ON BAYES AND GAMMA-MINIMAX
SUBSET SELECTION RULES*

by

Woo-Chul Kim
Purdue University

Department of Statistics
Division of Mathematical Sciences
Mimeograph Series #79-7
May 1979

*This research was supported by the Office of Naval Research contract
N00014-75-C-0455 at Purdue University. Reproduction in whole or in part
is permitted for any purpose of the United States Government.
INTRODUCTION

Historically, most problems of statistical inference have been formulated as those of estimation or testing of hypotheses. In many practical situations the experimenter is faced with the problem of comparing several populations. Suppose we have \(k(k \geq 2) \) populations \(\pi_1, \ldots, \pi_k \) whose qualities are characterized by real-valued parameters \(\theta_1, \ldots, \theta_k \), respectively. The classical approach to this problem is that of testing the hypothesis of homogeneity, i.e., \(H_0 : \theta_1 = \ldots = \theta_k \). But in many situations, the goal of the experimenter is not just to decide whether all the parameters are equal or not. One of the more frequently occurring situations for which this is so arises when the experimenter wishes to find a subset of \(\{\pi_1, \ldots, \pi_k\} \) which, in some sense, is better than the rest of the given populations. Mosteller (1948), Paulson (1949) and Bahadur (1950) were among the first research workers to recognize the inadequacy of the classical tests of homogeneity and to formulate the problem as multiple decision problems known as ranking and selection problems.

Two formulations for selection and ranking problems have been considered in the classical framework. To fix ideas suppose \(\pi_i \) is better than \(\pi_j \) if \(\theta_i > \theta_j \). Consider the problem of selecting the 'best' population, i.e., the population associated with
max θ_i. The first formulation is called the 'indifference zone' approach of Bechhofer (1954); the experimenter is allowed to select only one population which is the best one with a preassigned minimum probability P^*, whenever the unknown parameters lie outside a zone of indifference. Contributions using this approach in the decision-theoretic framework have been made by Bahadur and Goodman (1952), Lehmann (1966), Eaton (1967) and Alam (1973) among others. The second formulation due to Gupta (1956, 1965) is known as the 'subset selection' approach in which the experimenter selects a subset of random size depending on the observed data such that it contains the best population with at least probability P^*. Decision-theoretic contributions in this framework have been made by Studden (1967), Deely and Gupta (1968), Berger (1977), Chernoff and Yahav (1977), Bickel and Yahav (1977), Goel and Hu (1977), Hsu (1977) and Gupta and Hsu (1978). Especially the last five preceding papers deal with Bayes selection rules. An up-to-date and comprehensive bibliography for both these approaches can be found in Gupta and Panchapakesan (1979). There also have been attempts in the literature to modify these basic formulations. In one such modification, Fabian (1962) called π_i good if $\theta_i > \max_{1 \leq j \leq k} \theta_j - \Delta$ and bad, otherwise, where the positive constant Δ is usually specified by the experimenter. The goal in this framework is to select the good populations and screen out the bad populations. Contributions along these lines have also been made by Fabian (1962), Desu (1970), Santner (1976), Panchapakesan and Santner (1977) and Broström (1978). Optimality
of some of these rules has been studied by Bjørnstad (1978).

A slightly different situation arises when, in addition to the k treatment populations, a control population π_0 is considered and the goal is to partition the k treatment populations with regard to π_0. Following the initial investigation of Paulson (1952), Dunnett (1955), Gupta and Sobel (1958), Bhattacharyya (1956, 1958), Lehmann (1961), Tong (1969), Randles and Hollander (1971) and Miescke (1979), among others, have studied this problem in several different formulations.

The present thesis consists of investigations of multiple decision problems mentioned in the preceding two paragraphs, and also some related topics. In Chapter 1, the problem of selecting good populations is studied from a decision-theoretic Bayesian point of view. We consider a loss function which seems natural for this problem. A theorem is proved to help find the Bayes rule with respect to a permutationally symmetric prior. Some properties of the Bayes rule are derived when an iid prior is assumed. Then to get insight on the performance of the Bayes rule the loss is assumed to be c_1 if we select a bad population and c_2 if we exclude a good population. The rest of Chapter 1 pertains to further simplification and approximation of the Bayes rules since these are often analytically and computationally intractable. Some special cases, namely, normal and gamma distributions are considered with specific prior distributions. Especially, it is shown that, for the normal populations, classical rules of the type proposed by Gupta (1956) and studied by Desu (1970) in this framework turn out to be close
approximations to the Bayes rules. In this connection, Monte Carlo studies are also performed to see how well the classical rules proposed by Seal (1955) and by Gupta (1956) approximate the Bayes rules in terms of overall risks wrt exchangeable priors. The results of this study indicate that the rules of the type proposed by Gupta perform almost as well as the Bayes rules throughout the cases studied. Similar results have been found by Chernoff and Yahav (1977) and Gupta and Hsu (1978) under different frameworks. Since Bayes rules typically require numerical integrations to implement, this makes them usually unsuitable for practical use. Therefore, it was deemed useful to provide tables which give the 'best' classical rules with performances that are sufficiently close to those of the Bayes rules. The tables also provide the average number of bad populations selected that of good ones excluded and the proportion of times that the Bayes rules coincide with these classical rules.

Chapter 2 deals with the problem of partitioning k treatment populations with regard to a control population. The goal is to partition the k treatment populations into 'better' populations, 'worse' populations or 'close' populations in an optimal way. Loss function similar to the one in Bhattacharyya (1958) is assumed, and r-minimax rules and minimax rules are derived for the known control case when the parameters of interest are location parameters. Normal populations with unknown means and known variances are studied
as a special example. When the parameter of the control population is unknown, both r-minimax rules and minimax rules (in a certain class of decision rules) are derived for the location parameter populations. Normal populations with unknown means and known variances, and normal populations with known means and unknown variances are provided as examples. The results regarding the minimax rules generalize a result of Bhattacharyya (1958) for the normal populations with a known control population. In the last section, comparisons are made between the r-minimax rules and the corresponding Bayes rules wrt independent normal priors for the case of normal populations with a common known variance. Tables are provided which shed light on the relative performance of these rules.

Chapter 3 deals with a selection problem in reliability theory and another for the selection of scale parameters. The first part deals with the problem of selecting components (units) for parallel and series systems from k populations with exponentially distributed lifelength times. Loss functions are assumed which are inversely proportional to the expected lifelength of the system corresponding to a possible choice of the units of the system. A similar problem has been studied by Broström (1977) for the 1-out-of-2 system when there are only two populations. An optimal rule is given for the series system, and the Bayes rule wrt natural conjugate prior is derived for the 1-out-of-2 system when we have k populations. Tables to implement the Bayes rule are provided at the end of the chapter. The second part of Chapter 3 deals with the
investigation of the selection procedures based on robust estimators of measures of dispersion for selecting the populations in terms of scale parameters. Several selection procedures for this problem have been proposed by many researchers, most of them being extensions of k-sample tests. The approach here differs from these in that estimators of population dispersions are directly employed in constructing the selection procedures. We study the problem of selecting t populations associated with the t smallest scale parameters under the indifference-zone approach and the problem of selecting a subset containing the population associated with the smallest scale parameter. Large sample solutions for both problems are derived and asymptotic relative efficiencies (following the definitions of Lehmann (1963) and McDonald (1969)) of the proposed procedures are studied. These turn out to be same as those of the corresponding estimators in Bickel and Lehmann (1976).
CHAPTER 1
SELECTION OF GOOD POPULATIONS

1.1 Introduction

Suppose we have k populations \(\pi_1, \ldots, \pi_k \) (\(k \geq 2 \)) from which we wish to select a subset which contains 'good' populations, where the quality of the \(i \)-th population is characterized by the unknown parameter \(\theta_i \). A population \(\pi_i \) is said to be

\[
good \text{ if } \theta_i \geq \theta_{[k]} - \Delta,
\]

\[
bad \text{ if } \theta_i < \theta_{[k]} - \Delta
\]

(1.1.1)

where \(\theta_{[k]} = \max_{1 \leq j \leq k} \theta_j \) and \(\Delta \) is a specified positive constant.

Clearly we wish to select a subset containing as many good populations as possible while excluding the bad ones. Therefore, any reasonable loss function should have two loss components, i.e., one incurred by excluding the good populations and another due to including the bad ones. Selection problems for the related goals have been considered in the literature by Fabian (1962), Desu (1970), Carroll, Gupta and Huang (1975), Santner (1976), Panchapakesan and Santner (1977), Broström (1978) and Bjørnstad (1978). In all these papers the selection rules are chosen to control one component of the loss, and
then the other operating characteristics of these rules are studied. Recently Miescke (1978) has studied this problem from Bayesian point of view. We will treat this problem in the Bayesian framework considering two loss components simultaneously.

In Section 1.2 some definitions and notations are introduced, and a decision-theoretic formulation of the problem is given. We describe loss functions which seem natural in this framework, and, for these loss functions, a theorem is proved to find the Bayes rule wrt a permutationally symmetric prior. Some properties of Bayes rules are also given when an iid prior is assumed.

In Section 1.3 it is assumed that the loss is c_1 if a bad population is selected and c_2 if a good population is excluded; the Bayes rule wrt an exchangeable prior is derived. For the same loss function some results about the minimax rules are obtained for $k = 2$. In Section 1.4 a simplification of the Bayes rule is given by assuming a particular form of the posterior distribution, and it is shown that, in some sense, some rules studied in the past are natural approximations to the Bayes rule.

Normal and gamma populations are studied as special examples in Section 1.5. For the normal populations the rules of the type proposed by Gupta (1956) are shown to be asymptotically equivalent to the Bayes rule (as the sample size approaches infinity), and also it is shown that these are also extended Bayes rules. Further simplification of the Bayes rule for gamma populations is given.
Section 1.6 consists of Monte Carlo comparisons of the performances of the Bayes rule, the rules of the type proposed by Gupta (1956), and those proposed by Seal (1955) when the prior is assumed to be a permutationally symmetric multivariate normal distribution. The results of the Monte Carlo study indicate that the rules of the type proposed by Gupta perform almost as well as the Bayes rule throughout the cases studied, while those proposed by Seal perform poorly in most cases.

1.2 Formulation of the problem

Let X_1, \ldots, X_k denote the random variables representing the k populations π_1, \ldots, π_k, respectively. Let S_k be the symmetric group of all permutations $\psi: \{1,2,\ldots,k\} \rightarrow \{1,2,\ldots,k\}$, and ψ_{ij} denote an element in S_k which interchanges i and j leaving all other elements of $\{1,2,\ldots,k\}$ fixed. For $x \in \mathbb{R}^k$ and $\psi \in S_k$ define x_ψ by $(x_\psi)_i = x_{\psi^{-1}i}$.

From now on it is assumed that

(i) given $\theta = (\theta_1, \ldots, \theta_k) \in \Theta^k$, the random variables X_1, \ldots, X_k are independently distributed with X_i having p.d.f. $f(\cdot, \theta_i)$ and

(ii) $f(x, \theta)$ has the monotone likelihood ratio (MLR) property in x and θ.

The action space \mathcal{A} consists of all possible non-empty subsets of $\{1, \ldots, k\}$. The action $a \in \mathcal{A}$ is interpreted as the action of selecting the populations $\{\pi_i, i \in a\}$ which are asserted to be the good populations. We will restrict our attention to loss functions
which are invariant under S_k and monotone in the sense of Eaton (1967), that is, for any $\psi \in S_k$, and $a \in \mathcal{A}$,

$$L(\varrho_\psi, \psi a) = L(\varrho, a)$$

and

$$L(\varrho, a) \leq L(\varrho, \psi_j a)$$

for $\varrho \in \varrho^k$, $\varrho_i \geq \varrho_j$, $i \in a$ and $j \notin a$

(1.2.1)

where ψa denotes the image of a under $\psi \in S_k$. Note that the problem is invariant under S_k in the above framework, and therefore it seems reasonable to consider a prior τ invariant under S_k. In the remainder of this chapter we will consider only such a permutational, symmetric prior.

Since Bayes rules are of main interest, attention can be restricted to the non-randomized decision rules $\delta: \mathbb{R}^k \rightarrow a$. From this point for sake of simplicity we will use δ also for the action $\delta(x)$ taken by the rule δ whenever no confusion arises. Let \mathcal{D} denote the class of all non-randomized decision rules. Let $r_\tau(\delta, x)$ denote the posterior risk of a decision rule $\delta \in \mathcal{D}$, given x, when the prior is given by τ. Let $x[1] \leq x[2] \leq \cdots \leq x[k]$ denote the ordered observations where the ties for a label are broken at random, and $\pi(i)$ and $\theta(i)$ denote the π and θ associated with $x[i]$, $i = 1, \ldots, k$. For $j = 1, \ldots, k$, let δ_j denote the decision rule which chooses the subset associated with the j largest observations with probability one.

