = \frac{2}{C_2+C_3} \quad HF\)
- \(HF = \frac{t_1+J+2R2+2J-2}{C_1+C_2+C_3} \quad HF\)

- YES
- Is \(m_1 = I\)?
 \(GF = \frac{R1+2I-2}{C_1} \quad GF = \frac{2}{C_1} \quad JF1\)
- \(JF1 = \frac{II+2R1+2J-2}{C_1+C_3} \quad JF1 = \frac{2}{C_1+C_3} \quad HF\)
- \(JF2 = \frac{R1+2I-2}{C_1} \quad JF2 = \frac{2}{C_1} \quad HF\)
- \(HF = \frac{II+R1+2I}{C_1+C_2+C_3} \quad HF\)

Figure 4.1: Continued
Let
\[\xi_j(\omega) = (\omega^2)^j \exp\left\{ - \frac{1}{2} \omega^2 \right\}. \] (4.2.2)

Using Lemma 4.2.1 and (4.2.1), it follows that in the component problem where \(u_{i1j1} \) is compared to \(u_{i2j2} \),

\[r(I) = \frac{\sqrt{2}}{M(f^*, SS^*)} \sum_{j=0}^{\infty} [2^{j} r(j+\frac{1}{2})]^{-1} H_j(I; f^*, SS^*), \] (4.2.3)

where the function \(M(d; S) \) of \(d = (d_1, d_2, d_3, d_4)^r \) and \(S = (S_1, S_2, S_3, S_4)^r \) has previously been defined in (4.1.1), while the function \(H_j(I; d; S) \) is defined by

\[H_j(I; d; S) = \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \xi_j \left(\frac{m(I,y)}{\sigma(y)} \right) \sigma(y) \left[\exp \left\{ - \sum_{i=1}^{4} \frac{S_i}{2v_i} \right\} \right] dv_1 dv_2 dv_3 dv_4, \] (4.2.4)

where \(y = (v_1, v_2, v_3, v_4)^r \),

\[m(I,y) = (1 - \frac{v_4}{v_3}) T_1 + (\frac{v_4}{v_3} - \frac{v_4}{v_2}) T_2 + (\frac{v_4}{v_3} - \frac{v_4}{v_1}) T_3, \] (4.2.5)

\[\sigma^2(I,y) = \frac{2v_4}{K} [1 - \frac{v_4}{v_3} + \frac{1}{r} (1 - \delta_{j1j2}) (\frac{v_4}{v_3} - \frac{v_4}{v_2}) + \frac{1}{c} (1 - \delta_{i1i2}) (\frac{v_4}{v_3} - \frac{v_4}{v_1})]. \]

Type I and Type II Component Problems

In Type I component problems, \(m(I,y) \) and \(\sigma^2(y) \) are functionally independent of \(v_1 \). Similarly, in Type II component problems, \(m(I,y) \) and \(\sigma^2(y) \) are functionally independent of \(v_2 \). In these cases, (4.2.4) can be simplified.
Lemma 4.2.2. For any integer \(d > 2 \),

\[
\int_{x}^{\infty} \exp\left\{- \frac{S}{2v} \right\} \frac{dv}{v^{\frac{d}{2} + 1}} = \left(\frac{d-2}{S} \right) \int_{x}^{\infty} \exp\left\{- \frac{S}{2v} \right\} \frac{dv}{v^{\frac{d}{2}}} - \left(\frac{2}{S} \right) \int_{x}^{\infty} \exp\left\{- \frac{S}{2x} \right\} \frac{dv}{x^{\frac{d}{2} - 1}}
\]

while

\[
\int_{x}^{\infty} \exp\left\{- \frac{S}{2v} \right\} \frac{dv}{v^{\frac{d}{2}}} = \frac{S}{2} \left[\exp\left\{- \frac{S}{2x} \right\} \right].
\]

Proof. The first result follows from an integration by parts, while the second result is established by direct integration. \(\square\)

For \(\xi = (t_1, t_2, t_3) \), \(\zeta = (C_1, C_2, C_3) \); define

\[
F_j(T; \xi; \zeta)
\]

\[
= \int_{0}^{\infty} \int_{w_2}^{\infty} \int_{w_3}^{\infty} \xi_j \left(\frac{m(T, w)}{\sigma(w)} \right) \sigma(w) \frac{\exp\left\{- \sum_{i=1}^{3} \frac{C_i}{w_i} \right\}}{w_1^{\frac{3}{2} + 1}} \, dw_1 \, dw_2 \, dw_3, \quad (4.2.6)
\]

where in Type I component problems,

\[
m(T, w) = (1 - \frac{w_3}{w_2})T_1 + \left(\frac{w_3}{w_2} - \frac{w_3}{w_1} \right)T_2, \quad \sigma^2(w) = \frac{2w_3}{K} \left[(1 - \frac{w_3}{w_2}) + \frac{1}{r} \left(\frac{w_3}{w_2} - \frac{w_3}{w_1} \right) \right],
\]

and in Type II component problems,

\[
m(T, w) = (1 - \frac{w_3}{w_2})T_1 + \left(\frac{w_3}{w_2} - \frac{w_3}{w_1} \right)T_3, \quad \sigma^2(w) = \frac{2w_3}{K} \left[(1 - \frac{w_3}{w_2}) + \frac{1}{c} \left(\frac{w_3}{w_2} - \frac{w_3}{w_1} \right) \right].
\]

Lemma 4.2.3. Suppose that \(d_1, d_2, d_3, d_4 \geq 1 \), and \(S_1, S_2, S_3, S_4 > 0 \). In Type I component problems,
\[H_j(I; d_1 + 2, d_2, d_3, d_4; S) \]
\[= \frac{d_1}{S_1} H_j(I; d; S) - \frac{2}{S_1} F_j(I; d_2, d_1 + d_3, d_4; S_2, S_1 + S_3, S_4), \]

and

\[H_j(I; 2, d_2, d_3, d_4; S) \]
\[= \frac{2}{S_1} [F_j(I; d_2, d_3, d_4; S_2, S_3, S_4) - F_j(I; d_2, d_3, d_4; S_2, S_1 + S_3, S_4)]. \]

In Type II component problems,

\[H_j(I; d_1, d_2 + 2, d_3, d_4; S) \]
\[= \frac{d_2}{S_2} H_j(I; d; S) - \frac{2}{S_2} F_j(I; d_1, d_2 + d_3, d_4; S_1, S_2 + S_3, S_4), \]

and

\[H_j(I; d_1, 2, d_3, d_4; S) \]
\[= \frac{2}{S_2} [F_j(I; d_1, d_3, d_4; S_1, S_3, S_4) - F_j(I; d_1, d_3, d_4; S_1, S_2 + S_3, S_4)]. \]

Proof. These results follow directly from the previously mentioned fact that \(m(I; y) \) and \(\sigma^2(y) \) are functionally independent of \(v_1 \) in Type I component problems, and of \(v_2 \) in Type II component problems. This allows us to use Lemma 4.2.2 to provide the recursion formulas given above. \(\square \)

The triple integral in (4.2.6) can be reduced to a double integral by making the transformation:

\[x = \frac{w_3}{w_1}, \quad y = \frac{w_3}{w_2}, \quad z = \frac{1}{w_3}, \]

and integrating out \(z \). Thus,
\[F_j(T; t; \zeta) = \frac{(K)^{j - \frac{1}{2}} T^{\frac{3}{2}} \sum_{i=1}^{3} t_i + j - \frac{1}{2}}{\left(\frac{1}{2}\right) \sum_{i=1}^{3} t_i} \int_{0}^{1} \int_{0}^{y} \frac{(m(x,y))^2 t_1^{-1} t_2^{-1} \sigma^2(x,y)^{j - \frac{3}{2}}}{x \sigma^2(x,y)} \frac{dx \, dy}{y} \left[k \frac{m^2(x,y)}{\sigma^2(x,y)} + C_1 x + C_2 y + C_3 \right]^{\frac{1}{2}} \sum_{i=1}^{3} t_i + j - \frac{1}{2} \]

(4.2.7)

where

\[m(x,y) = (1-y)T_1 + (y-x)T_2, \quad \sigma^2(x,y) = (1-y) + \frac{1}{r} (y-x), \]

in Type I component problems, while

\[m(x,y) = (1-y)T_1 + (y-x)T_3, \quad \sigma^2(x,y) = (1-y) + \frac{1}{C} (y-x), \]

in Type II component problems.

For \(j=0,1,2,\ldots \), \(F_j(t; \zeta) \) defines a double integrated integral over a triangular area bounded by the vertices \((0,0), (0,1), (1,0)\). A numerical quadrature procedure called TRINT [Mustard, Lyness and Blatt (1963)], in the possession of the TRW Program Library, is used to evaluate this integral. The number of subintervals of equal length partitioning the interval \([0,1]\) on each axis is chosen to be 32. In this case, it is known that the maximum error made by the quadrature formula in approximating \(F_j(T; t; \zeta) \) is

\[3.314 \times 10^{-10} \max_{0<x<y<1} \left[\frac{\partial^4 f(x,y)}{\partial x^4} + \frac{\partial^4 f(x,y)}{\partial y^4} + 10 \frac{\partial^4 f(x,y)}{\partial x^2 \partial y^2} \right] \]

where \(f(x,y) \) is the integrand of the double integral (4.2.7).
In using the recursion provided by Lemma 4.2.3 for \(H_j(I; d; S) \), initial values \(H_j(I; 1,d_2,d_3,d_4; S) \), \(H_j(I; d_1,1,d_3,d_4; S) \) are needed for Type I component problems with \(d_1 = f_A^* \) odd, and Type II component problems with \(d_2 = f_B^* \) odd, respectively. These can be obtained by means of the general algorithm for \(H_j(I; d; S) \) to be described for use in Type III component problems. Of course, for Type I component problems with \(d_1 = f_A^* \) even, and Type II component problems with \(d_2 = f_B^* \) even, the initial values \(H_j(I; 2,d_2,d_3,d_4; S) \) and \(H_j(I; d_1,2,d_3,d_4; S) \) are specified by Lemma 4.2.3.

Type III Component Problems

In Type III component problems, \(m(I,v) \) and \(\sigma^2(v) \) depend upon every element of \(v \), complicating the problem of calculation. One simplification can be achieved by making the transformation:

\[
\begin{align*}
x &= \frac{v_4}{v_1}, & y &= \frac{v_4}{v_2}, & z &= \frac{v_4}{v_3}, & w &= \frac{1}{v_4}
\end{align*}
\]

in (4.2.4), and integrating over \(w \). Thus

\[
\begin{align*}
H_j(I; d; S) &= \frac{k^{j-\frac{1}{2}}}{\left(\frac{1}{2}\sum_{i=1}^{4} d_i + j - \frac{1}{2}\right)^{\frac{j+1}{2}}} \\
&\cdot \left(\frac{1}{2}\sum_{i=1}^{4} d_i\right)^{\frac{j-1}{2}} \int_{0}^{1} \int_{0}^{z} \int_{0}^{z} (m(x,y,z))^{2j} x^{\frac{1}{2}d_1-1} y^{\frac{1}{2}d_2-1} z^{\frac{1}{2}d_3-1} dx dy dz \\
&\cdot (\sigma^2(x,y,z))^{j-\frac{3}{2}} \left[k \frac{m^2(x,y,z)}{\sigma^2(x,y,z)} + S_1 x + S_2 y + S_3 z + S_4 \right]^{\frac{1}{2}} \sum_{i=1}^{4} d_i + j - \frac{1}{2}
\end{align*}
\]

(4.2.8)
where
\[m(x,y,z) = (1-z)T_1 + (z-y)T_2 + (z-x)T_3, \]
\[\sigma^2(x,y,z) = (1-z) + \frac{1}{r}(z-y) + \frac{1}{c}(z-x). \]

To evaluate this three-dimensional iterated integral, a subroutine INT3D is obtained from Stroud (1973). The procedure is based on a 16-point product Gauss-Legendre polynomial formula. The computer program is given in Appendix B. References giving estimates of the numerical errors made by such a procedure are Ahlin (1962), Chawla (1968), Stenger (1966), and Stroud and Secrest (1966).

Calculation of \(\gamma(I) \) and \(\sigma_0 \)

Recall that
\[\gamma(I) = \frac{1}{\sqrt{2\pi}} \int_{E} \frac{(\sigma(E))^3 \exp \left\{ - \frac{m^2(I,E)}{2\sigma^2(E)} \right\}}{m^2(I,E)} \pi^*(E) \, dE \]

plays a role in one of the screening methods described in Section 3.2. Using an obvious extension of the definition of \(H_j(I; d; S) \) to the case \(j = -1 \), we can show that
\[\gamma(I) = \frac{H_{-1}(I; f^*; SS^*)}{\sqrt{2\pi} \, M(f^*; SS^*)}. \]

Further, in Type I and Type II component problems, \(H_{-1}(I; d; S) \) obeys obvious analogues of the recursion formulas of Lemma 4.2.3, and \(F_{-1}(I; t; C) \) is computable from (4.2.7) with \(j = -1 \). It is also always the case that \(H_{-1}(I; d; S) \) can be calculated from (4.2.8) with \(j = -1 \) for Type III component problems. Thus, \(\gamma(I) \) can be calculated by means of the same techniques used to calculate \(r(I) \), except that \(r(I) \) is an
infinite weighted sum of $H_j(I; f^*; S^*)$, $j=0,1,2,\ldots$, while $\gamma(I)$ only involves $H_{-1}(I; f^*; S^*)$.

The constant

$$
\sigma_0 = \sigma_0(f^*; S^*) = \int \sigma(\xi) \pi^*(\xi) d\xi,
$$

also has a role in a screening procedure. Again, in Type I and Type II component problems, $\sigma_0(d; S)$ obeys a recursion relationship of the form of Lemma 4.2.3. That is, in Type I component problems

$$
\sigma_0(d_1+d_2,d_3,d_4; S) = \frac{d_1}{S_1} \sigma_0(d; S) - \frac{2}{S_1} G(d_2,d_1+d_3,d_4; S_2,S_1+S_3,S_4),
$$

and

$$
\sigma_0(2,d_2,d_3,d_4; S) = \frac{2}{S_1} \left[G(d_2,d_3,d_4; S_2,S_1+S_3,S_4) - G(d_2,d_3,d_4; S_2,S_1+S_3,S_4) \right],
$$

while in Type II component problems,

$$
\sigma_0(d_1,d_2+2,d_3,d_4; S) = \frac{d_2}{S_2} \sigma_0(d; S) - \frac{2}{S_2} G(d_1,d_2+d_3,d_4; S_1,S_2+S_3,S_4)
$$

and

$$
\sigma_0(d_1,2,d_3,d_4; S) = \frac{2}{S_2} \left[G(d_1,d_3,d_4; S_1,S_3,S_4) - G(d_1,d_3,d_4; S_1,S_2+S_3,S_4) \right],
$$

where $G(t_1,t_2,t_3; C_1,C_2,C_3)$ can be obtained from the right side of (4.2.7) by setting $t_1 = t_2 = t_3 = j = 0$. Similarly, $\sigma_0(d; S)$ can always be computed from the right side of (4.2.8) by setting $t_1 = t_2 = t_3 = j = 0$ for Type III component problems.

Computation of $r(I)$, $q_{\frac{1}{\theta}}(I)$, and Implementation of the Bayes Rule.

The function $r(I)$ can be computed exactly using the results given in this section. In each component problem, the algorithm will decide the type of component problem (Type I, II or III) and determine, in the
case of Type I and Type II component problems, what initial values to use for the computation of the \(H_j(\mathbf{I}; f^*, S^*) \)'s. However, the exact value of \(r(\mathbf{I}) \) is not really needed in order for the component Bayes rule to make a decision. The infinite summation (4.2.3) defining \(r(\mathbf{I}) \) consists of nonnegative terms. Thus, if we calculate term by term of this summation, starting at \(j = 0 \), we need only carry out the summation until the signs of

\[
q_{-\rho} = \Delta(\mathbf{I}) - \rho r(\mathbf{I}), \quad q_{\rho} = \Delta(\mathbf{I}) + \rho r(\mathbf{I})
\]

are determined. Thus, in every computation of \(r(\mathbf{I}) \) only a finite number of terms in the sum (4.2.3) needs to be computed.

Even this computation is unnecessary if the screening methods described in Section 3.2 allow us to arrive at a decision. For this reason, the algorithm for implementing each component Bayes rule starts by calculating \(\Delta(\mathbf{I}) \), using the methods described in Section 4.1, plus \(\sigma_0 = \sigma_0(\mathbf{f}^*; S^*) \) and \(\gamma(\mathbf{I}) \), using the methods given in the present section. These quantities are then used to implement the screening procedures of Section 3.2. Only if these procedures fail to identify an action to be taken, is \(r(\mathbf{I}) \) calculated. Since if \(\Delta(\mathbf{I}) > 0 \), the decision of what action to take is restricted to choosing \(\mathbf{d}^0 \) or \(\mathbf{d}^+ \), only \(q_{-\rho}(\mathbf{I}) \) is calculated. The expression (4.2.3) is calculated summing term by term until it either exceeds \(\rho^{-1} \Delta(\mathbf{I}) \) (in which case \(q_{-\rho}(\mathbf{I}) < 0 \) and action \(\mathbf{d}^0 \) is taken), or until a term is reached in the summation which is so small in magnitude that it is clear that further terms will not materially change the value of the sum. (A comparison value of \(10^{-6} \) is used for this decision.) Since the \(H_j(\mathbf{I}; f^*; S^*) \) terms are bounded, this rule can be justified as yielding an exact procedure, since
the weights \([2^{-3/2}(j+\frac{1}{2})]^{-1} \) determine a convergent power series. If a term less than \(10^{-6} \) is reached and the sum up to that point is less than \(\rho^{-1}\Delta(I) \), action \(d^+ \) is taken. Similarly, if \(\Delta(I) < 0 \), calculation of (4.2.3) proceeds by summing term by term until either the sum exceeds \(\rho^{-1}|\Delta(I)| \), in which case action \(d^0 \) is taken, or until summation is stopped by a term less than \(10^{-6} \), in which case action \(d^- \) is taken.