By partitioning the action space \mathcal{A} into k components \mathcal{A}_j, $j = 1, \ldots, k$, where \mathcal{A}_j consists of all the subsets of size j, Goel and Rubin (1977) proved the following result which seems useful in the selection problem.
Lemma 1.2.1. If the prior distribution \(\tau \) of \(q \) is permutationally symmetric on \(\Theta^k \), then the Bayes rule \(\delta^* \) for the loss function satisfying (1.2.1) satisfies

\[
\tau_{\delta^*}(x) = \min_{1 \leq j \leq k} \tau_{\delta_j}(x).
\]

When our goal is to select a subset containing the 'best' population, i.e., the population associated with \(\Theta[k] \), most of the loss functions considered in the literature contain two loss components; the optimal solution is provided by the rule which selects all the populations if we were to study the problem wrt one of the two loss components only, and the optimal solution is to select the population \(\pi(k) \) associated with \(x[k] \) if the other component only is considered. In our formulation the experimenter is willing to accept all the populations which are reasonably close to the 'best' while screening out all the bad ones. Therefore, it seems reasonable that any loss function should contain two components: the first one depending only on the bad populations selected in the subset and the second depending only on the good populations which are not selected in the subset. Such a loss function reflects the loss due to misclassification of good or bad populations. One such general loss function can be written as follows: For \(q \in \Theta^k \) and \(a \in A \),

\[
L(q,a) = \sum_{i \in a} L_B(\theta_i - \Theta[k] + \Delta) + \sum_{i \notin a} L_G(\theta_i - \Theta[k] + \Delta), \tag{1.2.2}
\]

where \(L_B(L_G) \) is a non-increasing (non-decreasing) function such that \(L_B(y) = 0 \) for \(y \geq 0 \) and \(L_G(y) = 0 \) for \(y < 0 \). By this loss function
we mean that there is no loss for the correct judgment, the loss
\(L_B(\theta_i-\theta[k+\Delta]) \) incurred by selecting a bad population \(\pi_i \) is non-decreasing in \(\theta_i \), the parameter associated with \(\pi_i \). Similar arguments hold for the second component \(L_G(\cdot) \) of the loss. It is easy to see that the loss function of the type (1.2.2) satisfies (1.2.1). With this loss function, we have the following result.

Lemma 1.2.2. Assume the prior distribution, \(\tau(\theta) \), of \(\theta \) is permutationally symmetric on \(\theta^k \) and the loss function is given by (1.2.2). Then the following relation holds:

\[
D_i - D_{i-1} \geq 0, \quad i = 2, \ldots, k-1, \tag{1.2.3}
\]

where \(D_i = r_\tau(\delta_i+1, X) - r_\tau(\delta_i, X) \) for \(i = 1, \ldots, k-1. \)

Proof. It follows from (1.2.2) that \(D_i \) is given by

\[
D_i = E[L_B(\theta(k-i)-\theta[k+\Delta]|X)] - E[L_G(\theta(k-i)-\theta[k+\Delta]|X)]
\]

\[
= E[\varepsilon(\theta(k-i)-\theta[k+\Delta]|X)] \quad \text{where } \varepsilon(\cdot) = L_B(\cdot) - L_G(\cdot).
\]

Therefore, \(D_i - D_{i-1} \) can be written as

\[
D_i - D_{i-1} = n(x) \sum_{j=0}^{2} \int_{\Theta_j} \left[\varepsilon(\theta(k-i)-\theta[k+\Delta]) - \varepsilon(\theta(k-i+1)-\theta[k+\Delta]) \right] f(x, \theta) d\tau(\theta)
\]

\[
= n(x) \int_{\Theta_1} \left[\varepsilon(\theta(k-i)-\theta[k+\Delta]) - \varepsilon(\theta(k-i+1)-\theta(k+\Delta)) \right] f(x, \theta_\psi) d\tau(\theta)
\]

\[
\geq 0,
\]
where $\Theta_0 = \{ \theta \in \Theta^k | \theta(k-1) = \theta(k+i+1) \}$, $\Theta_1 = \{ \theta \in \Theta^k | \theta(k-i) < \theta(k+i+1) \}$,
$\Theta_2 = \{ \theta \in \Theta^k | \theta(k-i) > \theta(k+i+1) \}$, $f(x, \theta) = \prod_{i=1}^{k} f(x_i, \theta_i)$, $n(x)$ is a
normalizing factor and θ_{ψ} is obtained from θ by interchanging the
components $\theta(k-i)$ and $\theta(k+i+1)$. The second equality follows from
the symmetry of τ and the last inequality follows from the MLR
property of $f(x, \theta)$ and the monotonicity of $z(\cdot)$.

From Lemma 1.2.1 and Lemma 1.2.2, we derive a Bayes rule for a
loss function given by (1.2.2).

Theorem 1.2.1. Assume the loss function is given by (1.2.2). Then
the Bayes rule δ^* wrt a permutationally symmetric prior τ is given by

$$
\delta^* = \delta_{i^*} \quad \text{for } i^* = \min\{i \colon D_i > 0, \ i = 1, \ldots, k-1\}
$$

where $\min \phi$ is defined to be k.

Before we state some properties of the Bayes rule, we recall the
following definitions (see Nagel (1970) and Santner (1975).)

Definition 1.2.1. Let $\delta(x, i)$ denote the individual probability of
including the population π_i in the selected subset $\delta(x)$. Then a
selection rule δ is called just if and only if $\delta(x, i) \leq \delta(x', i)$
whenever $x_i \leq x'_i$ and $x_j \geq x'_j$ for $j \neq i$.

Definition 1.2.2. A selection rule δ is said to be strongly monotone
if and only if, for any $i = 1, \ldots, k$,

$$
E_\theta[\delta(x, i)] \text{ is } + \text{ in } \Theta_1 \text{ when all other components of } \theta \text{ are fixed,}
$$

$$
is + \text{ in } \Theta_j \ (j \neq i) \text{ when all other components of } \theta \text{ are}
$$

fixed.
Corollary 1.2.1. Assume that $\theta_1, \ldots, \theta_k$ are, a priori, independently identically distributed and the loss function is given by (1.2.2). Then the Bayes rule δ^* in Theorem 1.2.1 is just and strongly monotone.

Proof. It follows from Theorem 1.2.1 that the Bayes rule δ^* selects π_i if and only if $x_i = x_{[k]}^i$ and/or $\int \lambda(y) dQ_i(y|x) < 0$, where

$$Q_i(y|x) = \left\{ \begin{array}{ll}
1 - \int \Pi G(z+\Delta - y|x_j) dG(z|x_i) & \text{if } y < \Delta \\
1 & \text{otherwise}
\end{array} \right.$$

the posterior cdf of θ_i, given x. Therefore, to show that δ^* is just, it suffices to show that $Q_i(y|x)$ is stochastically smaller than $Q_i(y|x')$ whenever $x_i \leq x_i'$ and $x_j \geq x_j'$ for all $j \neq i$, since $\lambda(\cdot)$ is non-increasing. This follows from the fact that $G(\cdot|x) \geq G(\cdot|x')$ if $x \leq x'$. Similarly, we can show that δ^* is strongly monotone using a theorem in Barr and Rizvi (1966).

Remark 1.2.1. If a selection rule δ is strongly monotone, then δ is monotone (see Santner (1975)), i.e. $E_\theta[\delta(x,i)] \geq E_\theta[\delta(x,j)]$ if $\theta_i \geq \theta_j$.

1.3 Loss function $c_1 \sum_{i \in a} I(\infty, 0)(\theta_i - \theta(k) + \Delta) + c_2 \sum_{i \in a} I(0, \infty)(\theta_i - \theta(k) + \Delta)$

Even though Theorem 1.2.1 describes a Bayes rule for the loss function of the type (1.2.2), we need a more specific loss function as well as more assumptions about the prior distribution of θ to specify the Bayes rule more explicitly. Examples of the loss functions
satisfying (1.2.2) might be given as follows.

\[L_B(\theta_i - \theta_i^k) = c_1 I_{(-\infty, 0)}(\theta_i - \theta_i^k), \quad L_G(\theta_i - \theta_i^k) = c_2 I_{[0, \infty)}(\theta_i - \theta_i^k) \]

(1.3.1)

\[L_B(\theta_i - \theta_i^k) = (\theta_i - \theta_i^k)^-, \quad L_G(\theta_i - \theta_i^k) = (\theta_i - \theta_i^k)^+ \]

(1.3.2)

where \(I_A(y) \) is the usual indicator function, \(y^- \) is the negative part of \(y \), \(y^+ \) is the positive part of \(y \), \(c_1 > 0 \) and \(c_2 > 0 \).

From now on we will, unless otherwise mentioned, consider only the loss function given by (1.3.1) and assume that given \(W = w \), \(\theta_1, \ldots, \theta_k \) are iid random variables with a density and the distribution of \(W \) is known. Such a prior distribution of \(\theta \) will be called exchangeable.

Note that we may assume that \(c_1 + c_2 = 1 \) without loss of generality, and \(c_1 \) and \(c_2 \) can be interpreted as the relative weights of the losses due to two different sources. It is easy to see that, given \(X = x \) and \(W = w \), \(\theta_i \)'s are, a posteriori, independently distributed and the distribution of \(\theta_i \) depends on \(x \) only through \(x_i \). Let \(G_i(\cdot) = G(\cdot | x_i, w) \) and \(H(w|x) \) denote the posterior cdf of \(\theta_i \), given \(x \) and \(w \), and the conditional cdf of \(W \) given \(x \), respectively. The bounds on \(D_i \) in the following lemma seem to be useful to simplify the Bayes rule.

Lemma 1.3.1. For \(i = 1, \ldots, k-1 \), \(D_i = \text{c}_1 P(\theta_{(k-i)} \geq \theta_i^k | x) \) satisfies the following relations.

\[D_i = c_1 \mathbb{E}_{ \theta_i^k } \prod_{j \neq k-i} G_j(z+\Delta) dG_{k-i}(z) dH(w|x) \]
\[D_i \geq c_1 - \iint_{G_k} G_{k-i}(z) dG_{k-i}(z) dH(w|x) = c_1 - u_1(i), \]

\[D_i \geq c_1 - \iint_{G_{k-i+1}} G_{k-i}(z) dH(w|x) = c_1 - u_2(i) \quad \text{and} \quad (1.3.3) \]

\[D_i \leq c_1 - \iint_{G_{k-i-1}} G_{k}(z) dG_{k-i}(z) dH(w|x) = c_1 - v_1(i). \]

Proof. The first inequality follows from the fact that \(\theta_k \geq \theta_1 \) and the next inequalities follow from the fact that \(G_i(\cdot) \geq G_j(\cdot) \) for \(i < j \).

Next, we state a theorem giving a simpler version of the Bayes rule from (1.3.3) and Theorem 1.2.1.

Theorem 1.3.1. Assume the loss function is given by (1.3.1). Then the Bayes rule \(\delta^* \) wrt an exchangeable prior is given as follows. Let \(u(i) = \min(u_1(i), u_2(i)) \) for \(i = 1, \ldots, k-1 \), then

(i) \(u(1) \leq c_1 \Rightarrow \delta^* = \delta_1 \)

(ii) let \(i_0 = \min(i: u(i) \leq c_1, i = 2, \ldots, k-1) \) and \(j_0 = \max(j: c_1 < v_1(j), j = 1, \ldots, i_0 - 1) \),

then \(\delta^* = \delta_{i^*} \) where \(i^* = \min(m: D_m \geq 0, j_0 + 1 \leq m \leq i_0) \).

Corollary 1.3.1. For \(k = 2 \), the Bayes rule \(\delta^* \) is given by

\[\delta_1 \text{ if } \iint_{G_2} G_1(z) dH(w|x) \leq c_1 \]

\[\delta^* = \left\{ \begin{array}{ll}
\delta_2 & \text{otherwise.} \\
\end{array} \right. \]

Remark 1.3.1. When the loss function is given by (1.3.2), it is easy to see that \(D_i \) can be written as

\[D_i = \iint_{[1- \prod_{j \neq k-i} G_j(z)] G_{k-i}(z) dz dH(w|x) - \Delta,} \]

and results analogous to the above can be obtained in a similar way.
In fact, recently Miescke (1978) has studied this problem with such a loss function using a different approach.

At this point some comments about the case for k = 2 are in order because of the special structure of the problem in this case. As stated in Corollary 1.3.1, we can completely specify the Bayes rule in this case. Furthermore, we can specify an essentially complete class in this case provided we make the further assumption that \(f(x_i, \theta_i) = f(x_i - \theta_i) \) with \(f(\cdot) \) being the density wrt the Lebesgue measure. The loss function given by (1.3.1) can be written as follows.

\[
\begin{array}{c|ccc}
\theta_1 - \theta_2 & a = (2) & a = (1, 2) & a = (1) \\
\hline
0 < \Delta & 0 & c_1 & 1 \\
\Delta \leq \theta_1 - \theta_2 \leq \Delta & 1-c_1 & 0 & 1-c_1 (0 < c_1 < 1) \\
\theta_1 - \theta_2 > \Delta & 1 & c_1 & 0 \\
\end{array}
\]

With this loss function the problem is invariant under the group of translations as well as under \(S_k \). Therefore, it seems reasonable to consider rules invariant under both. Then the decision rule should depend on \(x \) only through \(x_1 - x_2 \), and our problem becomes a montone multiple decision problem (see Ferguson (1967)) with \(X_1 - X_2 \) having pdf, say, \(q(\cdot - (\theta_1 - \theta_2)) \), given \(\bar{\theta} = (\theta_1, \theta_2) \). Note that \(q((x_1 - x_2) - (\theta_1 - \theta_2)) \) has the MLR property in \(x_1 - x_2 \) and \(\theta_1 - \theta_2 \) (see Ibragimov (1956)). Hence Theorem 6.1 of Ferguson (1967) in this case leads to the following result.
Theorem 1.3.2. For \(k = 2 \), assume that, \(X_i \) has pdf \(f(x_i - \theta_i) \) \((i = 1, 2)\) given \(g \), wrt the Lebesgue measure. Suppose the loss function is given by (1.3.1). Then the following rules \(R_d \) form an essentially complete class among the translation and permutation invariant rules:

Rule \(R_d \): Select \(\pi_i \) if and only if \(x_i \geq x_{[k]} - d \), \(d \geq 0 \).