A flow chart of the full computer program MCP (Multiple Comparison Problem) is given in Figure 4.2. The data from an \(rxc \) two way balanced design with \(K \) observations per cell are first analyzed in the usual fashion, producing an ANOVA table, sample cell mean matrix \(X \), and other informational data. After pooling the ANOVA sums of squares and degrees of freedom with the corresponding sums of squares and degrees of freedom provided by the user's prior distribution, the algorithm calculates the constants \(a_1, a_2, a_3 \) (see Section 4.1), which are common to all component problems, and then proceeds to implement the component Bayes rules. Because of their greater computational simplicity, Type I and Type II comparisons are done first, followed by Type III comparisons. In every component problem, the approach mentioned above [using the screening procedures first, after which full calculation of \(q_p(I) \) or \(q_{-p}(I) \) is done only if necessary] is followed. After all comparisons have been completed, a printout of relevant data summaries and the component decisions is given.

Examples of the use of the Bayes rule on four actual data sets are given in Chapter 5. In addition, Chapter 5 compares the Bayes rule with appropriately modified classical procedures (Scheffé, Newman-Keuls, LSD, Tukey) in terms of the decisions made on the given data sets. Finally,
an approximation to the Bayes rule based on the approximate normality of posterior densities in large samples is described and compared to the exact Bayes rule.
Figure 4.2: Bayesian Decision Making Process Incorporating Screening Criteria
Compute $T_1^* U, T_1^* L$
from (3.2.15)

\[T_1 > T_1^* U \]

\[T_1 < T_1^* L \]

\[(1-\rho) \Delta(T) - 2\rho \gamma(T) > 0 \]

\[q_\rho(T) < 0 \]

\[q_\rho(T) > 0 \]

Take d = d^-

Take d = d^0

Take d = d^+

Output (i, j)(\bar{i}, \bar{j})

$T, \Delta(T), \text{Bayes rule}$

Figure 4.2: Continued
CHAPTER V
APPLICATION OF THE BAYES RULE

In order to assess the general performance of the Bayes rule proposed in this study, in comparison with the usual non-Bayesian multiple comparison procedures available in the two-way design, four examples are presented with the intention that they will be somewhat representative of situations found in most two-factor experiments. The examples are chosen to represent various combinations of significant or nonsignificant main effects (A,B) and interactions (AB). The results of applying the Bayes rule in these examples, and a discussion of the performance of the Bayes rule in comparison to other available multiple comparisons procedures, is presented in Section 5.1. Section 5.2 describes an approximate Bayes rule based on the asymptotic posterior distribution of the true mean difference. Since computation of the exact Bayes rule can be costly in terms of computer time, such an approximation provides an economical alternative. Some concluding remarks about the exact Bayes rule are also included in Section 5.2.

5.1. Full Application Procedure with Description and Illustration

Using the computer program listed in Appendix B and flowcharted in Section 4.2, the Bayes rule proposed here can be computed for the data from any balanced rxc design.
To use the Bayes procedure, we must first choose an appropriate value of the error-weight-ratio $\chi = \chi_1/\chi_0$. This ratio can be interpreted as a measure of relative seriousness of comparisonwise Type I to comparisonwise Type II errors.

In Waller and Duncan's (1969, 1974) work, it is suggested that for a given α-level of 0.10, 0.05 or 0.01, the value for the χ-ratio can be taken at 50, 100 or 500, respectively. Such a correspondence between α and χ was suggested by considering the case of 2 treatments in a one-way design. Taking $F^* = 4.0$ as a representative F-ratio, and using $F^* = 4.0$ in Equation (1.2.16) with values of $\chi = 50, 100, 500$, the resulting Bayes t-values ($t=1.715, 1.988$ or 2.577) are very close to the critical t-values ($t=1.645, 1.960$ or 2.576) obtained from the t-distribution at α-levels of 10%, 5% or 1%. Thus with these correspondences as reference points, lower, intermediate or higher values of χ may be chosen accordingly. For simplicity, in our applications, all examples are run at $\chi=100$.

The examples we use here are taken from well-known textbooks on the design of experiments. To specify any prior distribution other than the prior of indifference would reflect knowledge not available to us. For this reason, the prior distribution chosen is the prior of indifference (for which $SSA_p = SSB_p = SSAB_p = SSE_p = 0$, $f_A = f_B = f_{AB} = f_e = 0$).

Our first two examples are designed to illustrate the adaptive nature of our Bayes rule. If the F-value for the interactions is significant, the two-stage approach (see Section 1.3) views the cell means as if they came from a one-factor design, thus permitting various classical procedures described in Section 1.1, Chapter I to be employed.
Example 1. The data for this example are taken from Anderson and McLean (1974), p. 63. Five levels \((r=5)\) of the factor A (time of automatic welding cycle) and three levels \((c=3)\) of the factor B (gage bar setting) are considered and \(K=2\) measurements of the dependent variable (breaking strength of the weld) are taken for each treatment combination. The data and its ANOVA table are given in Table 5.1 and Table 5.2 respectively.

Table 5.1: Data of Example 1

<table>
<thead>
<tr>
<th>Factor A</th>
<th>(B_1)</th>
<th>(B_2)</th>
<th>(B_3)</th>
<th>Row Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A_1)</td>
<td>11.00</td>
<td>17.00</td>
<td>9.00</td>
<td>12.3333</td>
</tr>
<tr>
<td>(A_2)</td>
<td>15.00</td>
<td>13.00</td>
<td>10.50</td>
<td>12.8333</td>
</tr>
<tr>
<td>(A_3)</td>
<td>25.50</td>
<td>34.00</td>
<td>7.50</td>
<td>22.3333</td>
</tr>
<tr>
<td>(A_4)</td>
<td>17.00</td>
<td>13.00</td>
<td>14.50</td>
<td>14.8333</td>
</tr>
<tr>
<td>(A_5)</td>
<td>19.00</td>
<td>13.00</td>
<td>15.00</td>
<td>15.6667</td>
</tr>
<tr>
<td>Column mean</td>
<td>17.50</td>
<td>18.00</td>
<td>11.30</td>
<td>15.6000 (grand mean)</td>
</tr>
</tbody>
</table>

Table 5.2: ANOVA of Data in Table 5.1

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>d.f.</th>
<th>MS</th>
<th>F-Ratio</th>
<th>(F_{\text{crit}}^{(0.05)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>385.53</td>
<td>4</td>
<td>96.38</td>
<td>8.82</td>
<td>> 3.06</td>
</tr>
<tr>
<td>B</td>
<td>278.60</td>
<td>2</td>
<td>139.30</td>
<td>12.74</td>
<td>> 3.68</td>
</tr>
<tr>
<td>AB</td>
<td>597.07</td>
<td>8</td>
<td>74.63</td>
<td>6.82</td>
<td>> 2.64</td>
</tr>
<tr>
<td>Error</td>
<td>164.00</td>
<td>15</td>
<td>10.93</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The results of use of the Bayes rule and various classical rules to compare the means is summarized in the following tabular form (Table 5.3). Note that the column headings are the sample cell means arrayed in decreasing order of value.

Table 5.3: Comparison Results of Five Multiple Comparisons Procedures on Example 1.

<table>
<thead>
<tr>
<th></th>
<th>\bar{x}_{32}</th>
<th>\bar{x}_{31}</th>
<th>\bar{x}_{51}</th>
<th>\bar{x}_{41}</th>
<th>\bar{x}_{12}</th>
<th>\bar{x}_{21}</th>
<th>\bar{x}_{53}</th>
<th>\bar{x}_{43}</th>
<th>\bar{x}_{22}</th>
<th>\bar{x}_{42}</th>
<th>\bar{x}_{52}</th>
<th>\bar{x}_{11}</th>
<th>\bar{x}_{23}</th>
<th>\bar{x}_{13}</th>
<th>\bar{x}_{33}</th>
</tr>
</thead>
<tbody>
<tr>
<td>34</td>
<td>25.5</td>
<td>19</td>
<td>17</td>
<td>17</td>
<td>15</td>
<td>15</td>
<td>14.5</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>11</td>
<td>10.5</td>
<td>9</td>
<td>7.5</td>
<td></td>
</tr>
<tr>
<td>\bar{x}_{32}</td>
<td>L</td>
<td>NB</td>
<td></td>
</tr>
<tr>
<td>\bar{x}_{31}</td>
<td>L</td>
<td>B</td>
<td>L</td>
<td>B</td>
<td>L</td>
<td>L</td>
<td>LST</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>LST</td>
<td>L</td>
<td>L</td>
<td>LST</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

A "B" in a cell of the above array denotes that the two entries (cell means) which define the cell are significantly different by Bayes rule. Similarly, an "S" denotes a significant difference by Scheffé's
method, a "T" denotes a significant difference by Tukey's HSD method, an "N" denotes a significant difference by Newman-Keuls test and an "L" indicates a significant difference by the LSD procedure. Looking at the above array, it can be seen that the Scheffé method gives the most conservative conclusions. Tukey's test gives more significant differences than Scheffé's method. This is not surprising since the HSD method generally is more sensitive than the Scheffé method in situations where one is only interested in pairwise comparisons.

It is worth noting that Newman-Keuls' method, also being an adaptive procedure, performs more similarly to the Bayes rule than any of the other experimentwise procedures. The only comparisonwise procedure used (the LSD at the α = 5% level), besides all the significant differences declared by the Bayes rule, adds ten more pairs of significance differences (such as \(\bar{x}_{51}, \bar{x}_{22} \), \(\bar{x}_{51}, \bar{x}_{42} \), \(\bar{x}_{51}, \bar{x}_{52} \), \(\bar{x}_{41}, \bar{x}_{11} \), ..., etc.) Comparing the results of the LSD, HSD and Bayes rules, gives some support to the claim that the Bayes rule effectively provides a compromise between the comparisonwise (such as LSD) and experimentwise (such as HSD) approaches.

Note. In Examples 1 through 4 it should be noted that our ranking of the means in descending order offers a convenient way to display significant differences without specifying whether these differences are significantly positive or significantly negative. However, it is possible that the two observed cell means show \(\bar{x}_{ij} > \bar{x}_{i'j'} \), and yet the Bayes rule concludes that \(u_{ij} < u_{i'j'} \). Fortunately this event did not happen in any of the given four examples.
Example 2. The data for this example are taken from Lindman (1976). The data and its ANOVA table are displayed in Table 5.4 and Table 5.5.

Table 5.4: Data of Example 2

<table>
<thead>
<tr>
<th>Factor A</th>
<th>B₁</th>
<th>B₂</th>
<th>B₃</th>
<th>B₄</th>
<th>B₅</th>
<th>Row mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>A₁</td>
<td>35.00</td>
<td>53.00</td>
<td>68.00</td>
<td>75.00</td>
<td>70.00</td>
<td>60.20</td>
</tr>
<tr>
<td>A₂</td>
<td>62.00</td>
<td>76.00</td>
<td>84.00</td>
<td>83.00</td>
<td>82.00</td>
<td>77.40</td>
</tr>
<tr>
<td>A₃</td>
<td>48.00</td>
<td>65.00</td>
<td>76.00</td>
<td>79.00</td>
<td>76.00</td>
<td>68.80</td>
</tr>
<tr>
<td>Column mean</td>
<td>48.33</td>
<td>64.67</td>
<td>76.00</td>
<td>79.00</td>
<td>76.00</td>
<td>68.80 (grand mean)</td>
</tr>
</tbody>
</table>

Table 5.5: ANOVA of Data in Table 5.4

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>d.f.</th>
<th>MS</th>
<th>F-Ratio</th>
<th>F(0.05)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2218.80</td>
<td>2</td>
<td>1109.40</td>
<td>78.13</td>
<td>> 3.32</td>
</tr>
<tr>
<td>B</td>
<td>5793.20</td>
<td>4</td>
<td>1448.30</td>
<td>101.99</td>
<td>> 2.69</td>
</tr>
<tr>
<td>AB</td>
<td>365.20</td>
<td>8</td>
<td>45.65</td>
<td>3.21</td>
<td>> 2.27</td>
</tr>
<tr>
<td>Error</td>
<td>426.00</td>
<td>30</td>
<td>14.20</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

To be able to visually see the comparison of various results by these different procedures, a tabular form similar to that used in Example 1 is utilized.
Table 5.6: Comparison Results of Five Multiple Comparison Procedures on Example 2.

<table>
<thead>
<tr>
<th>\tilde{x}_{11}</th>
<th>\tilde{x}_{21}</th>
<th>\tilde{x}_{31}</th>
<th>\tilde{x}_{41}</th>
<th>\tilde{x}_{51}</th>
<th>\tilde{x}_{12}</th>
<th>\tilde{x}_{22}</th>
<th>\tilde{x}_{32}</th>
<th>\tilde{x}_{42}</th>
<th>\tilde{x}_{52}</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>48</td>
<td>53</td>
<td>62</td>
<td>65</td>
<td>68</td>
<td>70</td>
<td>75</td>
<td>76</td>
<td>76</td>
</tr>
<tr>
<td>L</td>
<td>B</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>LT</td>
<td>LT</td>
<td>NB</td>
<td>NB</td>
<td>LST</td>
</tr>
<tr>
<td>B</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>LT</td>
<td>LT</td>
<td>NB</td>
<td>NB</td>
<td>LST</td>
</tr>
<tr>
<td>L</td>
<td>B</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>NB</td>
<td>LST</td>
<td>NB</td>
<td>LST</td>
</tr>
<tr>
<td>B</td>
<td>B</td>
<td>L</td>
<td>B</td>
<td>B</td>
<td>L</td>
<td>NB</td>
<td>LST</td>
<td>LST</td>
<td>NB</td>
</tr>
<tr>
<td>B</td>
<td>B</td>
<td>B</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>NB</td>
<td>LST</td>
<td>LST</td>
<td>LST</td>
</tr>
<tr>
<td>L</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>L</td>
<td>NB</td>
<td>LST</td>
<td>LST</td>
<td>LST</td>
</tr>
<tr>
<td>L</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>L</td>
<td>NB</td>
<td>LST</td>
<td>LST</td>
<td>LST</td>
</tr>
<tr>
<td>B</td>
<td>L</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>L</td>
<td>NB</td>
<td>LST</td>
<td>LST</td>
<td>LST</td>
</tr>
<tr>
<td>L</td>
<td>B</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>NB</td>
<td>LST</td>
<td>LST</td>
<td>LST</td>
</tr>
<tr>
<td>L</td>
<td>B</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>NB</td>
<td>LST</td>
<td>LST</td>
<td>LST</td>
</tr>
<tr>
<td>L</td>
<td>B</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>NB</td>
<td>LST</td>
<td>LST</td>
<td>LST</td>
</tr>
<tr>
<td>L</td>
<td>B</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>NB</td>
<td>LST</td>
<td>LST</td>
<td>LST</td>
</tr>
<tr>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>NB</td>
<td>LST</td>
<td>LST</td>
<td>LST</td>
</tr>
<tr>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>NB</td>
<td>LST</td>
<td>LST</td>
<td>LST</td>
</tr>
<tr>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>NB</td>
<td>LST</td>
<td>LST</td>
<td>LST</td>
</tr>
<tr>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>NB</td>
<td>LST</td>
<td>LST</td>
<td>LST</td>
</tr>
<tr>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>NB</td>
<td>LST</td>
<td>LST</td>
<td>LST</td>
</tr>
<tr>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>NB</td>
<td>LST</td>
<td>LST</td>
<td>LST</td>
</tr>
<tr>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>NB</td>
<td>LST</td>
<td>LST</td>
<td>LST</td>
</tr>
<tr>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>NB</td>
<td>LST</td>
<td>LST</td>
<td>LST</td>
</tr>
<tr>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>NB</td>
<td>LST</td>
<td>LST</td>
<td>LST</td>
</tr>
<tr>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>NB</td>
<td>LST</td>
<td>LST</td>
<td>LST</td>
</tr>
<tr>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>NB</td>
<td>LST</td>
<td>LST</td>
<td>LST</td>
</tr>
<tr>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>NB</td>
<td>LST</td>
<td>LST</td>
<td>LST</td>
</tr>
</tbody>
</table>
The comparative performances of the Bayes, LSD, Scheffé, Tukey, and Newman-Keuls procedures are similar to that in Example 1. However, note that there are now 9 comparisons where the Bayes procedure declares a significant difference, while the LSD procedure does not, while there are no cases where the converse occurs. Thus, the Bayes procedure is actually more sensitive than the LSD in this example. A possible explanation is that the low (but significant) level of interaction allows the Bayes procedure to use row and column means in arriving at a decision.

In the above example, only 16 pairs of nonsignificantly different means are found from a total of 105 pairwise comparisons. This small portion of nonsignificant differences is not surprising considering that all the main effects are highly significant.

The next two examples illustrate application of the Bayes rule when the interactions are not significant. It was noted in Section 1.3 that classical procedures can be modified so as to compare cell means in a two-factor additive model. For example, it is possible to modify the Scheffé and LSD rules to apply in such situations. Because the Scheffé rule is very conservative (as can be seen in Examples 1 and 2), only the LSD rule has been used to compare to the Bayes rule. Due to a lack of funds (and time to write and correct a computer program), the computation for the LSD rule had to be done by hand.

Example 3. The data are taken from Hicks (1973), p. 136, in which the effect of both depth and position in a tank on the concentration of a cleaning solution in ounces per gallon is to be determined. Concentrations are measured at three depths (c=3) from the surface of the tank, 0 inches, 15 inches and 30 inches. At each depth two measurements
(K=2) are taken at each of the five different lateral positions in the tank (r=5). The data collected are shown in Table 5.7 and the ANOVA table in Table 5.8.