Corollary 1.3.2. Under the assumptions of Theorem 1.3.2, a minimax rule \(R_{d_m} \) is given as follows.

<table>
<thead>
<tr>
<th>(c_1)-values</th>
<th>(d_m)-values</th>
<th>minimax risks</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c_1 \geq Q(\Delta))</td>
<td>0</td>
<td>(1 - Q(\Delta))</td>
</tr>
<tr>
<td>(Q(\Delta - d_0) < c_1 < \frac{1}{2})</td>
<td>(d_0)</td>
<td>(c_1 Q(d_0 - \Delta) + (1 - c_1) Q(-d_0 - \Delta))</td>
</tr>
<tr>
<td>otherwise</td>
<td>(\Delta Q^{-1}(c_1))</td>
<td>((1 - c_1) [Q(-2\Delta + Q^{-1}(c_1))])</td>
</tr>
</tbody>
</table>

Here, \(Q(y) = \int_{-\infty}^{y} q(x) \, dx \) and \(d_0 \) is the value determined by \(c_1 q(d - \Delta) = c_2 q(d + \Delta) \).

Proof. From Theorem 1.3.2 and the generalized Hunt-Stein theorem it suffices to find a \(d \)-value which minimizes the supremum of the risk associated with the rules \(R_d \) for \(d \geq 0 \). By invariance under \(S_k \), it is sufficient to consider the case when \(n = \theta_1 - \theta_2 \geq 0 \). It is easy to see that

\[
E[
L(g, R_d)] = \begin{cases}
 c_2 [Q(-d - n) + Q(-d + n)] & \text{if } 0 \leq n \leq \Delta \\
 c_1 Q(d - n) + c_2 Q(-d - n) & \text{if } \Delta < n.
\end{cases}
\]

Furthermore, for \(0 \leq n \leq \Delta \),
\[\frac{\partial}{\partial n} E_{\hat{\theta}} [L(\hat{\theta}, R_d)] = c_2[-q(-d-n)+q(-d+n)] \]
\[= c_2q(d+n)[\frac{q(n-d)}{q(n+d)} - 1] \]
\[\geq c_2q(d+n)[\frac{q(-d)}{d} - 1] = 0 \] by the MLR property of \(q \).

Therefore, \(\sup_{\hat{\theta}} E_{\hat{\theta}} [L(\hat{\theta}, R_d)] = \max[c_2Q(-d-\Delta) + c_2Q(-d+\Delta), c_1Q(d-\Delta) + c_2Q(-d-\Delta)] \).

The first term in the right side is non-increasing in \(d \), and the derivative of the second term wrt \(d \) is \(c_1q(d-\Delta) - c_2q(-d-\Delta) \) which is non-negative for \(d \geq d_0 \). Hence the result follows.

Example 1.3.1.

(A) **Two normal populations with unknown means and a common known variance:**

Suppose \(X_1 \) and \(X_2 \) are independent normal random variables with means \(\theta_1 \) and \(\theta_2 \), respectively, and a common known variance \(\gamma^2 > 0 \).

Then the minimax rule \(R_{\text{dm}} \) is given as follows:

<table>
<thead>
<tr>
<th>(c_1)-values</th>
<th>(d_m)-values</th>
<th>minimax risks</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{\Delta}{\sqrt{2}\gamma} \leq c_1 < 1)</td>
<td>0</td>
<td>(1 - \phi(\frac{\Delta}{\sqrt{2}\gamma}))</td>
</tr>
<tr>
<td>(\frac{\Delta-d_0}{\sqrt{2}\gamma} \leq c_1 < \frac{1}{2})</td>
<td>(d_0 = \gamma^2 \Delta^{-1} \log(c_1^{-1}-1))</td>
<td>(c_1 \phi(\frac{d_0-\Delta}{\sqrt{2}\gamma}) + (1-c_1)\phi(-\frac{d_0-\Delta}{\sqrt{2}\gamma}))</td>
</tr>
<tr>
<td>otherwise</td>
<td>(\Delta - \sqrt{2}\gamma \phi^{-1}(c_1))</td>
<td>((1-c_1)[c_1 + \phi(\phi^{-1}(c_1) - \frac{\Delta}{\gamma})])</td>
</tr>
</tbody>
</table>

Here, \(\phi(\cdot) \) denotes the cdf of a standard normal distribution.

(B) **Two gamma populations with a common shape parameter:**

Suppose \(X_1 \) and \(X_2 \) are independent gamma random variables with a
common shape parameter \(\alpha (\alpha > 0)\) and unknown scale parameter \(\beta_1\) and \(\beta_2\), respectively. A population \(\pi_i\) is then defined to be good if \(\beta_i \geq \Delta^{-1} \max_{1 \leq j \leq k} \beta_j\) and bad, otherwise, where \(\Delta (\Delta > 1)\) is a positive constant. By considering the associated location parameter problem, we can get the following minimax rule \(\hat{R}_{d_m}\), which selects \(\pi_i\) if and only if \(x_i \geq d_m^{-1} x_{[k]},\ d_m \geq 1\).

<table>
<thead>
<tr>
<th>(c_1)-values</th>
<th>(d_m)-values</th>
<th>minimax risks</th>
</tr>
</thead>
<tbody>
<tr>
<td>(F(\Delta) < c_1 < 1)</td>
<td>1</td>
<td>(1 - F(\Delta))</td>
</tr>
<tr>
<td>(F(\Delta d_0^{-1}) < c_1 < 1/2)</td>
<td>(d_0)</td>
<td>(c_1 F(d_0^{-1}) + (1 - c_1) F(d_0^{-1} \Delta^{-1}))</td>
</tr>
<tr>
<td>otherwise</td>
<td>(\frac{1}{F^{-1}(c_1)}\left[(1 - c_1) [c_1 + F(F^{-1}(c_1)/\Delta^2)] \right])</td>
<td></td>
</tr>
</tbody>
</table>

Here, \(d_0 = (\frac{(c_2/c_1)^{2\alpha - 1}}{\Delta - (c_2/c_1)^{2\alpha}})\) and \(F\) is the cdf of the \(F\)-distribution with degrees of freedom \(2\alpha\) and \(2\alpha\).

1.4 Further simplification of the Bayes rule

In this section, we make more assumptions that the posterior cdf of \(\theta_1 (i)\) is of the form \(G_1(\cdot | x_{[i]}^w) = G(\frac{\cdot - b_1 t_i - b_0 w}{b_2})\) where \(t_i = t(x_{[i]}^i)\) is an increasing function of \(x_{[i]}^i\), \(b_1 > 0\) and \(b_2 > 0\).

To simplify the forthcoming formulae we introduce the following notations: for fixed \(\Delta^*\) and for \(i = 1, \ldots, k - 1\), let

\[
\ell_i(y) = \int G^i(y+z)dG(z)
\]

\[
m_i(y | \Delta^*) = \int G^{k-i-1}(z+\Delta^*) G^i(y+z+\Delta^*)dG(z).
\]
It follows from the above specification of the posterior that, for \(i = 1, \ldots, k-1 \),

\[
D_i = c_1 \cdot \prod_{j \neq k-i} G(z_+ b_1 b_2^{-1} (t_{k-i} - t_j) + \frac{\Delta}{b_2}) dG(z),
\]

\[
u_1(i) = \varepsilon_1 [b_1 b_2^{-1} (t_{k-i} - t_k) + \frac{\Delta}{b_2}],
\]

\[
u_2(i) = \varepsilon_1 [b_1 b_2^{-1} (t_{k-i} - t_{k-i+1}) + \frac{\Delta}{b_2}] \text{ and}
\]

\[
u_1(i) = m_i [b_1 b_2^{-1} (t_{k-i} - t_k) + \frac{\Delta}{b_2}].
\]

The following well-known results are stated here for completeness for providing bounds on \(D_i \) (see Hardy, Littlewood and Pólya (1934), Theorem 43 and Theorem 108).

Lemma 1.4.1. (1) (Tchebycheff) If \(Z \) is a random variable, then, for non-decreasing real-valued functions \(f_1 \) and \(f_2 \), \(E[f_1(Z)f_2(Z)] \geq E[f_1(Z)]E[f_2(Z)] \) provided the expectations exist.

(2) (Karamata, Schur) If \(\phi \) is a convex function on the real line, then \(\psi(y) = \frac{p}{\sum_{i=1}^{p} \phi(y_i)} \) is a Schur-convex function of \(y = (y_1, \ldots, y_p) \).

Lemma 1.4.2. Under the assumptions made in this section, the following relations hold.

\[
(1.4.2) \quad c_1 - u_3(i) \leq D_i \leq c_1 - v_2(i), \quad i = 1, \ldots, k-1
\]

where \(u_3(i) = \varepsilon_1 [b_1 b_2^{-1} (t_{k-i} - \frac{1}{k-i} \sum_{j \neq k-i} t_j) + \frac{\Delta}{b_2}] \) and

\[
v_2(i) = \prod_{j \neq k-i} \varepsilon_1 [b_1 b_2^{-1} (t_{k-i} - t_j) + \frac{\Delta}{b_2}].
\]
Proof. The upper bound on D_i is an immediate consequence of the repeated applications of (1) in Lemma 1.4.1. To obtain the lower bound $c_i - u_3(i)$, it suffices to show that $G(\cdot)$ is log-concave, since the log-concavity of G implies the Schur-concavity of $\prod_{i=1}^{p} G(y_i)$ in $y = (y_1, \ldots, y_p)$ from (2) in Lemma 1.4.1. Let $g(\theta_i | x_i, w)$ denote the posterior density of θ_i, given x and w, then, for $y < y'$ and $x_i < x_i'$,

$$G(y' | x_i', w) G(y | x_i, w) - G(y | x_i', w) G(y' | x_i', w) = P(\theta_i \leq y | x_i, w) P(y < \theta_i \leq y' | x_i', w) - P(\theta_i \leq y | x_i', w) P(y < \theta_i \leq y' | x_i', w)$$

$$= \iint_{s \leq y \atop y < t < y'} [g(s | x_i, w)g(t | x_i', w) - g(s | x_i', w)g(t | x_i, w)] ds dt$$

> 0 from the MLR property of $g(\theta_i | x_i, w)$ in θ_i and x_i for fixed w. The last inequality and the specified form of $G(\cdot | x_i, w)$ imply the log-concavity of G (see, for example, Lehmann (1959) p. 330). Hence the proof is completed.

The next result is an immediate consequence of Lemma 1.4.1 and Theorem 1.3.1.

Theorem 1.4.1. Assume the prior of θ is exchangeable and satisfies the specification of the posterior cdf in this section. Then the Bayes rule δ^* for the loss function given in (1.3.1) is given as follows.

(i) $t_{k-1} \leq \max(t_k + \frac{b_2}{b_1} (\xi_{k-1}^{-1}(c_1) - \frac{A}{B_2}), \frac{1}{k-1} \sum_{j \neq k-1} t_j + \frac{b_2}{b_1} (\xi_{k-1}^{-1}(c_1) - \frac{A}{B_2})} = \delta^* = \delta_i$
(ii) Let \(i_0 = \min(i: t_{k-1} \leq r_i, i = 2, \ldots, k-1) \) and
\[
\begin{align*}
\quad j_0 &= \max(j: t_{k-j} > t_k + \frac{b_2}{b_1} m_j^{-1}(c_1|\frac{\Delta}{b_2}) \text{ or}
\quad \prod_{i \neq j} \left(\frac{b_2}{b_1} (t_{k-j} - t_i) + \frac{\Delta}{b_2} \right) > c_1, j = 1, \ldots, i_0 - 1 \}
\end{align*}
\]
where
\[
\begin{align*}
\quad r_i &= \max(t_k + \frac{b_2}{b_1} (\bar{x}^{-1}(c_1) - \frac{\Delta}{b_2}), t_{k-i+1} + \frac{b_2}{b_1} (\bar{x}^{-1}(c_1) - \frac{\Delta}{b_2}),
\quad \frac{1}{k-i} \sum_{j \neq k-i} \frac{b_2}{b_1} (\bar{x}^{-1}(c_1) - \frac{\Delta}{b_2}))
\end{align*}
\]
then \(\delta^* = \delta_{i*} \) for
\[
\begin{align*}
\quad i^* &= \min(i: D_i \geq 0, j_0 + 1 \leq i \leq i_0).
\end{align*}
\]

Note that the above result can be written in terms of rules of the following types, which have been studied in the past.