Table 5.7: Cleaning Solution Concentration Data

<table>
<thead>
<tr>
<th>Position</th>
<th>(B_1)</th>
<th>(B_2)</th>
<th>(B_3)</th>
<th>Row mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A_1)</td>
<td>590.50</td>
<td>589.50</td>
<td>587.00</td>
<td>589.00</td>
</tr>
<tr>
<td>(A_2)</td>
<td>590.50</td>
<td>589.00</td>
<td>579.00</td>
<td>586.17</td>
</tr>
<tr>
<td>(A_3)</td>
<td>592.00</td>
<td>591.00</td>
<td>584.50</td>
<td>589.17</td>
</tr>
<tr>
<td>(A_4)</td>
<td>592.00</td>
<td>592.00</td>
<td>586.00</td>
<td>590.00</td>
</tr>
<tr>
<td>(A_5)</td>
<td>588.50</td>
<td>592.00</td>
<td>584.50</td>
<td>588.33</td>
</tr>
<tr>
<td>Column mean</td>
<td>590.70</td>
<td>590.70</td>
<td>584.20</td>
<td>588.53 (grand mean)</td>
</tr>
</tbody>
</table>

Table 5.8: ANOVA of Data in Table 5.7

<table>
<thead>
<tr>
<th>Source</th>
<th>d.f.</th>
<th>F-Ratio</th>
<th>(F (0.05)) crit</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>50.47</td>
<td>12.62</td>
<td>1.00 < 3.06</td>
</tr>
<tr>
<td>B</td>
<td>281.67</td>
<td>140.83</td>
<td>11.18 > 3.68</td>
</tr>
<tr>
<td>AB</td>
<td>58.33</td>
<td>7.29</td>
<td>0.58 < 2.64</td>
</tr>
<tr>
<td>Error</td>
<td>189.00</td>
<td>12.60</td>
<td></td>
</tr>
</tbody>
</table>

When the means are arranged in descending order, the Bayes rule declares two nonsignificant groups. The first group consists of the first 10 means - \(\bar{x}_{31}, \bar{x}_{41}, \bar{x}_{42}, \bar{x}_{52}, \bar{x}_{52}, \bar{x}_{11}, \bar{x}_{21}, \bar{x}_{12}, \bar{x}_{22}, \bar{x}_{51} \). The second group consists of the remaining five means - \(\bar{x}_{13}, \bar{x}_{43}, \bar{x}_{33}, \bar{x}_{53} \) and \(\bar{x}_{23} \). Any mean from the first group is significantly larger than any mean from
the second group except three pairs - \((\bar{x}_{21}, \bar{x}_{43}), (\bar{x}_{22}, \bar{x}_{13})\) and \((\bar{x}_{22}, \bar{x}_{43})\). The results of the Bayes rule and the modified LSD described in Section 1.3 are shown in Table 5.9.

Table 5.9: Comparison Results of the Bayes Rule and the Modified LSD Rule on Example 3

<table>
<thead>
<tr>
<th>(x_{31})</th>
<th>(x_{41})</th>
<th>(x_{42})</th>
<th>(x_{52})</th>
<th>(x_{11})</th>
<th>(x_{21})</th>
<th>(x_{12})</th>
<th>(x_{22})</th>
<th>(x_{51})</th>
<th>(x_{13})</th>
<th>(x_{43})</th>
<th>(x_{33})</th>
<th>(x_{53})</th>
<th>(x_{23})</th>
</tr>
</thead>
<tbody>
<tr>
<td>592</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>592</td>
<td></td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td></td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>592</td>
<td></td>
<td></td>
<td>L</td>
<td>L</td>
<td>L</td>
<td></td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>L</td>
</tr>
<tr>
<td>592</td>
<td></td>
<td></td>
<td></td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>591</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>L</td>
</tr>
<tr>
<td>590.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>L</td>
</tr>
<tr>
<td>590.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>L</td>
</tr>
<tr>
<td>589.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>L</td>
</tr>
<tr>
<td>589</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>L</td>
</tr>
<tr>
<td>588.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>L</td>
</tr>
<tr>
<td>587</td>
<td></td>
<td>B</td>
<td>B</td>
<td>L</td>
</tr>
<tr>
<td>586</td>
<td></td>
<td>B</td>
<td>L</td>
</tr>
</tbody>
</table>
Note that the Bayes rule declares significance in some cases where the modified LSD does not and vice versa. A possible explanation for such disagreement is that even if the interaction is not significant, the Bayes rule can still use the information provided by the cell means together with row and column means in arriving at a decision. The modified LSD can only use row and column means.

Example 4. The data are taken from Lindman (1976). The data with r=3, c=5, K=3 and its ANOVA table are shown in Table 5.10 and 5.11, respectively.

Table 5.10: Data of Example 4

<table>
<thead>
<tr>
<th>Factor A</th>
<th>B_1</th>
<th>B_2</th>
<th>B_3</th>
<th>B_4</th>
<th>B_5</th>
<th>Row mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>17.00</td>
<td>9.00</td>
<td>15.00</td>
<td>14.00</td>
<td>14.00</td>
<td>13.80</td>
</tr>
<tr>
<td>A_2</td>
<td>12.00</td>
<td>10.00</td>
<td>4.00</td>
<td>6.00</td>
<td>11.00</td>
<td>8.60</td>
</tr>
<tr>
<td>A_3</td>
<td>12.00</td>
<td>6.00</td>
<td>11.00</td>
<td>4.50</td>
<td>12.00</td>
<td>9.10</td>
</tr>
<tr>
<td>Column mean</td>
<td>13.67</td>
<td>8.33</td>
<td>10.00</td>
<td>8.17</td>
<td>12.33</td>
<td>10.50 (grand mean)</td>
</tr>
</tbody>
</table>

Table 5.11: ANOVA of Data in Table 5.10

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>d.f.</th>
<th>MS</th>
<th>F-Ratio</th>
<th>F(0.05)_{crit}</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>246.90</td>
<td>2</td>
<td>123.45</td>
<td>10.69</td>
<td>> 3.32</td>
</tr>
<tr>
<td>B</td>
<td>214.00</td>
<td>4</td>
<td>53.50</td>
<td>4.63</td>
<td>> 2.69</td>
</tr>
<tr>
<td>AB</td>
<td>185.60</td>
<td>8</td>
<td>23.20</td>
<td>2.01</td>
<td>< 2.27</td>
</tr>
<tr>
<td>Error</td>
<td>346.50</td>
<td>30</td>
<td>11.55</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The comparative results of the Bayes rule and the modified LSD rule are very similar to that in Example 3, as shown below.

Table 5.12: Comparison Results of the Bayes Rule and the Modified LSD Rule on Example 4

<table>
<thead>
<tr>
<th>χ_{11}</th>
<th>χ_{13}</th>
<th>χ_{15}</th>
<th>χ_{14}</th>
<th>χ_{21}</th>
<th>χ_{31}</th>
<th>χ_{35}</th>
<th>χ_{25}</th>
<th>χ_{33}</th>
<th>χ_{22}</th>
<th>χ_{12}</th>
<th>χ_{24}</th>
<th>χ_{32}</th>
<th>χ_{34}</th>
<th>χ_{23}</th>
</tr>
</thead>
<tbody>
<tr>
<td>(17)</td>
<td>15</td>
<td>14</td>
<td>14</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>11</td>
<td>11</td>
<td>10</td>
<td>9</td>
<td>6</td>
<td>6</td>
<td>4.5</td>
<td>4</td>
</tr>
</tbody>
</table>

\bar{X}_{11}	B	B	B	B	B	B	B	B	B	B
\bar{X}_{13}	L	L	B	B	B	B	L	L	B	B
\bar{X}_{15}	L	L	L	B	B	B	B	B	B	B
\bar{X}_{14}	L	L	L	L	L	L	B	B	B	B
\bar{X}_{21}	L	L	B	B	B	B	B	B	B	B
\bar{X}_{31}	L	L	L	L	L	L	B	B	B	B
\bar{X}_{35}	L	L	L	L	L	L	B	B	B	B
\bar{X}_{25}	L	L	L	L	L	L	B	B	B	B
\bar{X}_{33}	L	L	L	L	L	L	B	B	B	B
\bar{X}_{22}	L	L	L	L	L	L	B	B	B	B
\bar{X}_{12}	L	L	L	L	L	L	B	B	B	B
\ldots	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots
\ldots	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots
In Examples 3 and 4, the interaction is not significant by the usual F-test. Nonetheless the Bayes rule would still use the information provided by the cell means data to determine the decisions. The modified LSD does not use any cell data at all. Thus the effect from the cell mean differences for the Bayes rule can alter the decisions made differently by the LSD rule.

Most of the computation time for Examples 1-4 is spent on the numerical procedures for calculating double or triple integrals for \(\pi(I) \) in determining the component Bayes rules. The execution time in terms of the CPU (Central Processor Unit) for the above four examples are estimated to be 1270, 1080, 1510, 1620 seconds, respectively, when CDC 6500 of the Purdue MACE system is used. For our four examples, the following table indicates how the screening procedures of Section 3.2 have succeeded in reducing the total amount of computation time.

Table 5.13: Summary Statistics of Examples

<table>
<thead>
<tr>
<th>Component Type</th>
<th>Number of Component Problems Computed by:</th>
<th>1st Screening</th>
<th>2nd Screening</th>
<th>(q_p) or (q_{-p})</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td></td>
<td>11</td>
<td>3</td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>II</td>
<td></td>
<td>21</td>
<td>8</td>
<td>1</td>
<td>30</td>
</tr>
<tr>
<td>III</td>
<td></td>
<td>34</td>
<td>15</td>
<td>11</td>
<td>60</td>
</tr>
<tr>
<td>Example 1</td>
<td></td>
<td>5</td>
<td>22</td>
<td>3</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>15</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>42</td>
<td>6</td>
<td>60</td>
</tr>
<tr>
<td>Example 2</td>
<td></td>
<td>5</td>
<td>10</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>60</td>
</tr>
<tr>
<td>Example 3</td>
<td></td>
<td>19</td>
<td>6</td>
<td>5</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30</td>
<td>19</td>
<td>11</td>
<td>60</td>
</tr>
<tr>
<td>Example 4</td>
<td></td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
It can be seen that due to the high computation cost of implementing the exact Bayes rule, an extensive study of its properties on simulated data is unfeasible. However, an approximate Bayes rule which behaves similarly to the Bayes rule is given in the next section.

5.2. An Approximate Bayes Rule; Summary and Conclusion

The posterior distribution of \(\eta \), given the sufficient statistic \((X, SSE)\) is a normal distribution with posterior mean
\[
E(\eta|X,SSE) = \Delta(I(X),SS*,f*),
\]
and variance
\[
\text{Var}(\eta|X,SSE) = \int \sigma^2(E)_E (E|SS*,f*) dE \equiv \sigma^2(SS*,f*). \hspace{1cm} (5.2.1)
\]

It is known from Johnson (1967, 1970) that after suitably centering and scaling, the scaled posterior distribution of
\[
\left[\sigma^2(SS*,f*) \right]^{-\frac{1}{2}} (\eta - \Delta(I(X),SS*,f*))
\]
has an asymptotic (as \(n \rightarrow \infty \)) expansion with the standard normal density as the leading term. Thus the posterior distribution of \(\eta \) given \((X, SSE)\) can be approximated by the \(N_1(\Delta(I(X),SS*,f*),\sigma^2(SS*,f*)) \) distribution. Using this approximation for the posterior density, the functions \(q_\rho(I) \) and \(q_{-\rho}(I) \) in (3.2.4) can be approximated by
\[
q_c(I) = \int_{-\infty}^{\infty} n N_1(\eta|\Delta(I(X),SS*,f*),\sigma^2(SS*,f*)) d\eta
\]
\[
+ c \int_{-\infty}^{\infty} n N_1(\eta|\Delta(I(X),SS*,f*),\sigma^2(SS*,f*)) d\eta, \hspace{1cm} (5.2.2)
\]
with \(c = \rho, -\rho \).
Since both $\Delta(I(X), SS*, f*)$, $\sigma^2(SS*, f*)$ are constants given the data (X, SSE), the approximate Bayes rule can be derived exactly as in the case of Section 3.1 where all the $\sigma^2_A, \sigma^2_B, \sigma^2_{AB}$ and σ^2_e were assumed known. Thus from (3.1.14) the approximate Bayes rule $\varphi^*(I(X))$ has the form

$$\varphi^*(I(X)) = \begin{cases} (1,0,0), & \Delta > t^*(\sigma^2)^{\frac{1}{2}} \\ (0,1,0), & |\Delta| < t^*(\sigma^2)^{\frac{1}{2}}, \\ (0,0,1), & \Delta < -t^*(\sigma^2)^{\frac{1}{2}}, \end{cases} \tag{5.2.3}$$

where $\Delta = \Delta(I(X), SS*, f*)$, $\sigma^2 = \sigma^2(SS*, f*)$, and t^* is the unique solution of the equation given in (3.1.15).

The computation of such an approximate Bayes rule φ^* is straightforward since the computations of Δ and σ^2 are direct applications of the algorithms described in Section 4.1. Indeed, it can be seen that

$$\sigma^2 = \frac{2}{K} \left[b_1 + \frac{1}{c} (1-\delta_{i_1,i_2}) b_2 + \frac{1}{c} (1-\delta_{i_1,i_2}) b_3 \right], \tag{5.2.4}$$

where,

$$b_1 = \frac{M(f^* A, f^* B, f^* AB, f^*_e - 2; SS*) - M(f^* A, f^* B, f^* AB, f^*_e + 2; SS*)}{M(f^* A, f^* B, f^* AB, f^*_e; SS*)},$$

$$b_2 = \frac{M(f^* A, f^* B, f^* AB, f^*_e + 2; SS*) - M(f^* A, f^* B, f^* AB, f^*_e; SS*)}{M(f^* A, f^* B, f^* AB, f^*_e; SS*)}, \tag{5.2.5}$$

$$b_3 = \frac{M(f^* A, f^* B, f^* AB, f^*_e + 2; SS*) - M(f^* A, f^* B, f^* AB, f^*_e; SS*)}{M(f^* A, f^* B, f^* AB, f^*_e; SS*)},$$

with f^*, SS^* defined by (2.1.19) and $M(d, S)$ by (4.1.1).

The approximate Bayes rule φ^* of (5.2.3) offers us a very economical, alternative way to arrive at insight into the relationships of the cell means, since the expensive computation of $\Gamma(I)$ for the exact Bayes rule φ can be avoided. Indeed, such an approximate Bayes rule φ^*
performs quite similarly to the exact Bayes rule φ. The amount of discrepancy between the decisions made by the rules φ^* and φ depends largely on how frequently states of nature occur which result in marginal cases ($q_p(I)$ and $q_{-p}(I)$ close to 0) for the Bayes rule in the component problems. In particular, the approximate Bayes rule appears not to be very sensitive in detecting small differences among cell means. The disagreement between φ and φ^* can be substantial when one or more of the main effects or interactions are not strongly significant.

We have compared the approximate Bayes rule φ^* with the exact Bayes rule on each of the four examples discussed in Section 5.1. The extent of disagreement in their conclusions is summarized below.

<table>
<thead>
<tr>
<th>Example</th>
<th>Type I</th>
<th>Type II</th>
<th>Type III</th>
<th>Total # of Component Comparisons</th>
<th>Total # of Disagreements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example 1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>105</td>
<td>2</td>
</tr>
<tr>
<td>Example 2</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>105</td>
<td>4</td>
</tr>
<tr>
<td>Example 3</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>105</td>
<td>7</td>
</tr>
<tr>
<td>Example 4</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>105</td>
<td>3</td>
</tr>
</tbody>
</table>

Note that in Example 3, where the greatest disagreement occurs, both the main effect of A and the interaction term are insignificant.

We have previously mentioned that due to the expensive computation of the Bayes rule, a simulation study to assess the general performances of the Bayes rule in comparison with the classical multiple comparisons procedures is not feasible. However, a simulation study on the approximate Bayes rule could be done with relatively little cost. Since the
approximate Bayes rule φ^* seems to possess the same properties as the exact rule φ, such a simulation would give insight into the properties of both rules, φ and φ^*.

Summary and Conclusion. In this study we have shown that the Bayesian procedure proposed by Waller and Duncan (1969, 1974) for the symmetric multiple comparisons problem in one-factor designs can be extended to give an adaptive Bayes procedure in two-factor designs (or in higher-factorial designs if the pairwise comparisons problem is of interest to the user). In the exact formulation of the Bayes rule, the Bayesian solution involves exceedingly complex integrations which are costly (in terms of computer time) to compute. By analytic simplification and by the introduction of two screening procedures (given in Sections 3.2), computation time has been reduced by an order of magnitude $1/2400$. Nevertheless, one disadvantage of the Bayes rule that has prevented studies of its properties on simulated data is the high cost of computing time for implementing the procedure.

Nevertheless, it has been shown by examples that in cases where there is highly significant interaction, the Bayes rule performs similarly to the Waller-Duncan procedure in one-way designs in terms of its sensitivity relative to Tukey's HSD, the Scheffé method, the LSD and the Newman-Keuls test. But when the interaction is only weakly present, the Bayes rule can take advantage of the information provided by the cell mean differences $\bar{x}_{ij} - \bar{x}_{1.j}$ so as to be more sensitive in some cases than the LSD classical one-factor rule, or even the modified LSD rule for an additive model. Because of the high computational cost of using the Bayes rule, we have offered an approximate Bayes rule which is
considerably easier to compute. The algorithms that are given in Section 4.1 suffice to compute this approximate Bayes rule in almost all practical cases. Since the approximate Bayes rule appears to behave very similarly to the Bayes rule, it is hoped that this rule will prove to be an attractive alternative to the exact Bayesian solution to the symmetric multiple comparisons problem.

Questions for Future Research. The Bayes procedure proposed in this thesis exhibits two characteristics which are worth emphasizing again. The first characteristic is the dependence of the Bayes rule on the experimental F^*-values rather than on the number of treatment cell means to be compared. The second characteristic of interest for the proposed Bayes rule is that prior information may be easily incorporated into the analysis by pooling techniques. With these advantages in mind, the following questions of practical interest invite similar Bayesian treatment.

In experiments comparing $r \times c$ treatments in which one of the treatments is considered to be a control, it is assumed that one is interested in comparing the control with each of the other ($r-1$) treatments. The proposed Bayes rule will not be applicable here since the exchangeable prior assumption is not satisfied. But if the control is not one of the treatment combinations considered in the experiment, it is possible to derive a Bayes rule for the multiple comparisons of the control with each of the $r \times c$ treatment combinations. Here, the grand mean difference $\mu_c - \mu$ would have to be assigned an appropriate prior, which subsequently results in a more complicated integral equation to be solved in order to determine the Bayes rule.
We have so far considered univariate populations only. Quite often, we may collect several kinds of measurements (say, p) from each experimental unit. Suppose one is interested in pairwise comparison of treatment mean vectors. It is possible to carry out p separate univariate analyses of variance, one for each of the p characteristics considered, but we sacrifice some power in not making use of the correlations among the p variates. If a multivariate (p-dimensional) analysis of variance is performed, we now have two different kinds of multiple comparison problems to be considered: (1) Which populations differ? (2) With respect to which of the p characteristics do the populations differ? The latter problem does not, of course, occur in the univariate (p=1) situation.

The approximate Bayes rule developed in the beginning of the present section can be used to give a procedure for constructing simultaneous interval estimates for all the true mean differences, using their asymptotic joint posterior distribution.

Other research topics related to the present Bayesian development of the multiple comparisons problem that are worth exploring are: ranking the main effects in additive analysis of variance models, multiple comparisons of regression functions, multiple comparisons of the tetrad differences or interactions in two-way balanced designs, pairwise comparisons of tetrad differences.
LIST OF REFERENCES
REFERENCES

APPENDICES
APPENDIX A

This appendix provides t* values for various levels of k, the error weight ratio. The program which computes these values is listed after the tableau of data.

<table>
<thead>
<tr>
<th>Error-Weight Ratio</th>
<th>T-Star Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.000</td>
<td>0.6360272846</td>
</tr>
<tr>
<td>10.000</td>
<td>0.9014615963</td>
</tr>
<tr>
<td>20.000</td>
<td>1.1589215716</td>
</tr>
<tr>
<td>30.000</td>
<td>1.3053535081</td>
</tr>
<tr>
<td>50.000</td>
<td>1.4851958086</td>
</tr>
<tr>
<td>70.000</td>
<td>1.6007734702</td>
</tr>
<tr>
<td>100.000</td>
<td>1.7207832624</td>
</tr>
<tr>
<td>150.000</td>
<td>1.8540994349</td>
</tr>
<tr>
<td>200.000</td>
<td>1.9467111563</td>
</tr>
<tr>
<td>300.000</td>
<td>2.0745128132</td>
</tr>
<tr>
<td>500.000</td>
<td>2.2311160714</td>
</tr>
<tr>
<td>700.000</td>
<td>2.3316784725</td>
</tr>
<tr>
<td>1000.000</td>
<td>2.4361181524</td>
</tr>
<tr>
<td>2000.000</td>
<td>2.6330191921</td>
</tr>
<tr>
<td>3000.000</td>
<td>2.7446790662</td>
</tr>
</tbody>
</table>
PROGRAM TSTAR(INPUT,OUTPUT,TAPE10)

* T-STAR *

THIS PROGRAM COMPUTES THE T-STAR VALUE FOR THE INTEGRAL
EQUATION K1(I+)+K0(I-)=0

DIMENSION C(15),WA(3),X(1)
REAL C,W
EXTERNAL QFUNCT
DATA C/5.0,10.0,20.0,30.0,50.0,70.0,100.0,150.0,200.0,
 300.0,500.0,700.0,1000.0,2000.0,3000.0/

INPUT INITIAL VALUE FOR THE ITERATIONS
X(1)=1.25

SPECIFY THE PARAMETERS FOR SUBROUTINE ZSYSTEM. ZSYSTEM IS
A SUBROUTINE TO DETERMINE THE ROOTS OF A SYSTEM OF N
SIMULTANEOUS NONLINEAR EQUATIONS IN N UNKNOWN.

EPS=1.0E-12
NSIG=10
N=1
ITMAX=1000
IER=0

WRITE (10,3)
DO 10 I=1,15+1
 CONT=C(I)
 CALL ZSYSTEM(QFUNCT,EPS,NSIG,N,X,ITMAX,W,A,CONT,IER)
 WRITE (10,2) CONT,X(I)
 X(I)=X(I)+0.2
10 CONTINUE

2 FORMAT (1X,20X,F10.3,3X,F15.10)
3 FORMAT (1X,*ERROR-WEIGHT RATIO*,8X,*T-STAR VALUE*)
STOP
END

REAL FUNCTION QFUNCT(X,CONT)

REAL X(1),CONT,FX
CALL MINOR(X(1),FX)
QFUNCT=(1.-CONT)*(EXP(-(X(1)**2)/2.)/2.506628274631)
 +(1.-CONT)*X(1)*FX+CONT*X(1)
RETURN
END
APPENDIX B

PROGRAM MAIN(INPUT,OUTPUT,TAPES=INPUT,TAPES=OUTPUT)

* MAIN PROGRAM *

THESE PROGRAMS COMPUTES THE COMPONENT BAYES RULES FOR THE
MULTIPLE COMPARISONS PROBLEM IN A TWO-WAY BALANCED DESIGN.
IT WILL READ DATA, PRODUCE AN ANOVA TABLE, SAMPLE CELL MEAN
MATRIX, AND OTHER INFORMATIONAL DATA. AFTER POOLING THE
ANOVA Sums OF SQUARES AND DEGREES OF FREEDOMS WITH THE
CORRESPONDING SS's AND D.F.'S PROVIDED BY THE USER'S
PRIOR DISTRIBUTION. THE FULL IMPLEMENTATION OF THE
COMPONENT BAYES RULES FOR EACH OF THE TYPE I, TYPE II,
TYPE III COMPARISONS WILL PROCEED. THIS LISTING IS
INTERNALLY DOCUMENTED.

DIMENSION Y(10),CMean(10,10),CVar(10,10)
DIMENSION RowMean(10),ColMean(10)
DIMENSION FCrit(3)

GLOBAL VARIABLES

INTEGER ILEVEL,JLEVEL,KCELL
INTEGER IDECIDE,MULTI,MULT2
REAL QA,QB,QC,QE,SSA,SSB,SSC,SSE,
 ! T1,T2,T3,FI,FJ,FK,FKK,FAF,FBF,FCF,FEF,
 ! EXPA,EXPB,EXPc,EXPC,SUM01,SUM02,SUM03
REAL WEIG1,WEIG2,WEIG3,RMM,RRM,RMS,RMC
REAL SIGMA1,SIGMA2,SIGMA3
REAL RESULT1,RESULT2,RFMC1,RFMC2
REAL SSAP,SSBP,SSCP,SSEP,SSSUB,SSSUM
REAL TSUB,EXSUB,FSUB,GSUB,FLAG1,FLAG2
REAL CONST1,CONST2,CONST3

COMMON /STATS/
 QA,QB,QC,QE,SSA,SSB,SSC,SSE,
 ! T1,T2,T3,FI,FJ,FK,FKK,FK
COMMON /EXPON/
 EXPA,EXPB,EXPC,EXPE,SUM01,SUM02,SUM03
COMMON /WEIGH/
 WEIG1,WEIG2,WEIG3,RMM
COMMON /SIGMA/
 SIGMA1,SIGMA2,SIGMA3
COMMON /DRULE/
 IDECIDE,RESULT1,RESULT2
COMMON /SUBST/
 TSUB,EXSUB,FSUB,SSSUB,SSSUM,GSUB
COMMON /MULTS/
 CONST1,CONST2,CONST3,MULTI,MULT2
COMMON /FLGS/
 FLAG1,FLAG2

EXTERNAL G,GS,FFO,FFOS,FFKK,FFKKS,P,PP,Z

LOCAL VARIABLES
* INTEGER INCRMNT,ILIMIT,JLIMIT,NDIV
* REAL CONST,OK1,OK2,FDDD,FMM
REAL SUM,AVE,SUM2,ASUM2,BSUM2,CSUM2,GRAND,
MSA,MSB,MSC,MSF,FVALID,FUAL,B,FUALC
REAL INT3D
* READ IN THE DESIGN MATRIX AND # OF OBS PER CELL
READ (5,500) ILEVEL,JLEVEL,KCELL
READ (5,519) (FCRIT(I),I=1,3)
* WRITE (6,501)
WRITE (6,502)
WRITE (6,503)
* PRODUCE FLOATING POINTS TO ACHIEVE EFFICIENCY
FI=FLOAT(ILEVEL)
FJ=FLOAT(JLEVEL)
FK=FLOAT(KCELL)
* COMPUTE DEGREES OF FREEDOM FOR ANOVA
QA=FI-1.
QB=FJ-1.
QC=QA*QB
QE=FI*FJ*(FK-1.)
* COMPUTE OFTEN-USED CONSTANTS TO SAVE COMPUTING TIME
EXPA=QA/2.-1.
EXPB=QB/2.-1.
EXPC=QC/2.-1.
EXPE=QE/2.-1.
SUM01=(QB+QC+QE-1.)/2.
SUM02=(QA+QC+QE-1.)/2.
SUM03=(QA+QB+QC+QE-1.)/2.
* READ IN SAMPLES FOR EACH CELL
SAMPLE CELL MEANS ARE COMPUTED
DO 100 I=1,ILEVEL,1
DO 200 J=1,JLEVEL,1
READ (5,519) (Y(K),K=1,KCELL)
* CALCULATE CELL SAMPLE MEANS
SUM=0.
DO 1 K=1,KCELL,1
SUM=SUM+Y(K)
1 CONTINUE
AVE=SUM/FK
* CALCULATE CELL ERROR VARIANCES
SUM2=0.
DO 2 K=1,KCELL,1
SUM2=SUM2+Y(K)**2
2 CONTINUE
CMAN(I,J)=SUM2-FK*AVE*AVE
CMEAN(I,J)=AVE
200 CONTINUE
100 CONTINUE
* COMPUTE ROW AND COLUMN MEANS FOR THE TWO-WAY
* DO 5 I=1,ILEVEL,1
 ROWMEAN(I)=0.
 5 CONTINUE
* DO 6 J=1,JLEVEL,1
 COLMEAN(J)=0.
 6 CONTINUE
* DO 8 I=1,ILEVEL,1
 DO 9 J=1,JLEVEL,1
 ROWMEAN(I)=ROWMEAN(I)+CMEAN(I,J)
 9 CONTINUE
 ROWMEAN(I)=ROWMEAN(I)/FJ
 8 CONTINUE
* GRAND=0.
 DO 11 J=1,JLEVEL,1
 DO 12 I=1,ILEVEL,1
 COLMEAN(J)=COLMEAN(J)+CMEAN(I,J)
 12 CONTINUE
 COLMEAN(J)=COLMEAN(J)/FI
 GRAND=GRAND+COLMEAN(J)
 11 CONTINUE
 GRAND=GRAND/FJ
* COMPUTE ALL SUMS OF SQUARES FOR THE ANOVA
* SSA=0.
 SSB=0.
 SSC=0.
 SSE=0.
 ASSM=0.
 BSUM=0.
 CSUM=0.
* DO 20 I=1,ILEVEL,1
 DO 30 J=1,JLEVEL,1
 BSUM2=BSUM2+COLMEAN(J)*COLMEAN(J)
 30 CONTINUE
 BSUM2=BSUM2+ROWMEAN(I)*ROWMEAN(I)
 20 CONTINUE
 SSA=FI*FK*(ASSM-FI*GRAND*GRAND)
 SSB=FI*FK*(BSUM2-FI-FJ*GRAND*GRAND)
 SSC=FI*CSUM2
* COMPUTE THE MEAN-SQUARES FOR THE ANOVA
 MSA=SSA/QA
 MSB=SSB/QB
 MSC=SSC/QC
 MSE=SSE/QE
* COMPUTE THE F-VALUES FOR THE ANOVA
 FUALA=MSA/MSE
 FUALB=MSB/MSE
 FUALC=MSC/MSE
* PRINT THE ANOVA TABLE FOR THE TWO-WAY
* WRITE (6,510)
 WRITE (6,511)
 WRITE (6,512) SSA,QA,MSA,FUALA,FCRIT(1)
WRITE (6,513) SSB,QB,MSB,FVALB,FCRIT(2)
WRITE (6,514) SSC,QC,MC,FVALC,FCRIT(3)
WRITE (6,515) SSE,OE,MSE
WRITE (6,526)
*DO 40 I=1,ILEVEL,1
 WRITE (6,520) (CMEMAN(I,J),J=1,ILEVEL),ROWMEAN(I)
40 CONTINUE
WRITE (6,527)
WRITE (6,520) (COLMEAN(J),J=1,ILEVEL),GRAND
*
* INPUT THE USER'S PRIOR INFORMATION IN TERMS OF SUMS OF SQUARES
* SQUARES ESTIMATES AND DEGREES OF FREEDOMS FROM THE PREVIOUS
* EXPERIMENTS
*
READ (5,504) SSAP,SSBP,SSCP,SSEP
READ (5,504) FAP,FBP,FCP,FEP
*
* COMBINE THE SUMS OF SQUARES FROM DATA AND FROM PRIOR
* INFORMATION BY POOLING TECHNIQUES.
*
SSA=SSA+SSAP
SSB=SSB+SSBP
SSC=SSC+SSCP
SSE=SSE+SSEP
*
QA=QA+FAP
QB=QB+FBP
QC=QC+FCP
QE=QE+FEP
*
* COMPUTE THE EXPECTATION OF THE MEAN FUNCTION
*
* THE ALGORITHM TO CALCULATE M-FUNCTION DEPENDS ON THE INTEGER
* VALUE OF QE. WHEN QE IS EVEN, SUBROUTINE RMFC1 IS USED.
* OTHERWISE, RMFC2 IS USED FOR ODD QE.
*
IF (MOD(QE,2.),EQ.1.) GO TO 45
RMM=RMFC1(QA,QB,QC,QE)
RMC=RMFC1(QA,QB,QC+2.,QE-2.)
RNB=RMFC1(QA,QB+2.,QC,QE-2.)
RMA=RMFC1(QA+2.,QB,QC,QE-2.)
GO TO 48
*
45 RMM=RMFC2(QA/2.,QB/2.,QC/2.,QE/2.)
RMC=RMFC2(QA/2.,QB/2.,QC/2.,QE/2.-1.)
RNB=RMFC2(QA/2.,QB+2.,QC/2.,QE/2.-1.)
RMA=RMFC2(QA+2.,QB/2.,QC/2.,QE/2.-1.)
*
* THE MATCHING CONSTANT FOR THE POSTERIOR DISTRIBUTION
* IS D-STAR=1.0/RMM.
*
* COMPUTE THE THREE WEIGHTING FACTORS.
*
48 WEIGHT=(RMM-RMC)/RMM
WEIGHT2=(RMC-RNB)/RMM
WEIGHT3=(RMC-RMA)/RMM
*
* COMPUTE THE EXPECTATIONS OF THE THREE SIGMA FUNCTIONS
*
* COMPUTE THE INTEGRAL OF SIGMA 1 FUNCTION
*
NDIV=32
FLAG1=1.
FLAG2=0.
TSUB=T2
SSSUB=SSB
EXSUB=EXPB
SOSUB=SUMQ1
SSSUM=SSA+SSC
FSUB=F1

* IF (AMOD(QA,2.),EQ.0.) GO TO 150
MULT1=(INT(QA)-1)/2
CONST1=GAMMA(SUMQ3)/SORT(FK)
SIGMA1=CONST1*INT3D(2)/RMM
GO TO 180

* 150 MULT1=INT(QA)/2-1
CONST1=GAMMA(SUMQ1)/SORT(FK)
OK1=2.*CONST1*(TRINT(G,NDIV)-TRINT(GS,NDIV))/SSA
IF (MULT1.EQ.0) GO TO 175

* CONST=CONST1
DO 170 MM=1,MULT1,1
FMM=FLOAT(MM)
CONST=SOSUB+CONST
EXPC=EXPC+1.
SOSUB=SOSUB+1.
OK2=2.0*(MM*OK1-CONST*TRINT(GS,NDIV))/SSB
OK1=OK2
170 CONTINUE

* 175 SIGMA1=OK1/RMM
EXPC=EXPC-FLOAT(MULT1)
*
* COMPUTE THE INTEGRAL OF SIGMA II FUNCTION
*
180 FLAG1=0.
FLAG2=1.
TSUB=T3
FSUB=FJ
EXSUB=EXPA
SSSUB=SSA
SSSUM=SSB+SSC
SOSUB=SUMQ2

* IF (AMOD(QB,2.),EQ.0.) GO TO 190
MULT2=(INT(QB)-1)/2
CONST2=GAMMA(SUMQ3)/SORT(FK)
SIGMA2=CONST2*INT3D(2)/RMM
GO TO 250

* 190 MULT2=INT(QB)/2-1
CONST2=GAMMA(SUMQ2)/SORT(FK)
OK1=2.*CONST2*(TRINT(G,NDIV)-TRINT(GS,NDIV))/SSB
IF (MULT2.EQ.0) GO TO 220