Rule \(\delta^m(d) \): Select \(\pi(i) \) iff \(t_i = t_{\max} \) and/or \(t_i > t_{\max} - d \),

Rule \(\delta^a(d) \): Select \(\pi(i) \) iff \(t_i = t_{\max} \) and/or \(t_i > \frac{1}{k-i} \sum_{j \neq i} t_j - d \),

Rule \(\delta^0(d) \): Select \(\pi(k) \) and select \(\pi(k-1), \ldots, \pi(k-i^*+1) \) where
\[
\begin{align*}
\quad i^* &= \min(i: t_{k-i} \leq t_{\max} - d(i), i = 1, \ldots, k-1) \text{ and } d = (d(1), \ldots, d(k-1)).
\end{align*}
\]

Here, \(t_{\max} = \max_{1 \leq j < k} t_j = t(x_{[k]}) \). Rules of the first type were first proposed by Gupta (1956) for the problem of selecting a subset which includes the 'best' population, and later studied by Desu (1970) for selecting a subset consisting of only good populations. Rules \(\delta^a \) are modified versions of the rules proposed by Seal (1955) and studied by many others for the selection of the 'best' population. The last rule \(\delta^0(d) \) is of the type studied by Broström (1978). Let \(d_1 = \frac{\Delta}{b_1} - \frac{b_2}{b_1} \bar{x}^{-1}(c_1), d_2 = \frac{\Delta}{b_1} - \frac{b_2}{b_1} \bar{x}^{-1}(c_1) \) and \(d(i) = \frac{-b_2}{b_1} m_i^{-1}(c_1|\Delta) \) for
i = 1, ..., k-1, then \(\delta^m(d_1) \), \(\delta^a(d_2) \) and \(\delta^0(d) \) are the 'approximate' Bayes rules suggested by Theorem 1.4.1. Since \(v_1(i) \geq m_{k-1}(b_1 \frac{b_1}{b_2}(t_{k-i} - t_i) + b_2) \), \(\delta^m(d_2) \) is a special case of \(\delta^0(d) \). Note that \(\delta^m(d_1) \) and \(\delta^a(d_2) \) (\(\delta^m(d_2) \) and \(\delta^0(d) \)) select larger (smaller) subsets than the Bayes rule, and that they all coincide for \(k = 2 \).

Corollary 1.4.1. For \(k = 2 \), the Bayes rule \(\delta^* \) is given by

\[
\delta^* = \begin{cases}
\delta_1 & \text{if } t_1 - t_2 + \frac{\Delta}{b_1} - \frac{b_2}{b_1} \leq \frac{1}{b_1} \quad (c_1) \\
\delta_2 & \text{otherwise.}
\end{cases}
\]

The next result is helpful in eliminating some unnecessary computations in finding the Bayes rule.

Corollary 1.4.2. If \(c_1 \geq \int u^i(z + \frac{\Delta}{b_2})dG(z) \) for some \(i = 1, ..., k-1 \), then the Bayes rule \(\delta^* \) selects at most \(i \) populations.

1.5 Some specific examples

(A) Normal populations

Here we assume that \(\pi_1, ..., \pi_k \) are normal populations with unknown means \(\theta_1, ..., \theta_k \) and a common known variance \(\sigma^2 \), and that we have independent samples with a common sample size \(n \) for each population. By sufficiency we can reduce the problem to that based on sample means \(X_1, ..., X_k \). The loss function is assumed to be given by (1.3.1). We will consider a permutationally symmetric prior defined as follows.
Given $W = w$, $(\theta_1, \ldots, \theta_k)$ have a multivariate normal distribution with $E(\theta_i) = w$, $\text{Var}(\theta_i) = \sigma^2$ and $\text{Cor}(\theta_i, \theta_j) = \rho$ where

$$\rho > -(k-1)^{-1}$$

and W has a known distribution $H(.)$.

A prior of the above type with $\rho \geq 0$ has been used in Goel and Rubin (1977) and in Chernoff and Yahav (1977). The following well known representation is useful for reducing the above prior to a simpler one.

Lemma 1.5.1. If Y_1, \ldots, Y_k are equally correlated normal random variables with $E(Y_i) = 0$, $\text{Var}(Y_i) = 1$ and $\text{Cor}(Y_i, Y_j) = \rho$, $i,j=1,2,\ldots,k$, $j \neq i$, where $-(k-1)^{-1} < \rho < 1$, then Y_i's can be written as

$$Y_i = \sqrt{\frac{1-\rho}{1+\rho}} Z_i - (\sqrt{\rho} + \sqrt{\rho}) Z_0$$

where (Z_0, \ldots, Z_k) have a multivariate normal distribution with $E(Z_i) = 0$, $\text{Var}(Z_i) = 1$, $i = 0,1,\ldots,k$, and $\text{Cor}(Z_i, Z_j) = \begin{cases} \frac{\rho}{\sqrt{1-\rho}} & \text{if } i = 0 < j \leq k \\ 0 & \text{otherwise}. \end{cases}$

The next result follows from Lemma 1.5.1, the invariance of the loss function and the detailed calculation of the posterior distribution.

Lemma 1.5.2. Let δ be a translation invariant rule, i.e., $\delta(x) = \delta(x+b)$ for any real b where $1 = (1, \ldots, 1)'$, then the overall risk $r(\tau, \delta)$ of the rule δ wrt the prior τ given in (1.5.1) can be written as

$$r(\tau, \delta) = \int \int L(\delta, \delta(x)) dN(\delta| (\sigma_0^2 + n \sigma^2)^{-1} n \sigma^2 \sigma, (\sigma_0^2 + n \sigma^2)^{-1} I) dN$$

where $N(.|y, \Sigma)$ denotes the cdf of a multivariate normal distribution.
with mean \(\mu \) and covariance matrix \(\Sigma \), \(I \) is the \(k \times k \) identity matrix and
\[
\sigma_0^2 = (1-\rho)\beta^2.
\]

It should be pointed out that similar reduction has been done in Chernoff and Yahav (1977) for the case \(\rho \geq 0 \), and in Gupta and Hsu (1978). Note that the right side in (1.5.2) is the overall risk of rule \(\delta \) when \(\theta_1, \ldots, \theta_k \) are, a priori, iid normal random variables with mean 0 and variance \(\sigma_0^2 \), and that the Bayes rule wrt the prior given in (1.5.1) can be taken as translation invariant. Hence we can reduce the prior given in (1.5.1) to this iid normal prior. Obviously the posterior cdf of \(\theta_i \) satisfies the specification of the posterior cdf in Section 1.4 with
\[
b_1 = (\sigma_0^{-2} + n_0^{-2})^{-1} n_0^{-2}, \quad b_2 = (\sigma_0^{-2} + n_0^{-2})^{-\frac{3}{2}}, \quad b_0 = 0, \quad t_i = x_{[i]} \text{ and } G(\cdot) = \phi(\cdot). \]
It follows from the preceding that, for \(i = 1, \ldots, k-1, \)
\[
\nu_i(y) = \int \phi^i(y+z)d\phi(z)
\]
\[
m_i(y|\Delta^*) = \int \phi^{k-i-1}(z+\Delta^*)\phi^i(z+y+\Delta^*)d\phi(z) \quad \text{and} \quad (1.5.3)
\]
\[
D_i = c_1 - \int \frac{\phi(z+n_0^{-2}(\sigma_0^{-2} + n_0^{-2})^{-\frac{3}{2}}(x_{[k-i]} - x_{[j]})(x_{[k-i]} - x_{[j]}) + (\sigma_0^{-2} + n_0^{-2})^{\frac{3}{2}} \Delta)}{d\phi(z)}.
\]
The Bayes rule \(\delta^* \) can be obtained by numerically integrating \(D_i \) using Gauss-Hermite or other methods of quadrature (we eliminate unnecessary computations using Theorem 1.4.1.). Note that
\[
\nu_i(y) = \phi(y/\sqrt{2}) \quad \text{and therefore } \delta^* \text{ selects only one population } \pi_{(k)} \text{ if }
\]
\[
c_1 \geq \phi((\sigma_0^{-2} + n_0^{-2})^{\frac{3}{2}} \Delta/\sqrt{2}) \text{.}
\]

The 'approximate' Bayes rules suggested in Section 1.4 are determined by
\[
t_i = x_{[i]}, \quad d_1 = d_1(n, \sigma_0) = \Delta \left(1 + \frac{\sigma_0^2}{n} \right) - \frac{1}{\sigma_0^2} \text{.}
\]
\[
\frac{a}{\sqrt{n}} \left(1 + \frac{\sigma^2}{n} \right)^{-\frac{1}{2}} \sqrt{2} \phi^{-1}(c_1), \quad d_2 = d_2(n, \sigma_0) = \Delta \left(1 + \frac{\sigma^2}{n} \right)^{-\frac{1}{2}}
\]

\[
\frac{a}{\sqrt{n}} \left(1 + \frac{\sigma^2}{n} \right)^{-\frac{1}{2}} \kappa^{-1}(c_1) \text{ and etc. The Bayes rule wrt the diffuse prior, i.e., } \sigma_0^2 \to \infty, \text{ is very often of interest, and it as well as the corresponding 'approximate' rules can be obtained by formally taking } \sigma_0^{-2} = 0 \text{ or equivalently } \sigma^2_0 = \infty \text{ in the above. From these expressions we see that } d_1(n, \sigma_0) - d_2(n, \sigma_0) = \frac{a}{\sqrt{n}} \left(1 + \frac{\sigma^2}{n} \right)^{-\frac{1}{2}} \left(\kappa^{-1}(c_1) - \sqrt{2} \phi^{-1}(c_1) \right) \text{ would be small, especially when } \sigma_0^{-2} = 0, \text{ for sufficiently large } n. \text{ Therefore, one might expect that } \delta^m(d_1(n, \sigma_0)) \text{ and } \delta^m(d_2(n, \sigma_0)) \text{ would be close to the Bayes rule for sufficiently large } n.
\]

Let us consider the rules \(\delta^m(h(n, \sigma_0), d) \) for various values of \(d \) where \(h(n, \sigma_0, d) = \Delta \left(1 + \frac{\sigma^2}{n} \right)^{-\frac{1}{2}} \right) d \left(1 + \frac{\sigma^2}{n} \right)^{-\frac{1}{2}} \). Let \((\pi(i) \in \delta) \) denote an event \((\pi(i) \in \pi(j) : j \in \delta(x)) \) for any rule \(\delta \), and \(r(\sigma_0, \delta) \) denote the overall risk of \(\delta \) when the prior is given by (1.5.1). Since \((\pi(k-i) \notin \delta^m(d_1(n, \sigma_0))) \subset (D_i \geq 0) \) and \(\delta^m(d_1(n, \sigma_0)) \subset \delta^m(h(n, \sigma_0), d) \) for \(d < \sqrt{2} \phi^{-1}(c_1) \),

\[
r(\sigma_0, \delta^m(h(n, \sigma_0), d)) - r(\sigma_0, \delta^m(d_1(n, \sigma_0)))
\]

\[
= E\left[\sum_{i=1}^{k-1} D_i \left(\pi(k-i) \notin \delta^m(h(n, \sigma_0), d) \right) - I \left(\pi(k-i) \notin \delta^m(d_1(n, \sigma_0)) \right) \right]
\]

\[
= E\left[\sum_{i=1}^{k-1} D_i \left(\pi(k-i) \notin \delta^m(h(n, \sigma_0), d), \pi(k-i) \notin \delta^m(d_1(n, \sigma_0)) \right) \right]
\]

\[
\geq 0,
\]
where \(D_i \) is defined in (1.5.3) and the expectations are taken wrt the marginal distribution of \(X \)'s. Similarly, it can be shown that
\[
r(\sigma_0, \delta^m(h(n, \sigma_0, d))) \geq r(\sigma_0, \delta^m(d_2(n, \sigma_0))) \text{ for } d > z_{k-1}^-(c_1).
\]
Therefore, we may consider the rules \(\delta^m(h(n, \sigma_0, d)) \) only for \(d \in [\sqrt{2} \Phi^{-1}(c_1), z_{k-1}^-(c_1)] \) as long as the overall risk is concerned. Furthermore, denoting the Bayes rule for sample size \(n \) by \(\delta^*_n \) and \(\delta^m(h(n, \sigma_0, d)) \) by \(\delta^m \) for fixed \(d \in [\sqrt{2} \Phi^{-1}(c_1), z_{k-1}^-(c_1)] \), it is easy to see that
\[
E\left[\sum_{i=1}^{k-1} D_i \left(\pi \left(k-i+1 \right) \xi^*_{n, \delta^m_{n, \delta^m}} \right)^{-1} \pi \left(k-i \right) \xi^*_{n, \delta^m} \right]
\]
\[
\leq E\left[\sum_{i=1}^{k-1} (c_1 - z_{k-1}^-(d)) I \xi^*_{n, \delta^m} \right]
\]
\[
= \left[\Phi(d/\sqrt{2}) - z_{k-1}^-(d) \right] \sum_{i=1}^{k-1} \left(\phi \left(\frac{d}{\sqrt{2}} \right) - \phi^{-1}(c_1) \right) \left(1 + \frac{\sigma_0^2}{\sigma_n^2} \right)^{\frac{1}{2}} \frac{\Delta}{\sigma_0^2} \right]
\]
where \(F_1(y) = \begin{cases}
1 & \text{if } y > 0, \\
\int_0^y \phi(u) \frac{\phi(u+v) - \phi(u)}{v} \, dv \, du & \text{if } y \leq 0.
\end{cases} \)
and \(\varphi(\cdot) \) denotes the pdf of the standard normal distribution. The first inequality follows from the fact that

\[
\left(\pi(k-i)^{\delta_n^k}, \pi(k-i)^{\delta_n^m} \right) \subseteq (D_i \geq 0, x_{[k-i]} > x_{[k]} - h(n, \sigma_0, d)) \subseteq (0 \leq D_i < c_1 - \xi_{k-1}(d)) \text{ and } (c_1 - \xi_1(d) \leq D_i < 0).
\]

The second inequality is obvious from the fact that \(\delta_n^m(d_2(n, \sigma_0)) \subseteq \delta_n^k \subseteq \delta_n^m(d_1(n, \sigma_0)) \) and \(\delta_n^m(d_2(n, \sigma_0)) \subseteq \delta_n^m \subseteq \delta_n^m(d_1(n, \sigma_0)) \), and the last equality follows from the marginal distributions of \(X_i \)'s. It follows from the preceding that \(\lim_{n \to \infty} n^\alpha [r(\sigma_0, \delta_n^m) - r(\sigma_0, \delta_n^k)] = 0 \) for \(\alpha \in [0, \frac{1}{2}] \). Hence we have proved the next result.