* CONST=CONST2
DO 215 MM=1,MULT2,1
FMM=FLOAT(MM)
CONST=SOSUB+CONST
EXPC=EXPC+1.
SOSUB=SOSUB+1.
OK2=2.0*(MM*OK1-CONST*TRINT(GS,NDIV))/SSB
OK1=OK2
215 CONTINUE

* 220 SIGMA2=OK1/RMM
EXPC=EXPC-FLOAT(MULT2)
*
* COMPUTE THE INTEGRAL OF SIGMA III FUNCTION
*
250 FLAG1=1.
FLAG2=1.
CONST3 = GAMMA(SUMQ3)/SQRT(FK)
SIGMA3 = CONST3*INT3D/RRM

* WRITE OUT THE POSTERIOR MEANS AND SIGMA FUNCTIONS.
* WRITE (6,528)
WRITE (6,529) RRM,RMC,RMB,RMA
WRITE (6,530)
WRITE (6,531) HEIG1,HEIG2,HEIG3
WRITE (6,532)
WRITE (6,533) SIGMA1, SIGMA2, SIGMA3

* PREPARE T1, T2, T3 STATISTICS FOR MULTIPLE COMPARISONS
* FOR EACH PAIR IN EACH TYPE
* PERFORM TYPE I COMPARISONS FIRST
* WRITE (6,516)
WRITE (6,523)

FLAG1=1.
FLAG2=0.
FSUB=F1
SSSUB=SSB
SSSUM=SSA+SSC
EXSUB=EXPB
SOSUB=SUM01

DO 50 I=1,ILEVEL,1
 JLIMIT=JLEVEL-1
DO 51 J=1,JLIMIT,1
 INCRRNT=J+1
 DO 52 JJ=INCRRNT,JLEVEL,1
 T1=(CMEAN(I,J)-CMEAN(I,JJ))/1.414213562
 T2=(CMEAN(J)-CMEAN(JJ))/1.414213562
 TSUB=T2
 T3=0.
 CALL TYPE1
 WRITE (6,522) I,J,I,J,JJ,T1,T2,RESULT1,RESULT2,IDECIDE
 52 CONTINUE
51 CONTINUE
50 CONTINUE

* DO ALL TYPE II COMPARISONS
* WRITE (6,517)
WRITE (6,524)

FLAG1=0.
FLAG2=1.
FSUB=FJ
EXSUB=EXPJ
SSSUB=SSJ
SSSUM=SSB+SSC
SOSUB=SUM02

DO 60 J=1,JLEVEL,1
 ILIMIT=JLEVEL-1
DO 61 I=1,ILIMIT,1
 INCRRNT=I+1
 DO 62 JJ=INCRRNT,JLEVEL,1
 T1=(CMEAN(I,J)-CMEAN(II,J))/1.414213562
 T2=(ROWMEAN(I)-ROWMEAN(II))/1.414213562
 TSUB=T3
 T3=0.
 CALL TYPEII
 WRITE (6,522) I,J,II,J,JJ,T1,T3,RESULT1,RESULT2,IDECIDE
 62 CONTINUE
61 CONTINUE
60 CONTINUE
62 CONTINUE
61 CONTINUE
60 CONTINUE
*
* DO ALL TYPE III COMPARISONS
*
WRITE (6,518)
WRITE (6,521)
FLAG1=1.
FLAG2=1.
*
DO 70 I=1,ILIMIT,1
DO 71 J=1,LEVEL,1
INCRNNT=I+1
DO 72 II=INCRNNT,LEVEL,1
DO 73 JJ=1,LEVEL,1
IF (JJ.EQ.J) GO TO 73
T1=(CMAN(I,J)-CMAN(II,JJ))/1.414213562
T2=(COLM(I,J)-COLM(II,JJ))/1.414213562
T3=(ROWM(I)-ROWM(II))/1.414213562
CALL TYPEIII
WRITE (6,525)I,J,II,JJ,T1,T2,T3,RESULT1,RESULT2,IDEIDE
73 CONTINUE
72 CONTINUE
71 CONTINUE
70 CONTINUE
*
* FOLLOWINGS ARE FORMAT STATEMENTS
*
500 FORMAT (1X,3I2)
501 FORMAT (1X,*THIS PROGRAM PERFORMS MONTE CARLO SIMULATIONS*)
502 FORMAT (1X,*ON THE MULTIPLE COMPARISONS PROBLEM*)
503 FORMAT (1X,*OF THE TWO-WAY CLASSIFICATION BALANCED DESIGN*)
504 FORMAT (1X,4F8.2)
510 FORMAT (/1X,*ANOVA TABLE FOR THE TWO-WAY LAYOUT*)
511 FORMAT (6X,*SOURCE*,14X,*SS*,9X,*F*,11X,*MS*,9X,
F-VALUE,9X,*F-CRITICAL*)
512 FORMAT (1X,*A MAIN EFFECTS*,F15.4,F10.1,2X,3(F14.4))
513 FORMAT (1X,*B MAIN EFFECTS*,F15.4,F10.1,2X,3(F14.4))
514 FORMAT (1X,*AB INTERSECTION*,F14.4,F10.1,2X,3(F14.4))
515 FORMAT (1X,*ERROR*,8X,F14.4,F10.1,2X,F14.4)
516 FORMAT (/1X,*ALL PAIRWISE COMPARISONS OF TYPE I*)
517 FORMAT (/1X,*ALL PAIRWISE COMPARISONS OF TYPE II*)
518 FORMAT (/1X,*ALL PAIRWISE COMPARISONS OF TYPE III*)
519 FORMAT (1X,10F6.2)
520 FORMAT (1X,6F10.4,5X,F10.4)
521 FORMAT (/1X,*COMPARISON OF *,1X,*T1*,5X,*T2*,5X,
*3X,*T3*,7X,*L-1*,5X,*L-2*,6X,*DECISION*)
522 FORMAT (/1X,1H1,1H1,1H1,1H1,1H1,1H1,1H1,1H1,1H1,1H1,1H1,1H1,2(F12.8),2(E14.6),2X,12)
523 FORMAT (/1X,*COMPARISON OF *,6X,*T1*,10X,*T2*,
10X,*L-1*,10X,*L-2*,3X,*DECISION*)
524 FORMAT (/1X,*COMPARISON OF *,6X,*T1*,10X,*T3*,
10X,*L-1*,10X,*L-2*,3X,*DECISION*)
525 FORMAT (/1X,1H1,1H1,1H1,1H1,1H1,1H1,1H1,1H1,1H1,1H1,1H1,3(F11.6),2(E14.6),2X,12)
526 FORMAT (/1X,*THE OBSERVED MEANS ARE IN MATRIX FORM*)
527 FORMAT (1X,5X)
528 FORMAT (/1X,*THE MEAN COMPONENTS INFORMATION IS GIVEN*)
529 FORMAT (10X,*RM=**,E13.6,10X,*RMC=**,E13.6,10X,
*RMB=**,E13.6,10X,*RMA=**,E13.6)
530 FORMAT (/1X,*THE THREE WEIGHTING FACTORS ARE GIVEN*)
531 FORMAT (10X,*HEIGHT1=**,F13.8,10X,*HEIGHT2=**,F13.8,10X,
*HEIGHT3=**,F13.8)
532 FORMAT (/1X,*THE SIGMA FUNCTIONS ARE GIVEN*)
533 FORMAT (10X,*SIGMA1=**,E13.6,10X,*SIGMA2=**,E13.6,10X,
*SIGMA3=**,E13.6)
STOP
SUBROUTINE TYPEI

**
* *
* TYPE I *
* *
**

THIS SUBROUTINE COMPUTES THE COMPONENT BAYES RULES OF
TYPE I PROBLEMS. TWO SCREENING PROCEDURES ARE UTILIZED
TO AVOID THE COMPUTATION OF THE CRITICAL EQUATIONS
DEFINING THE BAYES DECISIONS. THE COMPONENT BAYES RULE
IS PRINTED FOR EACH COMPARISON PROBLEM.

**
GLOBAL VARIABLES

INTEGER IDECIDE,MULT1,MULT2

REAL QA,QB,QC,QE,SSA,SSB,SSC,SSE,
 T1,T2,T3,F1,FJ,FK,FKK,
 EXPA,EXPB,EXPC,EXP,D,SMO1,SMO2,SMO3
REAL WEIG1,WEIG2,WEIG3,RMM,RMA,RMB,RMC
REAL SIGMA1,SIGMA2,SIGMA3,RESULT1,RESULT2
REAL TSUB,EXSUB,FSUB,GSUB,SSUB,SSUM
REAL CONST1,CONST2,CONST3,FLAG1,FLAG2

COMMON /STATS/ QA,QB,QC,QE,SSA,SSB,SSC,SSE,
 T1,T2,T3,F1,FJ,FK,FKK,
 EXPA,EXPB,EXPC,EXP,D,SMO1,SMO2,SMO3
COMMON /WEIGH/ WEIG1,WEIG2,WEIG3,RMM
COMMON /SIGMA/ SIGMA1,SIGMA2,SIGMA3
COMMON /DRULE/ IDECIDE,RESULT1,RESULT2
COMMON /SUBST/ TSUB,EXSUB,FSUB,GSUB,SSUB,SSUM,GSUB
COMMON /MULTS/ CONST1,CONST2,CONST3,MULT1,MULT2
COMMON /FLAGS/ FLAG1,FLAG2

EXTERNAL FFO,FFOS,FFK,FFKKS,P,PP

LOCAL VARIABLES

REAL TSTAR,BOUND,CFUNC,FIRST,SERIS,
 OK1,OK2,UPD,CONST,FMM
REAL CBOUND,CUBIC,SCREEN
REAL OK1,OK2,CONST,INT3D

INTEGER NDIV,IFIX

THE SUBPROGRAM WILL COMPARE T1 WITH ITS COMPUTED UPPER
AND LOWER BOUNDS FOR A SHORTCUT PROCEDURE. IF T1 DOES NOT
FALL IN-BETWEEN THE BOUNDS, EITHER L1 OR L2 FUNCTION
WILL BE COMPUTED. THE RESULTING DECISION WILL BE TAKEN.

THE PROGRAM WILL GIVE THE DECISION AND L1 OR L2 VALUE.
AT C-LEVEL=100, THE T-STAR VALUE IS 1.7207832624.
TSTAR=1.72078326
NDIV=32
BOUND=1.E-6
SERIS=0.0

WE COMPUTE THE FIRST TERM OF THE L-FUNCTION.
FIRST=T1*WEIG1+T2*WEIG2
* COMPUTE THE UPPER AND LOWER BOUNDS.
* TUPPER=(TSTAR*SIGMA1-T2*WEIG2)/WEIG1
 TLOWER=(-TSTAR*SIGMA1-T2*WEIG2)/WEIG1
* WRITE (5,2210) TUPPER,TLOWER,FIRST
* CBOUND=2.*FIRST/101.
 CUBIC=0.
 IF (T1.GE.TUPPER) GO TO 2000
 IF (T1.LE.TLOWER) GO TO 2001
 IDECIDE=0
 RESULT1=0.
 RESULT2=0.
 GO TO 2100
* THIS BLOCK COMPUTES AN UPPER AND LOWER BOUNDS FOR L"S.
* 2000 IF (T2.LT.0.) GO TO 2100
 IFIX=1
 GO TO 2002
 * 2001 IF (T2.GT.0.) GO TO 2200
 IFIX=-1
 * 2002 KK=-1
 FFK=FLOAT(KK)
 IF (AMOD(0A,2.).EQ.0.) GO TO 2003
 CONNS=CONST1/FFK/(SUMQ1-1.)
 CUBIC=CUBIC+CONNS*INT3D(PP)/RMM/2.506628274631
 GO TO 2004
* 2003 CONNS=CONST1/FFK/(SUMQ1-1.)
 OKKK1=2.*CONNS*(TRINT(FFKKS,NDIV)-TRINT(FFKKS,NDIV))/SSA
 IF (MULT1.EQ.0.) GO TO 2008
* DO 2005 MM=1,MULT1,1
 FMM=FLOAT(MM)
 CONNS=(SQSUB-1.)*CONNS
 EXPC=EXPC+1.
 SQSUB=SQSUB+1.
 OKKK2=2.*FMM*OKKK1*CONNS*TRINT(FFKKS,NDIV))/SSA
 OKKK1=OKKK2
 2005 CONTINUE
* 2008 CUBIC=CUBIC+OKKK1/RMM/2.506628274631
 EXPC=EXPC-FLOAT(MULT1)
 SQSUB=SUMQ1
 2004 SCREEN=CBOUND-1.9603560396*CUBIC*FLOAT(IFIX)
 WRITE (6,2220) CUBIC, SCREEN
 * IF (IFIX.EQ.1) GO TO 2007
 IF (SCREEN.GT.0.) GO TO 2200
 GO TO 2009
 2007 IF (SCREEN.LT.0.) GO TO 2100
 2009 IDECIDE=1*IFIX
 RESULT1=1.000
 RESULT2=1.000
 GO TO 2100
* THIS BLOCK COMPUTES L1-FUNCTION TO MAKE DECISION D=0 OR D+.
* 2010 CFUNC=0.72139177*FIRST
 IFIX=1
 GO TO 2030
*
* THIS BLOCK COMPUTES L2-FUNCTION TO MAKE DECISION D-0 OR D-.

2020 CFUNC=-0.72139177*FIRST
 IFIX=-1
* THIS BLOCK COMPUTES THE INFINITE SERIES IN THE L-FUNCTION.
* THE FIRST TERM OF THE SERIES WHEN KK=0 IS COMPUTED
* SEPARATELY FROM THE REST OF THE TERMS.
* DO-LOOP IS USED FOR KK=1,2,3,....
* THE RECURSIVE FORMULA DEPENDS ON THE INTEGER VALUE OF QA.
* THE BLOCK DOES RECURSIVE METHOD FOR BOTH EVEN OR ODD QA.

2030 IF (AMOD(QA,2.).EQ.0.) GO TO 2034
 CONST=CONST/1.7724538509
 OK1=CONST*INT3D(P)/RMM
 UPDATE=SUMQ3*CONST*FK
 DO 2032 KK=1,20,1
 FKK=FLOAT(KK)
 CONST=UPDATE
 OK1=CONST*INT3D(PK)
 UPDATE=UPDATE+FK*K*SUMQ3/(2.0*FKK+1.)
 SERIS=SERIS+OK1/RMM
 WRITE (6,2200) OK1/RMM, KK
 IF (SERIS.GE.CFUNC) GO TO 2070
 IF (OK1/RMM.LE.BOUND) GO TO 2075
 2032 CONTINUE
 GO TO 2075

2034 CONST=CONST/1.7724538509
 OK1=2.0*CONST*(TRINT(FF0,NDIV)-TRINT(FF05,NDIV))/SSA
 IF (MULTI.EQ.0.) GO TO 2038
* DO 2035 MM=1,MULTI,1
* FMM=FLOAT(MM)
* CONST=SQSUB*CONST
* EXP=EXP+C+1.
* SQSUB=SQSUB+1.
* OK2=2.0*(FMM*OK1-CONST*TRINT(FF0,NDIV))/SSA
* OK1=OK2
* 2035 CONTINUE
* 2038 SERIS=SERIS+OK1/RMM
* WRITE (6,2200) OK1/RMM
* EXP=EXP+FLOAT(MULTI)
* SQSUB=SUMQ1
* UPDATE=CONST*K*SUMQ1/1.7724538509
* DO 2045 KK=1,20,1
* FKK=FLOAT(KK)
* CONST=UPDATE
* OK1=2.0*CONST*(TRINT(FFKK,NDIV)-TRINT(FF05,NDIV))/SSA
* IF (MULTI.EQ.0.) GO TO 2043
* DO 2040 MM=1,MULTI,1
* FMM=FLOAT(MM)
* CONST=(SQSUB+FKK)*CONST
* SQSUB=SQSUB+1.0
* EXP=EXP+C+1.0
* OK2=2.0*(FMM*OK1-CONST*TRINT(FFKK,NDIV))/SSA
* OK1=OK2
* 2040 CONTINUE
* 2043 EXP=EXP+FLOAT(MULTI)
* SQSUB=SUMQ1
* UPDATE=(SQSUB+FKK)*K*UPDATE/(2.0*FKK+1.0)
SERIS=SERIS+OK1/RMM
WRITE (6,2200) OK1/RMM, KK
IF (SERIS.GE.CFUNC) GO TO 2070
IF (OK1/RMM.LE.BOUND) GO TO 2075
2045 CONTINUE
 GO TO 2075
*
2070 IDECIDE=0
 GO TO 2080
*
2075 IDECIDE=1*IFIX
*
2080 IF (IFIX.NE.1) GO TO 2085
 RESULT1=FIRST-1.386209332*SERIS
 RESULT2=0.
 GO TO 2100
*
2085 RESULT1=0.
 RESULT2=FIRST+1.386209332*SERIS
*
2200 FORMAT(5X,F18.12,13)
2210 FORMAT(/,5X,*HI=*,F13.6,5X,*LO=*,F13.6,5X,*P-MEAN*,F13.8)
2220 FORMAT(5X,*CUBIC TERM=*,F13.6,5X,*SCREEN=*,E13.6)
2100 RETURN
END
SUBROUTINE TYPEII

**
* TYPE II *
**

THIS SUBROUTINE COMPUTES THE COMPONENT BAYES RULES OF TYPE II PROBLEMS. TWO SCREENING PROCEDURES ARE UTILIZED TO AVOID THE COMPUTATION OF THE CRITICAL EQUATIONS DEFINING THE BAYES DECISION. THE COMPONENT BAYES RULE IS PRINTED FOR EACH COMPARISON PROBLEM.