Theorem 1.5.1. Let \(r(\sigma_0, \delta) \) denote the overall risk of a rule \(\delta \) wrt the prior distribution given in (1.5.1) where \(\sigma_0^2 = \sigma^2(1-\rho) \), then

\[
\begin{align*}
(i) \quad & r(\sigma_0, \delta_n^m(h(n, \sigma_0, d))) \geq r(\sigma_0, \delta_n^m(d_1(n, \sigma_0))) \quad \text{if } d < \sqrt{2} \phi^{-1}(c_1) \\
(ii) \quad & r(\sigma_0, \delta_n^m(d_2(n, \sigma_0))) \quad \text{if } d > \xi_{k-1}(c_1)
\end{align*}
\]

and

\[
\lim_{n \to \infty} n^\alpha [r(\sigma_0, \delta_n^m(h(n, \sigma_0, d))) - r(\sigma_0, \delta_n^k)] = 0
\]

for any \(\alpha \in [0, \frac{1}{2}] \).

It is interesting to note that, for \(k = 2 \), the Bayes rule wrt the diffuse prior, which selects \(\pi_i \) iff \(x_i = x_{\max} \) and/or \(x_i > x_{\max} - \Delta + \frac{\sigma}{\sqrt{n}} \sqrt{2} \phi^{-1}(c_1) \), coincides with the minimax rule in some cases (see Example 1.3.1), and with the rule studied by Desu (1970).
if \(c_1 = P^* \). Also for \(k > 2 \), consider the rules \(\delta^m(h(n,\omega, d)) \) for various values of \(d \). Before we state some properties of these rules we recall the following definition (see Ferguson (1967)).

Definition 1.5.1. A decision rule \(\delta_0 \) is called an extended Bayes rule if, for every \(\varepsilon > 0 \), there exists a prior \(\tau \) such that

\[
\rho(\tau, \delta_0) < \inf_{\delta} \rho(\tau, \delta) + \varepsilon.
\]

It can be easily shown that any extended Bayes rule \(\delta_0 \) is \(\varepsilon \)-admissible for any \(\varepsilon > 0 \), i.e., there does not exist a rule \(\delta \) for which \(R(\theta, \delta) < R(\theta, \delta_0) - \varepsilon \) for all \(\theta \in \Theta^k \), where \(R(\theta, \delta) = E_{\theta} L(\theta, \delta(x)) \). In a manner similar to the one in the proof of Theorem 1.5.1 we can show that \(\lim_{\sigma_0 \to \infty} [r(\sigma_0, \delta^m(h(n,\omega, d)) - r(\sigma_0, \delta^*_n)] = 0 \) for \(d \in [\sqrt{Z} f^{-1}(c_1), \varepsilon^{-1}(c_1)] \); therefore, we have the following result.

Theorem 1.5.2. The decision rules \(\delta^m(h(n,\omega, d)) \) for \(d \in [\sqrt{Z} f^{-1}(c_1), \varepsilon^{-1}(c_1)] \), which selects \(\pi_i \) iff \(x_i = x_{\max} \) and/or \(x_i > x_{\max}^{-\Delta + \sigma \sqrt{d}} \), are extended Bayes and therefore \(\varepsilon \)-admissible for any \(\varepsilon > 0 \).

The above arguments indicate that the performance of rules of the type \(\delta^m \) would be close to that of the Bayes rule when \(\sigma_0 \) is large, but we could not make similar arguments for the other 'approximate' rules. Hence we carried out Monte Carlo study to see how well these rules (studied in the past under a different framework) perform compared with the Bayes rule. The results of the Monte Carlo study are given in the next section.
(B) Gamma populations

Here, we consider a problem of selecting good populations out of k gamma populations in terms of unknown scale parameters based on nk independent observations, assuming a common known shape parameter. By sufficiency we reduce the data to the k independent gamma random variables X_1, \ldots, X_k with a common known shape parameter $\alpha (\alpha > 0)$ and unknown scale parameters β_1, \ldots, β_k, respectively. Population π_i is said to be good if $\beta_i \geq \Delta^{-1} \max_{1 \leq j \leq k} \beta_j$, and bad, otherwise. Here Δ is a preassigned constant greater than 1.

We also assume that the loss structure is the same as that in (1.3.1), i.e., the loss is c_1 for selecting a bad population and c_2 if we exclude a good one. Further it is assumed that β_1, \ldots, β_k are, a priori, independently distributed inverse gamma random variables, i.e., the prior pdf of $\beta = (\beta_1, \ldots, \beta_k)$ is

$$
\tau(\beta) = \prod_{i=1}^{k} \left[\frac{b^a}{\Gamma(a)\beta_i^{a+1}} \right] \exp\left(-b\beta_i^{-1}\right), \beta_i > 0, \text{ for } i = 1, \ldots, k
$$

(1.5.4)

where $a > 0$ and $b > 0$ are known. Then it is easily observable that, given $x = (x_1, \ldots, x_k)$, β_1, \ldots, β_k are, a posteriori, independent and have the same distribution as that in (1.5.4) except that a and b are replaced by $a + a_i$ and $b + x_i$, respectively.

It can be easily shown that, in the associated location parameter problems, all the assumptions in Section 1.4 are satisfied. Hence we have the results analogous to those in Section 1.4 with the following modifications. For $i = 1, \ldots, k-1$, let $\xi_i(y) = \int_0^{[1-G(yz)]^i} dG(z)$, and $m_i(y|\Delta^{-1}) = \int_0^{[1-G(yz)]^i[1-G(\Delta^{-1}z)]^{k-i-1}} dG(z)$.
where $G(\cdot)$ is the cdf of gamma distribution with shape parameter $a + \alpha$ and scale parameter 1. Then, for $i = 1, \ldots, k-1$,

$$
D_i = c_{1}^{-\infty} \prod_{j \notin k-i} \left[1 - G(t_j t_{k-i}^{-1} \Delta^{-1} y)\right] dG(y)
$$

$$
u_1(i) = \xi_1(t_k^{-1} \Delta^{-1})
$$

$$
u_2(i) = \xi_1(t_{k-i+1}^{-1} \Delta^{-1})
$$

$$
u_3(i) = \xi_{k-1}(t_{k-i}^{-1} \Delta^{-1} (\prod_{j \notin k-i} t_j)^{k-1})
$$

$$
u_4(i) = m_{k-i} t_k^{-1} \Delta^{-1} |\Delta^{-1}| \text{ and}
$$

$$
u_5(i) = \prod_{j \notin k-i} \xi_1(t_j t_{k-i}^{-1} \Delta^{-1}) \text{, where } t_i = x_i^{a+b}.
$$

Note that $\xi_1(y) = 1 - F(y)$ where $F(\cdot)$ denotes the cdf of an F random variable with degrees of freedom $2(a+\alpha)$ and $2(a+\alpha)$. In addition to the above bounds on D_i, we provide another bound in the following, using the fact that $1 - G(\cdot)$ is log-concave (log-convex) if $a + \alpha \geq 1$ ($a + \alpha < 1$, respectively).

$$
D_i \begin{cases}
\geq c_{1}^{-\xi_{k-1}(k-1)} \sum_{j \notin k-i} (t_j t_{k-i}^{-1} \Delta^{-1}) & \text{if } a + \alpha \geq 1 \\
\leq c_{1}^{-\xi_{k-1}(k-1)} \sum_{j \notin k-i} (t_j t_{k-i}^{-1} \Delta^{-1}) & \text{if } a + \alpha < 1.
\end{cases}
$$

Therefore a result analogous to Theorem 1.4.1 can be obtained with obvious modifications from (1.5.5) and (1.5.6). In this case also, the Bayes rule can be found by numerically integrating D_i using Gauss-Laguerre quadrature while we eliminate unnecessary computations using the result analogous to Theorem 1.4.1. Note that, for $k = 2$,

the Bayes rule wrt the diffuse prior, i.e., $a \to 0$ and $b \to 0$,
coinides with the minimax rule in some cases (see Example 1.3.1.).

1.6 Results of the Monte Carlo study for the normal populations.

In this section we are assuming the normal model in Section 1.5 (A). In the preceding sections we have seen that rules studied in the past help to find the Bayes rule and that they are, in some sense, natural approximations of the Bayes rule. Among them δ^m and δ^a are perhaps the best well-known selection rules. Hence it would be worthwhile to investigate the performance of these rules in this Bayesian framework, since they have their own merits and are also easy to use. Some optimalities of these rules can be found in the literature by Gupta and Studden (1966), Berger (1977), Gupta and Miescke (1978), Björnstad (1978), Chernoff and Yahav (1977), Gupta and Hsu (1978) among others. Especially the last two papers are much related to our work in that they studied the performance of these rules in Bayesian framework for the problem of selecting a subset containing the 'best' population.

For our Monte Carlo study we may assume that $\sigma/\sqrt{n} = 1$ without any loss of generality. We recall that δ^m and δ^a can be written in the following more familiar forms:

$$\delta^m(d): \text{Select } \pi_j \text{ if and only if } x_i > x_{\text{max}} - d, \quad d \geq 0$$

$$\delta^a(d): \text{Select } \pi_j \text{ if and only if } x_i = x_{\text{max}} \text{ and/or } x_i \geq$$

$$\frac{1}{k-1} \sum_{j \neq i} x_j - d.$$(1.6.1)
We carried out the Monte Carlo study for the cases \(k = 3 \) and \(k = 9 \). The remaining relevant parameters in this study are \(c_1 \) (or \(c_2 \), \(\sigma_0^2 \) and \(\Delta \). We use \(c = c_2/c_1 \) for the tabulation purpose since \(c \), being the ratio of two different types of losses, seems more appealing than \(c_1 \). The ranges of the parameter values which were studied are as follows.

\[
\begin{align*}
\Delta &= 0.25, 0.5, 1.0, \\
\sigma_0 &= (1.5)^i (i = -2(1)6), \\
c &= 2^{i-1} (i = 1, \ldots, 5) \text{ for both } \Delta = 0.25 \text{ and } \Delta = 0.5, \\
c &= 2^{i-2} (i = 1, \ldots, 6) \text{ for } \Delta = 1.0.
\end{align*}
\]

For each of parameter sets \((c, \sigma_0, \Delta)\), 400 simulations were carried out for \(k = 3 \) and 100 simulations were performed for \(k = 9 \). In each simulation the generation of the random vector \(\mathbf{x} = (x_1, \ldots, x_k) \) according to its marginal distribution was involved, and then the Bayes actions and the corresponding risks were obtained by numerically integrating \(D_i \)'s in (1.5.3). The optimal values of \(d \) in \(\delta^m \) and \(\delta^a \) are estimated by minimizing the average regrets corresponding to sufficiently fine grids of the estimated constants \(d \), where the range of these trial values are determined from the preliminary computations and Theorem 1.5.1.

The estimated Bayes risks, the estimated regrets incurred by the optimal \(\delta^m \) and \(\delta^a \) are given in Table I at the end of this chapter along with sample standard deviations of these estimates. For those obvious cases when the Bayes rule selects only one population or all the populations, we did not tabulate and, as a result, these cells are left blank in the table. Table II gives the average number of
bad populations selected and that of the good ones excluded for the rules considered, along with proportions of times that the optimal δ^a and the optimal δ^m coincide with the Bayes rule. From Table I, we can observe that the performance of the rule δ^m is almost as good as that of the Bayes rule throughout the cases studied, and that it becomes remarkably better as the prior variance ($\sigma_0^2 = \beta^2(1-\rho)$) becomes large. This agrees with the argument in Section 1.5. Also we observe that, for $k = 3$, rule δ^a performs reasonably well when the prior is concentrated, and in fact it performs better than δ^m in a few extreme cases when c is very large. However, the performance of δ^a is poor for moderately large σ_0. Especially, for $k = 9$, the performance of δ^a is disastrous and it was observed that, for most values of σ_0, optimal δ^a selects only one population for small values of c and it tends to select much larger subsets than the Bayes rule as soon as c becomes large (roughly $c > 4$). Overall, the rule δ^a performs rather poorly when $k = 9$.