**

GLOBAL VARIABLES

INTEGER IDECIDE,MULT1,MULT2
REAL QA,QB,QC,QD,SSA,SSB,SSC,SSD,
! Ti,T2,T3,F1,F2,FK,FKKK,
! EXPA,EXPB,EXPC,EXPD,SUMQ1,SUMQ2,SUMQ3
REAL WEIG1,WEIG2,WEIG3,RMM,RRM,RRM,RMC
REAL SIGMA1,SIGMA2,SIGMA3,RESULT1,RESULT2
REAL TSUB,EXSUB,FSUB,SQSUB,SSUM
REAL CONST1,CONST2,CONST3,FLAG1,FLAG2

COMMON /STATS/ QA,QB,QC,QD,SSA,SSB,SSC,SSD,
! Ti,T2,T3,F1,F2,FK,FKKK
COMMON /EXPS/ EXPA,EXPB,EXPC,EXPD,SUMQ1,SUMQ2,SUMQ3
COMMON /WEIG/ WEIG1,WEIG2,WEIG3,RMM
COMMON /SIGMA/ SIGMA1,SIGMA2,SIGMA3
COMMON /DRULE/ IDECIDE,RESULT1,RESULT2
COMMON /SUBST/ TSUB,EXSUB,FSUB,SQSUB,SSUM
COMMON /MULTS/ CONST1,CONST2,CONST3,MULT1,MULT2
COMMON /FLAGS/ FLAG1,FLAG2

EXTERNAL FFQ,FFQS,FFKKK,P,PP

LOCAL VARIABLES

REAL TSTAR,BOUND,CFUNC,FIRST,SERIS,
! OK1,OK2,UPDATE,CONST,FMM,FODD
REAL CBOUND,CUBIC,SCREED
REAL OK1,OK2,CONS,INT3D

INTEGER NDIV,IFIX

THE SUBPROGRAM WILL COMPARE Ti WITH ITS COMPUTED UPPER AND LOWER BOUNDS FOR A SHORTCUT PROCEDURE. IF Ti DOES NOT FALL IN-BETWEEN THE BOUNDS, EITHER L1 OR L2 FUNCTION WILL BE COMPUTED. THE RESULTING DECISION WILL BE TAKEN.

THE PROGRAM WILL GIVE THE DECISION AND L1 OR L2 VALUE.

AT C-LEVEL=100, THE T-STAR VALUE IS 1.7207832624.

TSTAR=1.72078326
NDIV=32
BOUND=1.0E-6
SERIS=0.0

WE COMPUTE THE FIRST TERM OF THE L-FUNCTION.
FIRST=Ti*WEIG1+T3*WEIG3
COMPUTE THE UPPER AND LOWER BOUNDS.

TUPPER = (TSTAR*SIGMA2-T3*WEIG3)/WEIG1
TLOWER = (-TSTAR*SIGMA2-T3*WEIG3)/WEIG1

WRITE (6,2210) TUPPER, TLOWER, FIRST

CBOUND=2.*FIRST/101.
CUBIC=0.
IF (T1.GE.TUPPER) GO TO 2000
IF (T1.LE.TLOWER) GO TO 2001
IDECIDE=0.
RESULT1=0.
RESULT2=0.
GO TO 2100

THIS BLOCK COMPUTES AN UPPER AND LOWER BOUNDS FOR L"S.

2000 IF (T3.LT.0.) GO TO 2100
IFIX=1
GO TO 2002

2001 IF (T3.GT.0.) GO TO 2200
IFIX=-1

2002 KK=-1
FKK=FLOAT(KK)

IF (AMOD(32,2).EQ.0.) GO TO 2003
CONNS=CONST2/FK/(SUMQ3-1.)
CUBIC=CUBIC+CONNS*INT3D(PP)/RMM/2.506628274631
GO TO 2004

2003 CONNS=CONST2/FK/(SUMQ2-1.)
OKK1=2.*CONNS*(TRINT(FKK,NDDV)-TRINT(FKKS,NDDV))/SSB
IF (MULTN.EQ.0.) GO TO 2008

DO 2005 MM=1,MULTN,1
FMM=FLOAT(MM)
CONNS=(SSSUB-1.)*CONNS
EXPJC=EXPJC+1.
SSSUB=SSSUB+1.
OKK2=2.*(FMM*OKK1-CONNS*TRINT(FKKS,NDDV))/SSB
OKK1=OKK2

2005 CONTINUE

2008 CUBIC=CUBIC+OKK1/RMM/2.506628274631
EXPJC=EXPJC+FLOAT(MULT2)
SSSUB=SSSUB+1

2004 SCREEN=CBOUND-1.9603960396*CUBIC*FLOAT(IFIX)
WRITE (6,2220) CUBIC, SCREEN
IF (IFIX.EQ.1) GO TO 2007
IF (SCREEN.GT.0.) GO TO 2009
GO TO 2009

2007 IF (SCREEN.LT.0.) GO TO 2100

2009 IDECIDE=1*IFIX
RESULT1=1.0
RESULT2=1.0
GO TO 2100

THIS BLOCK COMPUTES L1-FUNCTION TO MAKE DECISION D-0 OR D+.

2010 CFUNC=0.72139177*FIRST
IFIX=1
GO TO 2030

THIS BLOCK COMPUTES L2-FUNCTION TO MAKE DECISION D-0 OR D-.
* 2020 CFUNC=0.72139177*FIRST
 IFIX=1
*
 THIS BLOCK COMPUTES THE INFINITE SERIES IN THE L-FUNCTION.
 THE FIRST TERM OF THE SERIES WHEN KK=0 IS COMPUTED
 SEPARATELY FROM THE REST OF THE TERMS.
 DO-LOOP IS USED FOR KK=1,2,3,....
 THE BLOCK DOES THE RECURSIVE FORMULA FOR BOTH EVEN OR ODD QA.
*
2030 IF (AMOD(OB,2.).EQ.0.) GO TO 2034
CONST=CONST2/1.7724538509
OK1=CONST*INT3D(P)/RMM
*
 UPDATE=SUM03*CONST*FK
 DO 2032 KK=1,20,1
 FKK=FLOAT(KK)
 CONST=UPDATE
 OK1=CONST*INT3D(P)
 UPDATE=UPDATE*FK*SUM03/2.*(2.*FKK+1.)
 SERIS=SERIS+OK1/RMM
 WRITE (6,2200) OK1/RMM, KK
 IF (SERIS.GE.CFUNC) GO TO 2070
 IF (OK1/RMM.LE.BOUND) GO TO 2075
2032 CONTINUE
 GO TO 2075
*
2034 CONST=CONST2/1.7724538509
OK1=2.*CONST*(TRINT(FF0,NDIV)-TRINT(FFOS,NDIV))/SSB
IF (MULT2.EQ.0.) GO TO 2038
*
 DO 2035 MM=1,MULT2,1
 FMM=FLOAT(MM)
 CONST=SUM03*CONST
 EXPC=EXP+1.
 SUM02=SUM02+1.
 OK1=2.*(FMM*OK1-CONST*TRINT(FFOS,NDIV))/SSB
 OK1=OK2
2035 CONTINUE
*
2038 SERIS=SERIS+OK1/RMM
 WRITE (6,2200) OK1/RMM
 EXPC=EXP+FLOAT(MULT2)
 SUM02=SUM02
 UPDATE=CONST2*FK*SUM03/1.7724538509
*
 DO 2045 KK=1,20,1
 FKK=FLOAT(KK)
 CONST=UPDATE
 OK1=2.0*CONST*(TRINT(FFKK,NDIV)-TRINT(FFKKS,NDIV))/SSB
 IF (MULT2.EQ.0.) GO TO 2043
*
 DO 2040 MM=1,MULT2,1
 FMM=FLOAT(MM)
 CONST=(SUM02+FKK)*CONST
 SUM02=SUM02+1.0
 EXPC=EXP+1.0
 OK1=2.0*(FMM*OK1-CONST*TRINT(FFKKS,NDIV))/SSB
 OK1=OK2
2040 CONTINUE
*
2043 EXPC=EXP+FLOAT(MULT2)
 SUM02=SUM02
 UPDATE=(SUM02+FKK)*FK*UPDATE/(2.0*FKK+1.0)
 SERIS=SERIS+OK1/RMM
 WRITE (6,2200) OK1/RMM, KK
IF (SERIS.GE.CFUNC) GO TO 2070
IF (OK1/RMM.LE.BOUND) GO TO 2075

2045 CONTINUE
 GO TO 2075

* 2070 IDECIDE=0
 GO TO 2080

* 2075 IDECIDE=1*IFIX
 * 2080 IF (IFIX.NE.1) GO TO 2085
 RESULT1=FIRST-1.386209332*SERIS
 RESULT2=0.
 GO TO 2090
 * 2085 RESULT1=0.
 RESULT2=FIRST+1.386209332*SERIS
 * 2090 IF (AMOD(QB,2.).EQ.0.) GO TO 2100
 EXPC=EXPC+0.5
 SUMQ2=SUMQ2+0.5

* 2200 FORMAT (5X,F18.5,I3)
 2210 FORMAT(//,5X,*HI=*,F13.6,5X,*LO=*,F13.6,5X,*P-MEAN=*,F13.6)
 2220 FORMAT(5X,*CUBIC TERM=*,E13.5,5X,*SCREEN=*,E13.5)
 2100 RETURN
 END
REAL FUNCTION G(U, V)

GLOBAL VARIABLES

REAL QA, QB, QC, QE, SSA, SSB, SSC, SSE,
 T1, T2, T3, FI, FJ, FK, FKK
REAL EXPA, EXPB, EXPC, EXPE, SUMQ1, SUMQ2, SUMQ3
REAL TSUB, EXSUB, FSUB, GSUB, SSUB, SSSUB, SSSUM

COMMON /STATS/
 QA, QB, QC, QE, SSA, SSB, SSC, SSE,
 T1, T2, T3, FI, FJ, FK, FKK, KK
COMMON /EXPN/
 EXPA, EXPB, EXPC, EXPE, SUMQ1, SUMQ2, SUMQ3
COMMON /SUBST/
 TSUB, EXSUB, FSUB, SSSUB, SSSUM, SSSUB

G=0.
IF (U.EQ.0.) GO TO 320
G=(SORT(1.-U*(1.-1./FSUB)-U/FSUB)*U**EXSUB*U**EXPC)/
 ((SSSUB*U+SSS*U+SSE)/2.)**SSSUB
320 RETURN
END

REAL FUNCTION GS(U, V)

GLOBAL VARIABLES

REAL QA, QB, QC, QE, SSA, SSB, SSC, SSE,
 T1, T2, T3, FI, FJ, FK, FKK
REAL EXPA, EXPB, EXPC, EXPE, SUMQ1, SUMQ2, SUMQ3
REAL TSUB, EXSUB, FSUB, GSUB, SSUB, SSSUB, SSSUM

COMMON /STATS/
 QA, QB, QC, QE, SSA, SSB, SSC, SSE,
 T1, T2, T3, FI, FJ, FK, FKK, KK
COMMON /EXPN/
 EXPA, EXPB, EXPC, EXPE, SUMQ1, SUMQ2, SUMQ3
COMMON /SUBST/
 TSUB, EXSUB, FSUB, SSSUB, SSUM, SSSUB

GS=0.
IF (U.EQ.0.) GO TO 330
GS=(SORT(1.-U*(1.-1./FSUB)-U/FSUB)*U**EXSUB*U**EXPC)/
 ((SSSUB*U+SSSUM*U+SSE)/2.)**SSSUB
330 RETURN
END

REAL FUNCTION FFO(U, V)

GLOBAL VARIABLES

REAL QA, QB, QC, QE, SSA, SSB, SSC, SSE,
 T1, T2, T3, FI, FJ, FK, FKK
REAL EXPA, EXPB, EXPC, EXPE, SUMQ1, SUMQ2, SUMQ3
REAL TSUB, EXSUB, FSUB, GSUB, SSUB, SSSUB, SSSUM

COMMON /STATS/
 QA, QB, QC, QE, SSA, SSB, SSC, SSE,
 T1, T2, T3, FI, FJ, FK, FKK, KK
COMMON /EXPN/
 EXPA, EXPB, EXPC, EXPE, SUMQ1, SUMQ2, SUMQ3
COMMON /SUBST/
 TSUB, FSUB, EXSUB, SSSUB, SSSUM, SSSUB

LOCAL VARIABLES
REAL TEMP

FFO=0.
IF (U.EQ.0.) GO TO 320
TEMP=(1,-(1,-1./FSUB)*U-U/FSUB)
FFO=SQRT(TEMP)**U**EXSUB**U**EXPCC/
+++ (((1,-U)*TI+(U-U)*TSUB)**2*FK/TEMP+
+++ SSSUB*U+SSC*U+SSSE)/2.)**SSSUB
320 RETURN
END

REAL FUNCTION FFKK(U,V)

GLOBAL VARIABLES

REAL QA, QB, QC, QE, SSA, SSB, SSC, SSE,
! T1, T2, T3, FI, FJ, FK, FKK
REAL EXPA, EXPB, EXPC, EXPD, SUMQ1, SUMQ2, SUMQ3
REAL TSUB, EXSUB, FSUB, SSUB, SSUM, SSUM, SSUM

COMMON /STATS/ QA, QB, QC, QE, SSA, SSB, SSC, SSE,
! T1, T2, T3, FI, FJ, FK, FKK, KK
COMMON /EXPON/ EXPA, EXPB, EXPD, EXPD, SUMQ1, SUMQ2, SUMQ3
COMMON /SUBST/ TSUB, FSUB, EXSUB, SSUB, SSUM, SSUM

LOCAL VARIABLES

REAL TEMP1, TEMP2

FFKK=0.
IF (U.EQ.0.) GO TO 325
TEMP1=(1,-U)*TI+(U-U)*TSUB
TEMP2=1.-(1,-1./FSUB)*U-U/FSUB
FFKK=((TEMP1**2*FK/TEMP2+SSSUB*U+SSC*U+SSSE)/2.)**SSSUB
325 RETURN
END

REAL FUNCTION FFOS(U,V)

GLOBAL VARIABLES

REAL QA, QB, QC, QE, SSA, SSB, SSC, SSE,
! T1, T2, T3, FI, FJ, FK, FKK
REAL EXPA, EXPB, EXPD, EXPD, SUMQ1, SUMQ2, SUMQ3
REAL TSUB, EXSUB, FSUB, SSUB, SSUM, SSUM

COMMON /STATS/ QA, QB, QC, QE, SSA, SSB, SSC, SSE,
! T1, T2, T3, FI, FJ, FK, FKK, KK
COMMON /EXPON/ EXPA, EXPB, EXPD, EXPD, SUMQ1, SUMQ2, SUMQ3
COMMON /SUBST/ TSUB, FSUB, EXSUB, SSUB, SSUM, SSUM

LOCAL VARIABLES

REAL TEMP

FFOS=0.
IF (U.EQ.0.) GO TO 330
TEMP=(1,-(1,-1./FSUB)*U-U/FSUB)
FFOS=SQRT(TEMP)**U**EXSUB**U**EXPCC/
+++ (((1,-U)*TI+(U-U)*TSUB)**2*FK/TEMP+
+++ SSSUB*U+SSC*U+SSSE)/2.)**SSSUB
330 RETURN
REAL FUNCTION FFKKS(U, V)

GLOBAL VARIABLES

REAL QA, QB, QC, QE, SSA, SSB, SSC, SSE,
! T1, T2, T3, FI, FJ, FK, FKK
REAL EXPA, EXPB, EXPC, EXPF, SUMQ1, SUMQ2, SUMQ3
REAL TSUB, EXSUB, FSUB, SGSUB, SSUB, SSSUM

COMMON /STATS/ QA, QB, QC, QE, SSA, SSB, SSC, SSE,
! T1, T2, T3, FI, FJ, FK, FKK, KK
COMMON /EXPON/ EXPA, EXPB, EXPC, EXPF, SUMQ1, SUMQ2, SUMQ3
COMMON /SUBST/ TSUB, FSUB, EXSUB, SSUB, SSSUM, SGSUB

LOCAL VARIABLES

REAL TEMP1, TEMP2

FFKKS=0.
IF (U, EQ, 0.) GO TO 335
TEMP1=(1.-U)*T1+(U-U)*TSUB
TEMP2=(1.-(1.-1./FSUB)*(U-U)/FSUB)
FFKKS=(TEMP1**(2.*KK)*U**EXSUB*U**EXPC)/(TEMP2**(FKK-.5))
! ((TEMP1**2*FK/TEMP2*SSSUB*U+SSSUM*U+SSE)/2.)**(SGSUB+FKK)

335 RETURN

END
SUBROUTINE TYPEIII

* TYPE III *

THIS SUBROUTINE COMPUTES THE COMPONENT BAYES RULES OF TYPE III PROBLEMS. TWO SCREENING PROCEDURES ARE UTILIZED TO AVOID THE COMPUTATION OF THE CRITICAL EQUATIONS DEFINING THE BAYES DECISION. THE COMPONENT BAYES RULE IS PRINTED FOR EACH COMPARISON PROBLEM.