Similar behavior of the rule δ^m has been observed in Chernoff and Yahav (1977), and in Gupta and Hsu (1978) for the problem of selecting a subset containing the 'best' population. On the otherhand performance of δ^a is worse than that observed in Gupta and Hsu (1978), and it seems that rule δ^a has little to recommend for the goal of selecting 'good' populations while rule δ^m performs almost as well as the Bayes rule provided the value of d is chosen properly. This indicates that the proper use of rule δ^m can lead to efficient statistical method since it behaves fairly well in various formulations and also is easy to use and interpret. However, we point out that the
choice of d should depend on the loss structure of the particular problem at hand, and we suggest the tabulation of the operating characteristics such as the number of bad populations selected or that of excluded good ones before setting P^* based on an intuitive feeling, if one wants to use this rule. For this reason the estimated optimal d-values for rules σ^m have been provided in Table III.
TABLE I BAYES RISKS AND REGRETS

The entry on top of each box is the estimated Bayes Risk and the numbers in the second and third row are the regrets incurred by the optimal α in that order. The numbers in the parentheses are the sample standard deviations of the estimates.

<table>
<thead>
<tr>
<th>α</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.44</td>
<td>0.5516 (.0050)</td>
<td>0.4612 (.0024)</td>
<td>0.2970 (.0006)</td>
<td>0.1659 (.0003)</td>
<td>0.0000 (.0000)</td>
</tr>
<tr>
<td>0.185</td>
<td>0.0098 (.0068)</td>
<td>0.0131 (.0013)</td>
<td>0.0002 (.0001)</td>
<td>0.0000 (.0000)</td>
<td>0.0000 (.0000)</td>
</tr>
<tr>
<td>0.481</td>
<td>0.0039 (.0006)</td>
<td>0.0049 (.0006)</td>
<td>0.016 (.0006)</td>
<td>0.0066 (.0002)</td>
<td>0.0000 (.0000)</td>
</tr>
<tr>
<td>0.023</td>
<td>0.3657 (.0081)</td>
<td>0.3442 (.0066)</td>
<td>0.2712 (.0038)</td>
<td>0.1728 (.0017)</td>
<td>0.0964 (.0008)</td>
</tr>
<tr>
<td>1.00</td>
<td>0.0025 (.0001)</td>
<td>0.0041 (.0006)</td>
<td>0.0020 (.0004)</td>
<td>0.0014 (.0003)</td>
<td>0.0005 (.0001)</td>
</tr>
<tr>
<td>1.50</td>
<td>0.0028 (.0006)</td>
<td>0.0087 (.0013)</td>
<td>0.0027 (.0005)</td>
<td>0.0014 (.0003)</td>
<td>0.0008 (.0002)</td>
</tr>
<tr>
<td>2.25</td>
<td>0.2875 (.0083)</td>
<td>0.2651 (.0079)</td>
<td>0.2028 (.0046)</td>
<td>0.1340 (.0026)</td>
<td>0.0827 (.0014)</td>
</tr>
<tr>
<td>3.38</td>
<td>0.0014 (.0004)</td>
<td>0.0031 (.0005)</td>
<td>0.0020 (.0004)</td>
<td>0.0014 (.0003)</td>
<td>0.0009 (.0002)</td>
</tr>
<tr>
<td>5.06</td>
<td>0.0026 (.0006)</td>
<td>0.0157 (.0023)</td>
<td>0.0089 (.0013)</td>
<td>0.0037 (.0007)</td>
<td>0.0019 (.0004)</td>
</tr>
<tr>
<td>7.59</td>
<td>0.0065 (.0015)</td>
<td>0.0923 (.0072)</td>
<td>0.0239 (.0027)</td>
<td>0.0127 (.0021)</td>
<td>0.0030 (.0009)</td>
</tr>
<tr>
<td>11.39</td>
<td>0.0036 (.0015)</td>
<td>0.0110 (.0021)</td>
<td>0.0126 (.0027)</td>
<td>0.0264 (.0039)</td>
<td>0.0185 (.0014)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>α</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.44</td>
<td>1.2362 (.0131)</td>
<td>1.1135 (.0090)</td>
<td>0.7255 (.0036)</td>
<td>0.4019 (.0010)</td>
<td>0.0883 (.0020)</td>
</tr>
<tr>
<td>0.185</td>
<td>0.0267 (.0043)</td>
<td>0.2674 (.0039)</td>
<td>0.4265 (.0041)</td>
<td>0.0467 (.0011)</td>
<td>0.0165 (.0025)</td>
</tr>
<tr>
<td>0.481</td>
<td>0.3353 (.0157)</td>
<td>0.4541 (.0163)</td>
<td>0.6395 (.0081)</td>
<td>0.3854 (.0038)</td>
<td>0.0165 (.0025)</td>
</tr>
<tr>
<td>0.023</td>
<td>0.0117 (.0033)</td>
<td>0.0203 (.0031)</td>
<td>0.0153 (.0023)</td>
<td>0.0104 (.0023)</td>
<td>0.0030 (.0006)</td>
</tr>
<tr>
<td>1.00</td>
<td>0.7238 (.0213)</td>
<td>0.6007 (.0161)</td>
<td>0.4831 (.0125)</td>
<td>0.2947 (.0058)</td>
<td>0.0165 (.0025)</td>
</tr>
<tr>
<td>1.50</td>
<td>0.0124 (.0029)</td>
<td>0.0147 (.0028)</td>
<td>0.0136 (.0024)</td>
<td>0.0085 (.0014)</td>
<td>0.0030 (.0006)</td>
</tr>
<tr>
<td>2.25</td>
<td>0.4943 (.0233)</td>
<td>0.4536 (.0181)</td>
<td>0.3499 (.0125)</td>
<td>0.2221 (.0074)</td>
<td>0.0165 (.0025)</td>
</tr>
<tr>
<td>3.38</td>
<td>0.0069 (.0025)</td>
<td>0.0117 (.0025)</td>
<td>0.0091 (.0019)</td>
<td>0.0075 (.0018)</td>
<td>0.0030 (.0006)</td>
</tr>
<tr>
<td>5.06</td>
<td>0.3370 (.0199)</td>
<td>0.2939 (.0190)</td>
<td>0.2095 (.0113)</td>
<td>0.1484 (.0075)</td>
<td>0.0165 (.0025)</td>
</tr>
<tr>
<td>7.59</td>
<td>0.0070 (.0019)</td>
<td>0.0095 (.0029)</td>
<td>0.0030 (.0011)</td>
<td>0.0059 (.0013)</td>
<td>0.0030 (.0006)</td>
</tr>
<tr>
<td>11.39</td>
<td>0.0222 (.0043)</td>
<td>0.0662 (.0101)</td>
<td>0.0572 (.0105)</td>
<td>0.0419 (.0054)</td>
<td>0.0165 (.0025)</td>
</tr>
<tr>
<td></td>
<td>0.0300 (.0011)</td>
<td>0.0028 (.0010)</td>
<td>0.0029 (.0009)</td>
<td>0.0020 (.0007)</td>
<td>0.0030 (.0006)</td>
</tr>
<tr>
<td></td>
<td>0.0189 (.0043)</td>
<td>0.0648 (.0101)</td>
<td>0.0708 (.0030)</td>
<td>0.0478 (.0081)</td>
<td>0.0165 (.0025)</td>
</tr>
<tr>
<td></td>
<td>0.0024 (.0012)</td>
<td>0.0012 (.0008)</td>
<td>0.0019 (.0008)</td>
<td>0.0024 (.0007)</td>
<td>0.0030 (.0006)</td>
</tr>
<tr>
<td></td>
<td>0.0156 (.0047)</td>
<td>0.0157 (.0087)</td>
<td>0.0090 (.0015)</td>
<td>0.0052 (.0006)</td>
<td>0.0025 (.0007)</td>
</tr>
<tr>
<td></td>
<td>0.0942 (.0131)</td>
<td>0.0285 (.0106)</td>
<td>0.0529 (.0067)</td>
<td>0.0296 (.0034)</td>
<td>0.0030 (.0006)</td>
</tr>
<tr>
<td></td>
<td>0.0050 (.0004)</td>
<td>0.0110 (.006)</td>
<td>0.0009 (.0006)</td>
<td>0.0001 (.0001)</td>
<td>0.0030 (.0006)</td>
</tr>
<tr>
<td></td>
<td>0.0098 (.0038)</td>
<td>0.0384 (.0084)</td>
<td>0.0444 (.0031)</td>
<td>0.0340 (.0049)</td>
<td>0.0030 (.0006)</td>
</tr>
<tr>
<td></td>
<td>0.0599 (.0111)</td>
<td>0.0575 (.0053)</td>
<td>0.0353 (.0005)</td>
<td>0.0170 (.0027)</td>
<td>0.0030 (.0006)</td>
</tr>
<tr>
<td></td>
<td>0.0000 (.0000)</td>
<td>0.0000 (.0000)</td>
<td>0.0001 (.0001)</td>
<td>0.0000 (.0000)</td>
<td>0.0030 (.0006)</td>
</tr>
<tr>
<td></td>
<td>0.0151 (.0046)</td>
<td>0.0372 (.0086)</td>
<td>0.0536 (.0081)</td>
<td>0.0234 (.0024)</td>
<td>0.0030 (.0006)</td>
</tr>
<tr>
<td>(\theta)</td>
<td>(C)</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>.44</td>
<td>.6459 (.0016)</td>
<td>.3297 (.0012)</td>
<td>.1995 (.0008)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.67</td>
<td>.0024 (.0005)</td>
<td>.0066 (.0002)</td>
<td>.0000 (.0000)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>.6468 (.0053)</td>
<td>.3097 (.0026)</td>
<td>.2550 (.0011)</td>
<td>.1456 (.0001)</td>
<td>.0773 (.0003)</td>
</tr>
<tr>
<td>1.50</td>
<td>.0038 (.0006)</td>
<td>.0029 (.0003)</td>
<td>.0010 (.0003)</td>
<td>.0001 (.0001)</td>
<td>.0000 (.0000)</td>
</tr>
<tr>
<td>2.25</td>
<td>.0487 (.0028)</td>
<td>.0185 (.0017)</td>
<td>.0084 (.0008)</td>
<td>.0000 (.0000)</td>
<td>.0000 (.0000)</td>
</tr>
<tr>
<td>3.36</td>
<td>.0036 (.0006)</td>
<td>.0027 (.0005)</td>
<td>.0022 (.0004)</td>
<td>.0011 (.0003)</td>
<td>.0006 (.0001)</td>
</tr>
<tr>
<td>5.06</td>
<td>.0175 (.0016)</td>
<td>.0160 (.0016)</td>
<td>.0053 (.0006)</td>
<td>.0016 (.0004)</td>
<td>.0006 (.0002)</td>
</tr>
<tr>
<td>7.59</td>
<td>.2613 (.0083)</td>
<td>.2710 (.0068)</td>
<td>.2005 (.0045)</td>
<td>.1361 (.0024)</td>
<td>.0593 (.0011)</td>
</tr>
<tr>
<td>11.39</td>
<td>.0027 (.0006)</td>
<td>.0023 (.0005)</td>
<td>.0020 (.0004)</td>
<td>.0003 (.0002)</td>
<td>.0008 (.0002)</td>
</tr>
<tr>
<td></td>
<td>.0115 (.0015)</td>
<td>.0100 (.0014)</td>
<td>.0078 (.0013)</td>
<td>.0033 (.0006)</td>
<td>.0014 (.0003)</td>
</tr>
<tr>
<td></td>
<td>.0233 (.0083)</td>
<td>.1833 (.0072)</td>
<td>.1561 (.0043)</td>
<td>.0987 (.0030)</td>
<td>.0590 (.0016)</td>
</tr>
<tr>
<td></td>
<td>.0010 (.0005)</td>
<td>.0010 (.0004)</td>
<td>.0011 (.0003)</td>
<td>.0009 (.0003)</td>
<td>.0004 (.0001)</td>
</tr>
<tr>
<td></td>
<td>.0103 (.0014)</td>
<td>.0318 (.0034)</td>
<td>.0148 (.0020)</td>
<td>.0082 (.0011)</td>
<td>.0048 (.0006)</td>
</tr>
<tr>
<td></td>
<td>.1970 (.0083)</td>
<td>.1274 (.0065)</td>
<td>.1081 (.0050)</td>
<td>.0662 (.0028)</td>
<td>.0435 (.0016)</td>
</tr>
<tr>
<td></td>
<td>.0006 (.0002)</td>
<td>.0004 (.0002)</td>
<td>.0007 (.0003)</td>
<td>.0005 (.0002)</td>
<td>.0004 (.0001)</td>
</tr>
<tr>
<td></td>
<td>.0084 (.0013)</td>
<td>.0343 (.0038)</td>
<td>.0318 (.0030)</td>
<td>.0159 (.0016)</td>
<td>.0079 (.0009)</td>
</tr>
<tr>
<td></td>
<td>.0684 (.0072)</td>
<td>.1207 (.0060)</td>
<td>.0726 (.0044)</td>
<td>.0457 (.0025)</td>
<td>.0310 (.0016)</td>
</tr>
<tr>
<td></td>
<td>.0000 (.0000)</td>
<td>.0009 (.0004)</td>
<td>.0000 (.0000)</td>
<td>.0002 (.0001)</td>
<td>.0001 (.0000)</td>
</tr>
<tr>
<td></td>
<td>.0045 (.0005)</td>
<td>.0241 (.0024)</td>
<td>.0373 (.0039)</td>
<td>.0203 (.0010)</td>
<td>.0122 (.0006)</td>
</tr>
<tr>
<td></td>
<td>.0063 (.0061)</td>
<td>.0564 (.0050)</td>
<td>.0462 (.0039)</td>
<td>.0238 (.0021)</td>
<td>.0179 (.0013)</td>
</tr>
<tr>
<td></td>
<td>.0003 (.0001)</td>
<td>.0002 (.0001)</td>
<td>.0002 (.0001)</td>
<td>.0000 (.0000)</td>
<td>.0000 (.0000)</td>
</tr>
<tr>
<td></td>
<td>.0006 (.0010)</td>
<td>.0184 (.0007)</td>
<td>.0295 (.0011)</td>
<td>.0237 (.0008)</td>
<td>.0156 (.0006)</td>
</tr>
<tr>
<td></td>
<td>.0033 (.0043)</td>
<td>.0336 (.0043)</td>
<td>.0207 (.0030)</td>
<td>.0200 (.0019)</td>
<td>.0118 (.0011)</td>
</tr>
<tr>
<td>8.00</td>
<td>.0000 (.0000)</td>
<td>.0000 (.0000)</td>
<td>.0000 (.0000)</td>
<td>.0001 (.0001)</td>
<td>.0000 (.0000)</td>
</tr>
<tr>
<td>16.00</td>
<td>.0026 (.0013)</td>
<td>.0109 (.0022)</td>
<td>.0043 (.0041)</td>
<td>.0300 (.0038)</td>
<td>.0215 (.0014)</td>
</tr>
</tbody>
</table>

\(K=3, \ \Delta=.50 \)
TABLE I (CONTINUED)

<table>
<thead>
<tr>
<th>K=3, Δ=1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
</tr>
<tr>
<td>.44</td>
</tr>
<tr>
<td>.67</td>
</tr>
<tr>
<td>1.00</td>
</tr>
<tr>
<td>1.50</td>
</tr>
<tr>
<td>2.25</td>
</tr>
<tr>
<td>3.38</td>
</tr>
<tr>
<td>5.06</td>
</tr>
<tr>
<td>7.59</td>
</tr>
<tr>
<td>11.39</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>K=5, Δ=1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
</tr>
<tr>
<td>.44</td>
</tr>
<tr>
<td>.67</td>
</tr>
<tr>
<td>1.00</td>
</tr>
<tr>
<td>1.50</td>
</tr>
<tr>
<td>2.25</td>
</tr>
<tr>
<td>3.38</td>
</tr>
<tr>
<td>5.06</td>
</tr>
<tr>
<td>7.59</td>
</tr>
<tr>
<td>11.39</td>
</tr>
</tbody>
</table>
TABLE II OPERATING CHARACTERISTICS

The rows in each box correspond to the Bayes rule. The optimal δ^m and the optimal δ^a from Top to Bottom. The entries in the first column and the second column are the average numbers of 0.25 populations selected and that of good populations excluded, respectively. The third column gives the proportions of times that the optimal δ^m and the optimal δ^a coincide with the Bayes rule.

$K=3$, $\Delta = .25$

<table>
<thead>
<tr>
<th>c</th>
<th>1</th>
<th>2</th>
<th>8</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>.44</td>
<td>.5563</td>
<td>.5468</td>
<td>1.4493</td>
<td>.0100</td>
</tr>
<tr>
<td>.5364</td>
<td>.5739</td>
<td>.79</td>
<td>1.5854</td>
<td>.1130</td>
</tr>
<tr>
<td>.3772</td>
<td>.7629</td>
<td>.50</td>
<td>1.9407</td>
<td>.0074</td>
</tr>
<tr>
<td>.67</td>
<td>.4146</td>
<td>.5455</td>
<td>.8736</td>
<td>.2137</td>
</tr>
<tr>
<td>.3973</td>
<td>.5707</td>
<td>.85</td>
<td>.8332</td>
<td>.2013</td>
</tr>
<tr>
<td>.3820</td>
<td>.5729</td>
<td>.88</td>
<td>.8306</td>
<td>.1922</td>
</tr>
<tr>
<td>1.00</td>
<td>.3221</td>
<td>.4093</td>
<td>.6296</td>
<td>.2060</td>
</tr>
<tr>
<td>.3420</td>
<td>.3942</td>
<td>.93</td>
<td>.6345</td>
<td>.2050</td>
</tr>
<tr>
<td>.2874</td>
<td>.4455</td>
<td>.91</td>
<td>.6393</td>
<td>.2097</td>
</tr>
<tr>
<td>1.50</td>
<td>.2338</td>
<td>.2991</td>
<td>.4592</td>
<td>.1661</td>
</tr>
<tr>
<td>.2159</td>
<td>.3217</td>
<td>.94</td>
<td>.4222</td>
<td>.1912</td>
</tr>
<tr>
<td>.2069</td>
<td>.3392</td>
<td>.93</td>
<td>.4483</td>
<td>.2028</td>
</tr>
<tr>
<td>2.25</td>
<td>.1957</td>
<td>.2218</td>
<td>.3185</td>
<td>.1233</td>
</tr>
<tr>
<td>.1778</td>
<td>.2614</td>
<td>.96</td>
<td>.3106</td>
<td>.1222</td>
</tr>
<tr>
<td>.1691</td>
<td>.2542</td>
<td>.93</td>
<td>.6302</td>
<td>.1919</td>
</tr>
<tr>
<td>3.38</td>
<td>.1168</td>
<td>.1340</td>
<td>.2222</td>
<td>.0509</td>
</tr>
<tr>
<td>.1147</td>
<td>.1359</td>
<td>.98</td>
<td>.2193</td>
<td>.0530</td>
</tr>
<tr>
<td>.0979</td>
<td>.1500</td>
<td>.96</td>
<td>.1494</td>
<td>.1506</td>
</tr>
<tr>
<td>5.06</td>
<td>.0767</td>
<td>.0843</td>
<td>.1689</td>
<td>.0556</td>
</tr>
<tr>
<td>.0767</td>
<td>.0843</td>
<td>.100</td>
<td>.1646</td>
<td>.0539</td>
</tr>
<tr>
<td>.0628</td>
<td>.1004</td>
<td>.97</td>
<td>.0950</td>
<td>.1333</td>
</tr>
<tr>
<td>7.59</td>
<td>.0679</td>
<td>.0612</td>
<td>.1014</td>
<td>.0256</td>
</tr>
<tr>
<td>.0679</td>
<td>.0613</td>
<td>.100</td>
<td>.1032</td>
<td>.0258</td>
</tr>
<tr>
<td>.0519</td>
<td>.0803</td>
<td>.97</td>
<td>.0469</td>
<td>.0724</td>
</tr>
<tr>
<td>11.39</td>
<td>.0336</td>
<td>.0443</td>
<td>.0335</td>
<td>.0287</td>
</tr>
<tr>
<td>.0339</td>
<td>.0435</td>
<td>.100</td>
<td>.0635</td>
<td>.0207</td>
</tr>
<tr>
<td>.0288</td>
<td>.0818</td>
<td>.99</td>
<td>.0183</td>
<td>.0569</td>
</tr>
<tr>
<td>k=9, δ = .25</td>
<td>16</td>
<td>8</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>--------------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td></td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
</tbody>
</table>
TABLE II. (CONTINUED)

\[K=3, \Delta = .50 \]

<table>
<thead>
<tr>
<th>(\theta)</th>
<th>(c)</th>
<th>(1)</th>
<th>(2)</th>
<th>(4)</th>
<th>(8)</th>
<th>(16)</th>
</tr>
</thead>
<tbody>
<tr>
<td>.44</td>
<td>.7682</td>
<td>.1553</td>
<td>.9525</td>
<td>.0184</td>
<td>.9340</td>
<td>.0009</td>
</tr>
<tr>
<td>.44</td>
<td>.7661</td>
<td>.1904</td>
<td>.9531</td>
<td>.0140</td>
<td>.9340</td>
<td>.0009</td>
</tr>
<tr>
<td>.44</td>
<td>.9654</td>
<td>.0202</td>
<td>.65</td>
<td>.974</td>
<td>.0003</td>
<td>.95</td>
</tr>
<tr>
<td>.5349</td>
<td>.0023</td>
<td>.5472</td>
<td>.1109</td>
<td>1.2105</td>
<td>.0172</td>
<td>1.2385</td>
</tr>
<tr>
<td>.5113</td>
<td>.0337</td>
<td>.5417</td>
<td>.1029</td>
<td>.09</td>
<td>1.2335</td>
<td>.0126</td>
</tr>
<tr>
<td>.5249</td>
<td>.0038</td>
<td>.1306</td>
<td>.0469</td>
<td>.71</td>
<td>1.2409</td>
<td>.0125</td>
</tr>
<tr>
<td>.67</td>
<td>.3324</td>
<td>.4051</td>
<td>.6767</td>
<td>.1752</td>
<td>.9562</td>
<td>.0649</td>
</tr>
<tr>
<td>.67</td>
<td>.3417</td>
<td>.6308</td>
<td>.6810</td>
<td>.1770</td>
<td>.0324</td>
<td>.0601</td>
</tr>
<tr>
<td>.67</td>
<td>.3007</td>
<td>.5893</td>
<td>.7794</td>
<td>.1479</td>
<td>.77</td>
<td>1.2654</td>
</tr>
<tr>
<td>1.00</td>
<td>.2529</td>
<td>.3088</td>
<td>.4931</td>
<td>.1593</td>
<td>.7029</td>
<td>.0749</td>
</tr>
<tr>
<td>1.00</td>
<td>.2519</td>
<td>.3152</td>
<td>.4971</td>
<td>.1614</td>
<td>.0708</td>
<td>.0728</td>
</tr>
<tr>
<td>1.00</td>
<td>.1932</td>
<td>.3326</td>
<td>.5378</td>
<td>.1646</td>
<td>.37</td>
<td>.0622</td>
</tr>
<tr>
<td>1.50</td>
<td>.1643</td>
<td>.2219</td>
<td>.3264</td>
<td>.1147</td>
<td>.5417</td>
<td>.0597</td>
</tr>
<tr>
<td>1.50</td>
<td>.1868</td>
<td>.2178</td>
<td>.3331</td>
<td>.1093</td>
<td>.5727</td>
<td>.0523</td>
</tr>
<tr>
<td>1.50</td>
<td>.1265</td>
<td>.3036</td>
<td>.3239</td>
<td>.1522</td>
<td>.6435</td>
<td>.0516</td>
</tr>
<tr>
<td>2.25</td>
<td>.1453</td>
<td>.1443</td>
<td>.2131</td>
<td>.0645</td>
<td>.3733</td>
<td>.0419</td>
</tr>
<tr>
<td>2.25</td>
<td>.1542</td>
<td>.1412</td>
<td>.2186</td>
<td>.0824</td>
<td>.3749</td>
<td>.0425</td>
</tr>
<tr>
<td>2.25</td>
<td>.1019</td>
<td>.2089</td>
<td>1.675</td>
<td>.1563</td>
<td>.5581</td>
<td>.0361</td>
</tr>
<tr>
<td>3.38</td>
<td>.0833</td>
<td>.6934</td>
<td>.1693</td>
<td>.0357</td>
<td>.7370</td>
<td>.0315</td>
</tr>
<tr>
<td>3.38</td>
<td>.0912</td>
<td>.6688</td>
<td>.1624</td>
<td>.0543</td>
<td>.2351</td>
<td>.0924</td>
</tr>
<tr>
<td>3.38</td>
<td>.0660</td>
<td>.1454</td>
<td>.0824</td>
<td>.1318</td>
<td>.3559</td>
<td>.0463</td>
</tr>
<tr>
<td>5.06</td>
<td>.0632</td>
<td>.6335</td>
<td>.0486</td>
<td>.0372</td>
<td>.1455</td>
<td>.0212</td>
</tr>
<tr>
<td>5.06</td>
<td>.0717</td>
<td>.0714</td>
<td>.0630</td>
<td>.0374</td>
<td>.1460</td>
<td>.0214</td>
</tr>
<tr>
<td>5.06</td>
<td>.0466</td>
<td>.1065</td>
<td>.0355</td>
<td>.0523</td>
<td>.0037</td>
<td>.0701</td>
</tr>
<tr>
<td>7.59</td>
<td>.0658</td>
<td>.0338</td>
<td>.0724</td>
<td>.0438</td>
<td>.0819</td>
<td>.0129</td>
</tr>
<tr>
<td>7.59</td>
<td>.0669</td>
<td>.0714</td>
<td>.0672</td>
<td>.0226</td>
<td>.0919</td>
<td>.0129</td>
</tr>
<tr>
<td>7.59</td>
<td>.0138</td>
<td>.6534</td>
<td>.0235</td>
<td>.0518</td>
<td>.0387</td>
<td>.0527</td>
</tr>
<tr>
<td>11.39</td>
<td>.0036</td>
<td>.0304</td>
<td>.0724</td>
<td>.0226</td>
<td>.0919</td>
<td>.0129</td>
</tr>
<tr>
<td>11.39</td>
<td>.0305</td>
<td>.0304</td>
<td>.0724</td>
<td>.0226</td>
<td>.0919</td>
<td>.0129</td>
</tr>
<tr>
<td>11.39</td>
<td>.0138</td>
<td>.6534</td>
<td>.0235</td>
<td>.0518</td>
<td>.0387</td>
<td>.0527</td>
</tr>
</tbody>
</table>

42
TABLE II. (CONTINUED)

\[K = 9, \Delta = 0.50 \]