GLOBAL VARIABLES *

INTEGER IDECIDE,MULT1,MULT2
REAL QA,QB,QC,QE,SSA,SSB,SSC,SSE,
! T1,T2,T3,FI,FJ,FK,FKK,
! EXPA,EXPB,EXPC,EXPE,SUMQ1,SUMQ2,SUMQ3
REAL HEIG1,HEIG2,HEIG3,RMM,RMA,RMB,RMC
REAL SIGMA1,SIGMA2,SIGMA3,RESULT1,RESULT2
REAL TSUB,EXSUB,FSUB,SSSUB,SSSUM
REAL CONST1,CONST2,CONST3,FLAG1,FLAG2

COMMON /STATS/ QA,QB,QC,QE,SSA,SSB,SSC,SSE,
! T1,T2,T3,FI,FJ,FK,FKK,KK
COMMON /EXPON/ EXPA,EXPB,EXPC,EXPE,SUMQ1,SUMQ2,SUMQ3
COMMON /HEIG/ HEIG1,HEIG2,HEIG3,RMM
COMMON /SIGMA/ SIGMA1,SIGMA2,SIGMA3
COMMON /DRULE/ IDECIDE,RESULT1,RESULT2
COMMON /SUBST/ TSUB,EXSUB,FSUB,SSSUB,SSSUM,SOSUB
COMMON /MULTS/ CONST1,CONST2,CONST3,MULT1,MULT2
COMMON /FLAGS/ FLAG1,FLAG2

EXTERNAL P,PP

LOCAL VARIABLES *

REAL TSTAR,BOUND,CFUNC,SERIS,INT3D,
! OK,UPDATE,CONST,FIRST
REAL CBOUND,CUBIC,SCREEN,CONN

INTEGER IFIX

THE SUBPROGRAM WILL COMPARE T1 WITH ITS COMPUTED UPPER AND LOWER BOUNDS FOR A SHORTCUT PROCEDURE. IF T1 DOES NOT FALL IN-BETWEEN THE BOUNDS, EITHER L1 OR L2 FUNCTION WILL BE COMPUTED. THE RESULTING DECISION WILL BE TAKEN.

THE PROGRAM WILL GIVE THE DECISION AND L1 OR L2 VALUE.

AT C-LEVEL=100, THE T-STAR VALUE IS 1.7207832624.

TSTAR=1.72078326
BOUND=1.0E-6
SERIS=0.0

WE COMPUTE THE FIRST TERM OF THE L-FUNCTION.
FIRST=T1*HEIG1+T2*HEIG2+T3*HEIG3

 COMPUTE THE UPPER AND LOWER BOUNDS.
* TUPPER=(TSTAR*SIGMA3-T2*WEIG2-T3*WEIG3)/WEIG1
TLOWER=(-TSTAR*SIGMA3-T2*WEIG2-T3*WEIG3)/WEIG1
WRITE (6,2210) TUPPER,TLOWER,FIRST
*
CBOUND=2.*FIRST/101.
CUBIC=0.
IF (T1.GE.TUPPER) GO TO 2000
IF (T1.LE.TLOWER) GO TO 2001
IDECIDE=0
RESULT1=0.
RESULT2=0.
GO TO 2100
*
* THIS BLOCK COMPUTES AN UPPER BOUND AND LOWER BOUND FOR L"s.
*
2000 IF (T2.LT.0.0.OR.T3.LT.0.) GO TO 2010
IFIX=I
GO TO 2002
*
2001 IF (T2.GT.0.0.OR.T3.GT.0.) GO TO 2020
IFIX=-I
*
2002 KK=-1
FKK=FLOAT(KK)
CONN=CONST3/FK/(SUMQ3-1.)
CUBIC=CUBIC+CONN*INT3D(PP)/RMM/2.50662874631
SCREEN=CBOUND-CUBIC*FLOAT(IFIX)*1.9503560396
WRITE (6,2220) CUBIC, SCREEN
IF (IFIX.EQ.1.) GO TO 2003
IF (SCREEN.GT.0.) GO TO 2020
GO TO 2009
2003 IF (SCREEN.LT.0.) GO TO 2010
2009 IDECIDE=1*IFIX
RESULT1=1.0
RESULT2=1.0
GO TO 2100
*
* THIS BLOCK COMPUTES L1-FUNCTION TO MAKE DECISION D-0 OR D+.
*
2010 CFUNC=0.72139177*FIRST
IFIX=I
GO TO 2030
*
* THIS BLOCK COMPUTES L2-FUNCTION TO MAKE DECISION D-0 OR D+.
*
2020 CFUNC=-0.72139177*FIRST
IFIX=-I
*
* THIS BLOCK COMPUTES THE INFINITE SERIES IN THE L-FUNCTION.
* THE FIRST TERM OF THE SERIES WHEN KK=0 IS COMPUTED
* SEPARATELY FROM THE REST OF THE TERMS.
* DO-LOOP IS USED FOR KK=1,2,3,...
*
2030 CONST=CONST3/1.7724538509
SERIS=CONST*INT3D(PP)/RMM
WRITE (6,2200) SERIS
*
UPDATE=SUMQ3*CONST*FK
DO 2040 KK=1,20,1
FKK=FLOAT(KK)
CONST=UPDATE
OK=CONST*INT3D(PP)
UPDATE=(SUMQ3*FKK)*FKK*UPDATE/(2.0*FKK+1.0)
SERIS=SERIS+OK/RMM
WRITE (6,2200) OK/RMM, KK
IF (SERIS.GE.CFUNC) GO TO 2050
IF (OK/RMM.LE.BOUND) GOTO 2060
2040 CONTINUE
 GO TO 2060
*
2050 IDECIDE=0
 GO TO 2070
*
2060 IDECIDE=1*IFIX
*
2070 IF (IFIX.NE.1) GO TO 2080
 RESULT1=FIRST-1.386209332*SERIS
 RESULT2=0.
 GO TO 2100
*
2080 RESULT1=0.
 RESULT2=FIRST+1.386209332*SERIS
*
2200 FORMAT (5X,F10.8,I3)
2210 FORMAT(//,5X,*HI=*,F13.6,5X,*LD=*,F13.6,5X,*P-MEAN=*,F13.8)
2220 FORMAT(5X,*CUBIC TERM=*,E13.6,5X,*SCREEN=*,E13.6)
2100 RETURN
END
REAL FUNCTION Z(W,U,U)
GLOBAL VARIABLES
REAL QA, QB, QC, QE, SSA, SSB, SSC, SSE,
 T1, T2, T3, FI, FJ, FK, FKK,
 EXPB, EXPB, EXPC, EXP, SUMQ, SUMQ2, SUMQ3
REAL FLAQ1, FLAQ2
COMMON /STATS/ QA, QB, QC, QE, SSA, SSB, SSC, SSE,
 T1, T2, T3, FI, FJ, FK, FKK, KK
COMMON /EXPON/ EXPB, EXPB, EXPB, EXP, SUMQ, SUMQ2, SUMQ3
COMMON /FLAQ/ FLAQ1, FLAQ2
Z=0.
IF (U.EQ.0.) GO TO 700
IF (V.EQ.0.) GO TO 700
Z=(SQRT(((1.-W)*FLAQ1*(W-U)/FI+FLAQ2*(W-U)/FJ))
 *U**EXPB*U**EXP*W**EXP)/
 ((SSA+U+SSB+U+SSC+W+SSE)/2.)*SUMQ3
700 RETURN
END

REAL FUNCTION P(W,U,U)
GLOBAL VARIABLES
REAL QA, QB, QC, QE, SSA, SSB, SSC, SSE,
 T1, T2, T3, FI, FJ, FK, FKK,
 EXPB, EXPB, EXPB, EXP, SUMQ, SUMQ2, SUMQ3
REAL FLAQ1, FLAQ2
COMMON /STATS/ QA, QB, QC, QE, SSA, SSB, SSC, SSE,
 T1, T2, T3, FI, FJ, FK, FKK, KK
COMMON /EXPON/ EXPB, EXPB, EXPB, EXP, SUMQ, SUMQ2, SUMQ3
COMMON /FLAQ/ FLAQ1, FLAQ2
LOCAL VARIABLES
REAL TEMP
P=0.
IF (U.EQ.0.) GO TO 700
IF (V.EQ.0.) GO TO 700
TEMP=(1.-W)*FLAQ1*(W-U)/FI+FLAQ2*(W-U)/FJ
P=(SQRT(TEMP)*U**EXPB*U**EXPB*W**EXP)/
 (((1.-W)*T1+(W-U)*T2+(W-U)*T3)**2*FK/
 TEMP+SSA+U+SSB+U+SSC+W+SSE)/2.)*SUMQ3
700 RETURN
END

REAL FUNCTION PP(W,U,U)
GLOBAL VARIABLES
REAL QA, QB, QC, QE, SSA, SSB, SSC, SSE,
 T1, T2, T3, FI, FJ, FK, FKK
REAL EXPA, EXPB, EXPC, EXPF, SUMQ1, SUMQ2, SUMQ3
REAL FLAG1, FLAG2

* COMMON /STATS/ QA, QB, QC, QE, SSA, SSB, SSC, SSE,
 ! T1, T2, T3, FI, FJ, FK, FKK
COMMON /EXPON/ EXPA, EXPB, EXPC, EXPF, SUMQ1, SUMQ2, SUMQ3
COMMON /FLAGS/ FLAG1, FLAG2

* LOCAL VARIABLES *

* REAL TEMP1, TEMP2

PP=0.
IF (U.EQ.0.) GO TO 800
IF (U.EQ.0.) GO TO 800
TEMP1=(1.-W)*T1+(W-U)*T2+(W-U)*T3
TEMP2=(1.-W)*FLAG1*(W-U)/FI+FLAG2*(W-U)/FJ
PP=(TEMP1**2*KK)*U**EXP1*U**EXP2*U**EXP3/
! (TEMP2**2*KK)*((TEMP1**2*FK/TEMP2)
! +SSA*U+SSB*U+SSC*W+SSE)/2.*SUMQ3+FKK)

800 RETURN
END
REAL FUNCTION RMFC1(Q1,Q2,Q3,Q4)

* M-ALGORITHM *

THIS ALGORITHM CALCULATES THE EXPECTATION OF THE POSTERIOR
MEAN WITH THE INPUT PARAMETERS Q1,Q2,Q3, AND Q4 DENOTING
FOUR DEGREES OF FREEDOMS, SSA,SSB,SSC, SSE ARE THE FOUR
GIVEN SUMS OF SQUARES ESTIMATES.

ALL FOUR D.F.'S MUST BE POSITIVE INTEGERS AND SS'S MUST BE
POSITIVE REAL NUMBERS. THIS ALGORITHM IS DESIGNED TO
COMPUTE M-FUNCTION ONLY WHEN Q4 IS EVEN INTEGER.

GLOBAL VARIABLES

INTEGER ILEVEL,KCELL
REAL QA,QB,QC,QE,SSA,SSB,SSC,SSE,
! T1,T2,T3,FI,FJ,FK,FK
COMMON /STATS/ QA,QB,QC,QE,SSA,SSB,SSC,SSE,
! T1,T2,T3,FI,FJ,FK,FK

LOCAL VARIABLES

INTEGER MULT3,MULT4
REAL TOL0,TOL1,TOL2,TOL3,GF,JF1,JF2,UF,
! RK,RL,R3,Q1,Q2,Q3,Q4

TOL0=SSC+SSE
TOL1=SSA+SSE+SSE
TOL2=SSB+SSE+SSE
TOL3=SSA+SSB+SSE+SSE
MULT4=INT(Q4)/2

M-FUNCTION IS COMPUTED FROM G-FUNCTION WHEN Q3 IS ODD.
ELSE FROM J-FUNCTION WHEN Q3 IS EVEN.

IF(AMOD(Q3,2).EQ.1.) GO TO 10
MULT3=INT(Q3)/2
R3=0.0
CALL FUNCTNJ(Q2,Q1,SSB,TOL1,JF1,HF)
CALL FUNCTNJ(Q1,Q2,SSA,TOL2,JF2,UF)
GF=0.0
GO TO 15
10 MULT3=(INT(Q3)-1)/2
R3=1.0
CALL FUNCTNG(Q1,Q2,SSA,SSB,SSC,SSE,GF,JF1,JF2,HF)

RMFC1 IS COMPUTED RECURSIVELY OVER MULT3 AND MULT4 TIMES.

15 RMFC1=0.0
IF (MULT3.EQ.0) GO TO 25
DO 20 K=1,MULT3+1
RK=FLOAT(K)
GF=((R3+2.0*RK-2.0)*GF+2.0*(JF1+JF2))/TOL0
JF1=((Q1+R3+2.0*RK-2.0)*JF1+2.0*HF)/TOL1
JF2=((Q2+R3+2.0*RK-2.0)*JF2+2.0*HF)/TOL2
HF=(Q1+Q2+R3+2.0*RK-2.0)*HF/TOL3
20 CONTINUE
20 CONTINUE

* 25 DO 30 L=1,MULT4+1
 RL=FLOAT(L)
 RMFC1=2.0*((RL-1.0)*RMFC1+GF)/SSE
 GF=2.0*(((Q3/2.0+RL-1.0)*GF+JF1+JF2)/TOL0
 JF1=2.0*(((Q1+Q3)/2.0+RL-1.0)*JF1+HF)/TOL1
 JF2=2.0*(((Q2+Q3)/2.0+RL-1.0)*JF2+HF)/TOL2
 HF=(Q1+Q2+Q3+2.0*RL-2.0)*HF/TOL3
30 CONTINUE

* RETURN
END
SUBROUTINE FUNCTNJ(AB1, AB2, S1, S2, TFUNC, UFUNC)

* **
* * J-SUBROUTINE *
* * **

* **
* THIS PROGRAM COMPUTES THE DOUBLE INTEGRAL OF INCOMPLETE
* GAMMA PRODUCT WITH AB1 AND AB2 DEGREES OF FREEDOMS.
* SORT(2*PI) IS REPLACED BY A CONSTANT 2.506628274631.
* **

** LOCAL VARIABLES **

REAL S1, S2, TFUNC, UFUNC, R1, R2, QSUM, SORT2PI,
 R1, RJ, AB1, AB2

INTEGER MULT1, MULT2, ITEM, JTEMP, I, J

QSUM=S1+S2
SORT2PI=2.506628274631
I=0
J=0
IF (AMOD(AB1,2).EQ.0.) GO TO 105

MULT1=(INT(AB1)-1)/2
IF (AMOD(AB2,2).EQ.0.) GO TO 100
MULT2=(INT(AB2)-1)/2
TFUNC=4.0*ATAN(SORT(S1/S2))/SORT(S1*S2)
UFUNC=2.0/QSUM
GO TO 115

100 MULT2=INT(AB2)/2
TFUNC=2.0*SORT2PI/(SORT(QSUM)*S2)
UFUNC=SORT2PI/(QSUM*SORT(QSUM))
J=J+1
GO TO 115

105 MULT1=INT(AB1)/2
IF (AMOD(AB2,2).EQ.0.) GO TO 110
MULT2=(INT(AB2)-1)/2
TFUNC=2.0*SORT2PI*(1.0-SORT(S2/QSUM))/(S1*SORT(S2))
UFUNC=SORT2PI/(QSUM*SORT(QSUM))
I=I+1
GO TO 115

110 MULT2=INT(AB2)/2
TFUNC=4.0/(S2*QSUM)
UFUNC=4.0/(QSUM*QSUM)
I=I+1
J=J+1

115 RI=FLOAT(I)
RJ=FLOAT(J)
R1=1.0-RI
R2=1.0-RJ
IF (MULT2.EQ.J) GO TO 125
JTEMP=J+1
GO 120
JJ=JTEMP*MULT2+1
TFUNC=((R2+2.0*FLOAT(JJ-1))*TFUNC+2.0*UFUNC)/S2
UFUNC=(2.0*R1*R2+2.0*FLOAT(JJ-1))*UFUNC/QSUM

120 CONTINUE

125 IF (MULT1.EQ.I) GO TO 135
ITEMP=I+1
DO 130 II=ITEMP,MULT1,1
TFUNC=((R1+2.0*FLOAT(II-1))*TFUNC-2.0*UFUNC)/S1
UFUNC=(AB2+R1+2.0*FLOAT(II-1))*UFUNC/BSUM
 130 CONTINUE
* 135 RETURN
END
SUBROUTINE FUNCTNG(A1,A2,S1,S2,S3,S4,GF,JF1,JF2,HF)

* ***************
* * G-SUBROUTINE *
* * ***************

THIS PROGRAM COMPUTES THE TRIPLE INTEGRAL OF INCOMPLETE
GAMMA PRODUCT WITH B1, B2, AND B3 DEGREES OF FREEDOMS.

LOCAL VARIABLES

REAL S1,S2,S3,S4,GF,JF1,JF2,HF,A1,A2,SQRT2PI,
 P0,P1,P2,P3,R1,R2,TMP
INTEGER MULTI,MULT2,ITEMP,JTEMP,II,JJ

P0=S3+S4
P1=S1+S2+S4
P2=S2+S3+S4
P3=S1+S2+S3+S4
SQRT2PI=2.506628274631
I=0
J=0

IF (AMOD(A1,2.),EQ.0.) GO TO 205
MULTI=(INT(A1)-1)/2
IF (AMOD(A2,2.),EQ.0.) GO TO 200
MULT2=(INT(A2)-1)/2
TEMP=SQRT(S1*S2/(P1*P2-S1*S2))
GF=4.0*SQRT2PI*ATAN(TEMP)/SQRT(S1*S2*P0)
JF1=2.0*SQRT2PI/(P1*SQRT(P3))
JF2=2.0*SQRT2PI/(P2*SQRT(P3))
HF=SQRT2PI/(P3*SQRT(P3))
GO TO 215

200 MULT2=INT(A2)/2
GF=8.0*(ATAN(SQRT(S1/P0))/SQRT(P0)-ATAN(SQRT(S1/P2))/
 SQRT(P2))/((S2*SQRT(S1))
JF1=4.0/(P1*P3)
JF2=4.0*(ATAN(SQRT(S1/P2))/SQRT(S1*P2)+1./P3)/P2
HF=4.0/(P3*P3)
J=J+1
GO TO 215

205 MULTI1=INT(A1)/2
IF (AMOD(A2,2.),EQ.0.) GO TO 210
MULT2=(INT(A2)-1)/2
GF=8.0*(ATAN(SQRT(S2/P0))/SQRT(P0)-ATAN(SQRT(S2/P1))/
 SQRT(P1))/((S1*SQRT(S2))
JF1=4.0*(ATAN(SQRT(S2/P1))/SQRT(S2*P1)+1.0/P3)/P1
JF2=4.0/(P2*P3)
HF=4.0/(P3*P3)
I=I+1
GO TO 215

210 MULT2=INT(A2)/2
TEMP1=1./SQRT(P0)-1./SQRT(P1)-1./SQRT(P2)+1./SQRT(P3)
GF=4.0*SQRT2PI*TEMP/(S1*S2)
JF1=2.0*SQRT2PI*((1.-SQRT(P1)/P3))/(S2*SQRT(P1))+
 1.0/(P3*SQRT(P3))/P1
JF2=2.0*SQRT2PI*((1.-SQRT(P2)/P3))/(S1*SQRT(P2))+
 1.0/(P3*SQRT(P3))/P2
HF=3.0*SQRT2PI/(P3*P3*SQRT(P3))
I=I+1
J=J+1

* 215 RI=FLOAT(I)
 RJ=FLOAT(J)
 R1=1.0-RI
 R2=1.0-RJ
 IF (MULT1.EQ.I) GO TO 225
 ITEMP=I+1
 DO 220 II=ITEMP,MULT1,1
 GF=((R1+2.*FLOAT(II-1))*GF-2.*JF1)/S1
 JF1=((R1+2.*FLOAT(II-1)+2.*R1)*JF1+2.*HF)/P1
 JF2=((R1+2.*FLOAT(II-1))*JF2+2.*HF)/S1
 HF=(RJ+R1+2.*FLOAT(II))*HF/P3
 220 CONTINUE

* 225 IF (MULT2.EQ.J) GO TO 235
 ITEMP=J+1
 DO 230 JJ=ITEMP,MULT2,1
 GF=((R2+2.*FLOAT(JJ-1))*GF-2.*JF2)/S2
 JF1=((R2+2.*FLOAT(JJ-1)+2.*R2)*JF1+2.*HF)/S2
 JF2=((RJ+2.*FLOAT(JJ-1)+2.*R2)*JF2+2.*HF)/P2
 HF=(AB1+RJ+2.*R2+2.*FLOAT(JJ-1))*HF/P3
 230 CONTINUE

* 235 RETURN
 END
REAL FUNCTION RMFC2(POA,PQB,POC,POE)

**
* M-ALGORITHM *
**

THIS ALGORITHM CALCULATES THE EXPECTATION OF THE POSTERIOR
MEAN WITH THE INPUT PARAMETERS POA,PQB,POC,POE DENOTING
FOUR POSITIVE INTEGERS, SSA,SSB,SSC,SSE ARE THE FOUR
GIVEN SUMS OF SQUARES ESTIMATES.
THIS ALGORITHM IS DESIGNED TO COMPUTE THE M-FUNCTION
ONLY WHEN POE IS ODD INTEGER AND POA,PQB ARE EVEN.

**

DIMENSION TLL(10,10),TMM(10,10),SUM(10,10)

GLOBAL VARIABLES

INTEGER ILEVEL,JLEVEL,KCELL

REAL QA,QB,QC,QE,SSA,SSB,SSC,SSE,
! Ti,T2,T3,FI,FJ,FK,FKK

COMMON /STATS/ QA,QB,QC,QE,SSA,SSB,SSC,SSE,
! Ti,T2,T3,FI,FJ,FK,FKK,KK

LOCAL VARIABLES

INTEGER IMM,INN,IM,IN

REAL C1,C2,C3,C4,C5,C6,C7,C8,
! C9,C10,C11,C12,C13,C14,
! C15,C16,C17,POA,PQB,
! PQC,POE,SSTOT,SUML,SUMM,ALL,AMM,ANN,
! TL,TM,FL,FH,CONST1,CONST2,SUMN,CONS

IF (AMOD(POC,1..NE.0..) GO TO 50000
C1=SSC/(SSC+SSE)
C2=(SSE/(SSC+SSE))**POE
C3=SSA/(SSA+SSC)
C4=(SSC/(SSA+SSC))**PQC
C5=(SSA+SSC)/(SSA+SSC+SSE)
C6=(SSE/(SSA+SSC+SSE))**POE
C7=SSB/(SSB+SSC)
C8=(SSC/(SSB+SSC))**PQC
C9=(SSB+SSC)/(SSB+SSC+SSE)
C10=(SSE/(SSB+SSC+SSE))**POE
SSTOT=SSA+SSB+SSC+SSE
C11=SSA/(SSA+SSB+SSC)
C12=SSB/(SSA+SSB+SSC)
C13=(SSC/(SSA+SSB+SSC))**PQC
C14=(SSA+SSB+SSC)/SSTOT
C15=(SSE/SSTOT)**POE
C16=Gamma(POC)
C17=Gamma(POE)

SUML=1.
ALL=PQC-1.
IF (ALL.LE.0..) GO TO 11000
FL=1.
TL=1.
10000 TL=C1*(POE+FL-1.)*TL/FL
SUML=SUML+TL
FL=FL+1.
IF (FL.LE.ALL) GO TO 10000
11000 RMFC2=1.-C2*SUML
*
SUML=1.
TL=1.
FL=1.
20000 TL=C5*(PQE+FL-1.)*TL/FL
SUML=SUML+TL
FL=FL+1.
IF (FL.LE.ALL) GO TO 20000
SUML=SUML*C6
*
TM=1.
AMM=PQA-1.
SUMM=TM*(SUML-1.)
IF (AMM.LE.0.) GO TO 23000
FM=1.
21000 TH=C3*(PQC+FM-1.)*TM/FM
TL=C5*(PQE+PQC+FM-2.)*TL/(PQC+FM-1.)
SUML=SUML+TL*C6
SUMM=SUMM+TM*(SUML-1.)
FM=FM+1.
IF (FM.LE.AMM) GO TO 21000
23000 RMFC2=RMFC2+SUMM*C4
*
SUML=1.
TL=1.
FL=1.
30000 TL=C9*(PQE+FL-1.)*TL/FL
SUML=SUML+TL
FL=FL+1.
IF (FL.LE.ALL) GO TO 30000
SUML=SUML*C10
*
TM=1.
AMM=PQB-1.
SUMM=TM*(SUML-1.)
IF (AMM.LE.0.) GO TO 33000
FM=1.
31000 TH=C7*(PQC+FM-1.)*TM/FM
TL=C3*(PQE+PQC+FM-2.)*TL/(PQC+FM-1.)
SUML=SUML+TL*C10
SUMM=SUMM+TM*(SUML-1.)
FM=FM+1.
IF (FM.LE.AMM) GO TO 31000
33000 RMFC2=RMFC2+SUMM*C8
*
SUML=1.
TL=1.
FL=1.
40000 TL=C14*(PQE+FL-1.)*TL/FL
SUML=SUML+TL
FL=FL+1.
IF (FL.LE.ALL) GO TO 40000
SUML=SUML*C15
*
DD 42000 I=1,10,1
DD 41000 J=1,10,1
TLL(I,J)=0.
TMN(I,J)=0.
SUM(I,J)=0.
41000 CONTINUE
42000 CONTINUE
*
IMM=INT(PQA)-1
INN=INT(PQB)-1
TLL(1,1)=TL
SUM(1,1)=SUML
TMM(1,1)=1.
SUMM=1.-SUML
IM=0
IN=0
FIN=0.
IF (IMM.EQ.0.AND.INN.EQ.0) GO TO 49000
GO TO 44000

43000 TMM(IM+1,1)=TMM(IM,1)*(PQE+FIM-1.)*C11/FIM
 TLL(IM+1,1)=TLL(IM,1)*C14*(PQE+PQC+FIM-2.)/(PQC+FIM-1.)
 SUM(IM+1,1)=SUM(IM,1)+TLL(IM+1,1)*C15
 SUMM=SUMM+TMM(IM+1,1)*(1.-SUM(IM+1,1))
44000 IF (INN.EQ.0) GO TO 48000
 IN=1

46000 FIN=FLOAT(IN)
 TMM(IM+1,IN+1)=TMM(IM+1,IN)*(PQC+FIM+FIN-1.)*C12/FIN
 TLL(IM+1,IN+1)=TLL(IM+1,IN)*(PQE+PQC+FIM+FIN-2.)*C14/!
 SUM(IM+1,IN+1)=SUM(IM+1,IN)+TLL(IM+1,IN+1)*C15
 SUMM=SUMM+TMM(IM+1,IN+1)*(1.-SUM(IM+1,IN+1))
 IN=IN+1
 IF (IN.LE.INN) GO TO 46000

48000 IN=IM+1
 FIN=FLOAT(IM)
 IF (IN.LE.IMM) GO TO 43000

49000 RMFC2=RMFC2+SUMM*C13
 CONS=(SSA/2.0)**PQA*(SSB/2.0)**PQB*(SSC/2.0)**PQC
 CONS=CONS*(SSE/2.0)**PQE
 RMFC2=RMFC2+GAMMA(PQA)*GAMMA(PQB)*C16*C17*RMFC2/CONS
 GO TO 50000

* 50000 IMM=INT(PQA)-1
 INN=INT(PQB)-1
 TH=SSA+SSB+SSC
 CALL FUNCTN(2.*PQC,2.*PQE,SSC,SSE,TL)
 CALL FUNCTN(2.*PQC,2.*PQE,SSA+SSC,SSE,TL)
 CALL FUNCTN(2.*PQC,2.*PQE,TH,SSE,TL)
 SUML=SUML-SUMM+SUM

* CONS=1.
 IF (IMM.LE.0) GO TO 52000
 DO 51000 IMM=1,IMM,1
 AMM=FLOAT(NN)
 CALL FUNCTN(2.*PQC,2.*PQE,SSA+SSC,SSE,TL)
 CALL FUNCTN(2.*PQC,2.*PQE,TH,SSE,TL)
 CONS=CONS*(SSA/2.)/AMM
 SUML=SUML+CONS*SUMM
 END

51000 CONTINUE

* 52000 CONS=1.
 CALL FUNCTN(2.*PQC,2.*PQE,SSB+SSC,SSE,TL)
 SUML=SUMM
 IF (INN.LE.0) GO TO 54000
 DO 53000 INN=1,INN,1
 ANN=FLOAT(NN)
 CALL FUNCTN(2.*PQC,2.*PQE,SSB+SSC,SSE,TL)
 CALL FUNCTN(2.*PQC,2.*PQE,TH,SSE,TL)
 CONS=CONS*(SSB/2.)/ANN
 SUML=SUML+CONS*SUMM
 END

53000 CONTINUE

* 54000 CONST=1.
 IF (IMM.LE.0.OR.INN.LE.0) GO TO 57000
 DO 56000 IMM=1,IMM,1
 AMM=FLOAT(NN)
 END

56000 CONTINUE
CONST1=CONST1*(SSA/2.)/AMM
CONST2=1.
55000 DO 55000 NN=1,INN,1
ANN=FLOAT(NN)
CONST2=CONST2*(SSB/2.)/ANN
CALL FUNCTN(2.,(PQC+AMM+ANN),2.*PQE,TM,SSB,SUMN,TL)
SUML=SUML+SUMN*CONST1*CONST2
55000 CONTINUE
56000 CONTINUE
57000 CONS=(SSA/2.)**PQA*(SSB/2.)**PQB
RMFC2=Gamma(PQA)*Gamma(PQB)*SUML/CONS
59000 RETURN
END
REAL FUNCTION TRINT(F,NDIV)
*

* TRINT *

*
THIS SUBPROGRAM INTEGRATES A GIVEN FUNCTION F OVER A
* TRIANGULAR REGION, DEFINED BY THE VERTICES (0,0), (1,0)
* AND (1,1). F(U,W) IS THE FUNCTION SUBROUTINE TO BE
* INTEGRATED. NDIV IS THE NUMBER OF SUBDIVISIONS OF THE
* UNIT INTERVAL (0,1). THE VALUE OF THE INTEGRAL IS
* GIVEN BY TRINT.
*

*
EXTERNAL F
ND=NDIV
H=0.5/FLOAT(ND)
THOH=H+H
TOT=0.
IF(ND.EQ.1) GO TO 130
W1=2.
IF(ND.EQ.2) W1=1.
W2=8.
W3=4.
*
WILL SUM ALONG DIAGONALS FROM (0,YF) TO (XL,1)
XL=THOH
YF=1.-XL
*
TAKE CARE OF FOUR SPECIAL POINTS NEAR (0,1)
TOT=F(0.,1.)*W1*(F(0.,YF)+F(XL,1.))+W2*F(H,YF+H)
IF(ND.EQ.2) GO TO 130
NDM2=ND-2
*
DOUBLE LOOP OVER INTERNAL POINTS
DO 120 I=1,NDM2
 XL=XL+THOH
 YF=1.-XL
 IF(I.LT.NDM2) GO TO 100
 W1=W1-1
 W3=W3-1
 100 X=0.
 Y=YF
 TOT=TOT+W1*F(0.,YF)
 C=F(H,YF+H)
 U=0.
 DO 110 J=1,I
 X=X+THOH
 Y=Y+THOH
 U=U+F(X,Y)
 110 C=C+F(X+H,Y+H)
 120 TOT=TOT+W3*U+W2*C+W1*F(XL,1.)
*
* SUM ALONG DIAGONAL STARTING AT (0,H)
130 C=0.
 X=0.
 Y=H
 ND2=ND+ND
 DO 140 I=1,ND2
 C=C+F(X,Y)
 X=X+H
 140 Y=Y+H
 TOT=TOT+C+C
*
* SUM ALONG DIAGONAL Y=X
W2=2.
 W3=1.
 X=0.
 Y=0.
 C=F(H,H)
 U=0.
 IF(ND.EQ.1) GO TO 170
 NDM1=ND-1
 DO 160 J=1,NDM1
 X=X+TWOH
 Y=Y+TWOH
 U=U+F(X,Y)
160 C=C+F(X+H,Y+H)
170 TOT=TOT+W3*U+W2*C.
 TRIN=TOT*(H**2/3.)
RETURN
END
REAL FUNCTION INT3D(FN)

**

**
* INT3D *
*
*
**

**

THIS SUBPROGRAM APPROXIMATES A 3-DIMENSIONAL ITERATED
INTEGRAL OF THE FUNCTION FN(W,V,U).
SUBROUTINE GLO16 PROVIDES A TABLE OF THE 16-POINT
GAUSS-LEGENDRE FORMULA.
THE VALUE OF THE TRIPLE INTEGRAL IS GIVEN BY OMLT2.
THE LIMITS ON THE VARIABLES ARE

AA .LE. W .LE. BB
FL01(W) .LE. U .LE. FUP1(W)
FL02(W,U) .LE. U .LE. FUP2(W,U)

**

**

EXTERNAL FN, FUP1, FL01, FUP2, FL02
DOUBLE PRECISION DX(16), DA(16)
DIMENSION X(40,3), A(40,3), MM(3)
CALL GLO16(DX, DA, -1.0D0, 1.0D0)

**

DO 222 I=1, 16, 1
XX=DX(I)
XI(1,1)=XX
XI(1,2)=XX
XI(1,3)=XX
AB=DA(I)
A(I,1)=AB
A(I,2)=AB
A(I,3)=AB
222
MM(I)=16
MM(2)=16
MM(3)=16
INT3D=OMLT2(FN,0..1., FUP1, FL01, FUP2, FL02, X,A,MM)
RETURN
END

**

SUBROUTINE GLO16(X,A,C,D)
DOUBLE PRECISION C,D,X(16), A(16), XX(8), AA(8)
DATA (XX(I), I=1,8)/
*.9894009349164599325615417340D0 ,
*.94457502307323257607738841550D0 ,
*.86553120238561743880467687700D0 ,
*.755404408535003383510119480D0 ,
*.61787624440245374844667176040D0 ,
*.45801677765722738634241944290D0 ,
*.28160355077925891363046050140D0 ,
*.95012509637637440185319335420D0 /
DATA (AA(I), I=1,8)/
*.27152594117540696517805724501D0 ,
*.62253523998476286284833690D0 ,
*.951585116824927884099925107601D0 ,
*.124666971255553872052476222100D0 ,
*.149595881657673208150173050D0 ,
*.1691565133500235810531203700D0 ,
*.1825041504452356866676366730D0 ,
*.18945601095506849628539672320D0 /
DMC=.50*(D-C)
DPC=.50*(D+C)
DO 444 I=1,8,1
NI=I-1
X(I)=-DMC*XX(I)+DPC
X(NI)=DMC*XX(I)+DPC
A(I)=DMC*AA(I)
A(NI)=DMC*AA(I)
RETURN
END

* REAL FUNCTION QMULT2(FCN,AA,BB,FL1,FL2,X,A,MM)
* 3-DIMENSIONAL ITERATED INTEGRAL

DIMENSION X(40,3), A(40,3), MM(3)
H1=(BB-AA)/2.
G1=(BB+AA)/2.
Q1=0.
M1=MM(1)
M2=MM(2)
M3=MM(3)
DO 66 I=1,M1
UI=H1*X(I,1)+G1
AI=H1*A(I,1)
DI=FL1(UI)
C1=FL1(UI)
H2=(DI-C1)/2.
G2=(DI+C1)/2.
Q2=0.
DO 44 J=1,M2
UJ=H2*X(J,2)+G2
AJ=H2*A(J,2)
DI=FL2(UI,UJ)
C2=FL2(UI,UJ)
H=(D-C)/2.
G=(D+C)/2.
Q=0.
DO 22 K=1,M3
WK=H*K(K,3)+G
22 Q=Q+A(K,3)*FCN(UI,UJ,WK)
44 Q2=Q2+AJ*H*G
66 Q1=Q1+AI*Q2
OMULT2=Q1
RETURN
END

* REAL FUNCTION FUP1(W)
FUP1 = W
RETURN
END

* REAL FUNCTION FLO1(W)
FLO1 = 0E0
RETURN
END

* REAL FUNCTION FUP2(W,U)
FUP2 = W
RETURN
END

* REAL FUNCTION FLO2(W,U)
FLO2 = 0E0
RETURN
END