<table>
<thead>
<tr>
<th>C</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.04</td>
<td>0.5122</td>
<td>2.2751</td>
<td>3.0650</td>
<td>0.7553</td>
<td>4.9163</td>
</tr>
<tr>
<td></td>
<td>1.0130</td>
<td>2.2159</td>
<td>3.0756</td>
<td>0.8049</td>
<td>4.9959</td>
</tr>
<tr>
<td></td>
<td>0.3486</td>
<td>2.5514</td>
<td>5.3067</td>
<td>0.0000</td>
<td>5.3576</td>
</tr>
<tr>
<td>0.44</td>
<td>0.4778</td>
<td>1.8163</td>
<td>1.6650</td>
<td>1.0223</td>
<td>3.3360</td>
</tr>
<tr>
<td></td>
<td>0.3761</td>
<td>1.9381</td>
<td>1.7864</td>
<td>0.9213</td>
<td>3.5822</td>
</tr>
<tr>
<td></td>
<td>0.3761</td>
<td>1.9381</td>
<td>3.0053</td>
<td>1.3042</td>
<td>3.4299</td>
</tr>
<tr>
<td>0.67</td>
<td>0.4314</td>
<td>1.1253</td>
<td>0.9308</td>
<td>1.7557</td>
<td>2.0623</td>
</tr>
<tr>
<td></td>
<td>0.4556</td>
<td>1.1025</td>
<td>0.9346</td>
<td>0.8032</td>
<td>2.0634</td>
</tr>
<tr>
<td></td>
<td>0.3232</td>
<td>1.2461</td>
<td>3.2461</td>
<td>1.2033</td>
<td>3.3071</td>
</tr>
<tr>
<td>1.00</td>
<td>0.3508</td>
<td>0.7766</td>
<td>0.7105</td>
<td>0.5532</td>
<td>1.3636</td>
</tr>
<tr>
<td></td>
<td>0.3232</td>
<td>0.8080</td>
<td>0.6561</td>
<td>0.6183</td>
<td>1.4223</td>
</tr>
<tr>
<td></td>
<td>0.2804</td>
<td>0.8824</td>
<td>0.2761</td>
<td>0.6779</td>
<td>2.5856</td>
</tr>
<tr>
<td>1.50</td>
<td>0.2755</td>
<td>0.5248</td>
<td>0.4251</td>
<td>0.9950</td>
<td>0.9762</td>
</tr>
<tr>
<td></td>
<td>0.2337</td>
<td>0.5191</td>
<td>0.4002</td>
<td>0.2541</td>
<td>0.9994</td>
</tr>
<tr>
<td></td>
<td>0.1477</td>
<td>0.5499</td>
<td>0.2872</td>
<td>0.3293</td>
<td>0.7470</td>
</tr>
<tr>
<td>2.25</td>
<td>0.1924</td>
<td>0.2816</td>
<td>0.3815</td>
<td>0.2035</td>
<td>0.6387</td>
</tr>
<tr>
<td></td>
<td>0.1830</td>
<td>0.2931</td>
<td>0.3913</td>
<td>0.2065</td>
<td>0.6179</td>
</tr>
<tr>
<td></td>
<td>0.1349</td>
<td>0.3469</td>
<td>0.2472</td>
<td>0.2541</td>
<td>0.6195</td>
</tr>
<tr>
<td>3.38</td>
<td>0.2040</td>
<td>0.1697</td>
<td>0.1822</td>
<td>0.0935</td>
<td>0.4034</td>
</tr>
<tr>
<td></td>
<td>0.2043</td>
<td>0.1701</td>
<td>0.1897</td>
<td>0.1090</td>
<td>0.4226</td>
</tr>
<tr>
<td></td>
<td>0.1218</td>
<td>0.2775</td>
<td>0.0333</td>
<td>0.1256</td>
<td>0.3337</td>
</tr>
<tr>
<td>5.06</td>
<td>0.0830</td>
<td>0.3238</td>
<td>0.1905</td>
<td>0.0596</td>
<td>0.3513</td>
</tr>
<tr>
<td></td>
<td>0.0651</td>
<td>0.1279</td>
<td>0.1950</td>
<td>0.0591</td>
<td>0.3313</td>
</tr>
<tr>
<td></td>
<td>0.0641</td>
<td>0.1658</td>
<td>0.0595</td>
<td>0.1604</td>
<td>0.2393</td>
</tr>
<tr>
<td>7.59</td>
<td>0.0639</td>
<td>0.0809</td>
<td>0.1868</td>
<td>0.0591</td>
<td>0.4143</td>
</tr>
<tr>
<td></td>
<td>0.0659</td>
<td>0.0559</td>
<td>0.1892</td>
<td>0.0239</td>
<td>0.2512</td>
</tr>
<tr>
<td></td>
<td>0.0632</td>
<td>0.0502</td>
<td>0.0497</td>
<td>0.1256</td>
<td>0.6590</td>
</tr>
</tbody>
</table>

43
TABLE II. (CONTINUED)

<table>
<thead>
<tr>
<th>K = 3, $\Delta = 1.0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S)</td>
</tr>
<tr>
<td>(0.44)</td>
</tr>
<tr>
<td>(0.67)</td>
</tr>
<tr>
<td>(1.00)</td>
</tr>
<tr>
<td>(1.50)</td>
</tr>
<tr>
<td>(2.50)</td>
</tr>
<tr>
<td>(3.38)</td>
</tr>
<tr>
<td>(5.06)</td>
</tr>
<tr>
<td>(7.59)</td>
</tr>
<tr>
<td>(11.39)</td>
</tr>
<tr>
<td>(0.013)</td>
</tr>
</tbody>
</table>

44
| \(\Delta \) | \(| \Delta | =1.0 \) |
|---|---|
| 0.44 | 1.3924 | 1.0361 |
| 1.00 | .5538 | 2.8675 |
| 1.50 | .1947 | 1.4302 |
| 2.25 | .1571 | .7943 |
| 3.38 | .1031 | .5231 |
| 5.06 | .0661 | .2742 |
| 7.59 | .0454 | .1631 |
| 11.39 | 1.0000 | 1.0000 |

| \(\theta \) | \(| \theta | =1.0 \) |
|---|---|
| 0.5 | 1.9926 | 1.1235 |
| 1.00 | .8150 | 1.3932 |
| 1.50 | .5275 | .9024 |
| 2.25 | .3571 | .6019 |
| 3.38 | .2132 | .3239 |
| 5.06 | .1376 | .1984 |
| 7.59 | .0947 | .1631 |
| 11.39 | .0569 | .0658 |

1	2.0550	.0849
1.00	.6961	1.3430
1.50	.4802	.9852
2.25	.4329	.2300
3.38	.3485	.5038
5.06	.2050	.3210
7.59	.0868	.1851
11.39	.0533	.3291

2	2.0550	.0849
1.00	.6961	1.3430
1.50	.4802	.9852
2.25	.4329	.2300
3.38	.3485	.5038
5.06	.2050	.3210
7.59	.0868	.1851
11.39	.0533	.3291

4	2.1648	.0029
1.00	.8473	1.4321
1.50	.6839	.5338
2.25	.5093	.8501
3.38	.4022	.5615
5.06	.2262	.1527
7.59	.1018	.0022
11.39	.0231	.1225

8	2.1648	.0029
1.00	.8473	1.4321
1.50	.6839	.5338
2.25	.5093	.8501
3.38	.4022	.5615
5.06	.2262	.1527
7.59	.1018	.0022
11.39	.0231	.1225

<p>| 16 | 2.1648 | .0029 |
| 1.00 | .8473 | 1.4321 |
| 1.50 | .6839 | .5338 |
| 2.25 | .5093 | .8501 |
| 3.38 | .4022 | .5615 |
| 5.06 | .2262 | .1527 |
| 7.59 | .1018 | .0022 |
| 11.39 | .0231 | .1225 |</p>
<table>
<thead>
<tr>
<th>(\alpha)</th>
<th>(C)</th>
<th>.5</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>(K=3, \Delta=.50)</th>
<th>.5</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>(K=5, \Delta=.50)</th>
</tr>
</thead>
<tbody>
<tr>
<td>.44</td>
<td></td>
<td>.6046 & 2.1691 & 3.7070 & 5.2520</td>
<td>.4076 & 1.6808 & 3.1407 & 4.1256</td>
<td></td>
</tr>
<tr>
<td>.67</td>
<td></td>
<td>.2266 & 1.3308 & 2.4711 & 3.1836 & 3.9954</td>
<td>.2717 & 1.2091 & 2.2187 & 2.8315</td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td></td>
<td>.2737 & 1.0657 & 1.7797 & 2.5294 & 3.3921</td>
<td>.2454 & 1.1081 & 1.8152 & 2.4559</td>
<td></td>
</tr>
<tr>
<td>1.50</td>
<td></td>
<td>.1057 & .7517 & 1.4668 & 2.1038 & 2.8730</td>
<td>.3251 & 1.0592 & 1.5509 & 2.0677</td>
<td></td>
</tr>
<tr>
<td>5.06</td>
<td></td>
<td>.2648 & .8280 & 1.2892 & 1.7989 & 2.4360</td>
<td>.5197 & 1.2541 & 1.8346 & 2.0435</td>
<td></td>
</tr>
<tr>
<td>7.59</td>
<td></td>
<td>.1666 & .8242 & 1.4017 & 1.9438 & 2.4229</td>
<td>.6326 & 1.0 & .14 & 1.9337 & 2.4431</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(K=3, \Delta=.50)</td>
<td>.7906 & 2.0710 & 3.4931 & 5.0995</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.44</td>
<td></td>
<td>2.1572 & 3.7576 & 4.6502</td>
<td>.7906 & 2.0710 & 3.4931 & 5.0995</td>
<td></td>
</tr>
<tr>
<td>.67</td>
<td></td>
<td>1.0391 & 2.1839 & 3.3917 & 4.2796 & 4.6762</td>
<td>.0000 & 1.2864 & 2.2379 & 2.8148 & 3.9145</td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td></td>
<td>.6040 & 1.4008 & 2.3435 & 3.1481 & 3.8496</td>
<td>.2222 & .8727 & 1.6505 & 2.2304 & 2.9659</td>
<td></td>
</tr>
<tr>
<td>2.25</td>
<td></td>
<td>.5304 & 1.1760 & 1.8692 & 2.2840 & 2.8038</td>
<td>.2595 & .9927 & 1.4305 & 1.9776 & 2.5138</td>
<td></td>
</tr>
<tr>
<td>5.06</td>
<td></td>
<td>.4940 & 1.0801 & 1.6856 & 2.1657 & 2.7589</td>
<td>.4329 & .8559 & 1.3859 & 1.9873 & 2.5174</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(K=5, \Delta=1.0)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.44</td>
<td></td>
<td>3.9204 & 5.3177</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.6400 & 4.2282 & 5.2869</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>.67</td>
<td></td>
<td>1.7627 & 2.9795 & 3.9441 & 5.0438</td>
<td>.7982 & 1.8799 & 2.9796 & 4.1074 & 5.1159</td>
<td></td>
</tr>
<tr>
<td>2.25</td>
<td></td>
<td>.5081 & 1.0389 & 1.6517 & 2.3356 & 2.9320 & 3.5011</td>
<td>.1360 & .7598 & 1.3617 & 2.0292 & 2.6420 & 2.9813</td>
<td></td>
</tr>
<tr>
<td>5.06</td>
<td></td>
<td>.4045 & .9447 & 1.6608 & 2.1144 & 2.6623 & 3.2459</td>
<td>.3714 & 1.0135 & 1.4671 & 2.0125 & 2.7515 & 3.0522</td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER 2

r-MINIMAX RULES FOR PARTITIONING TREATMENTS WITH RESPECT TO A CONTROL

2.1 Introduction

In many fields of research one is faced with the problem of comparing k experimental categories with reference to a 'standard' or a 'control'. Following the initial investigation by Paulson (1952), this problem has been studied in several different formulations by Dunnett (1955), Gupta and Sobel (1958) and Lehmann (1961) among others. Tong (1969) has studied a problem where the treatment populations are to be partitioned into two sets, one consisting of 'better' populations and another consisting of 'worse' populations. Later Randles and Hollander (1971) applied r-minimax principle to the same problem.

Let \(\pi_1, \ldots, \pi_k \) denote the k experimental categories or 'treatment' populations and let \(\pi_0 \) denote the 'control' population. We assume that each population is characterized by a real-valued location parameter \(\theta_i \) \((i = 0, 1, \ldots, k) \). We consider a problem in which the treatment populations \(\pi_1, \ldots, \pi_k \) are to be classified as 'better' than, 'worse' than or 'close' to the control \(\pi_0 \) if the corresponding parameter values are much larger than, much smaller than or sufficiently close
to the value of \(\theta_0 \). Similar problems have been considered in Bhattacharyya (1956, 1958) and in Seeger (1972) when \(\theta_0, \ldots, \theta_k \) are means of independent normal distributions. We apply the \(r \)-minimax principle to this problem. \(r \)-minimax principle is known as one of the techniques for the use of incomplete prior information. It is assumed that although a prior distribution on the states of nature is not available, it is known to belong to some family, \(r \), of distributions. It then requires the decision maker to select a decision rule which minimizes the supremum of the overall Bayes risk over distributions in \(r \). Such a rule is called a \(r \)-minimax rule.

Such a principle was first used by Robbins (1951) and independently by Hodges and Lehmann (1952) and Menges (1966). The name \(r \)-minimax was first used by Blum and Rosenblatt (1967). This principle has been applied to various problems by Jackson, O'Donovan, Zimmer and Deely (1970), Solomon (1972a, 1972b), DeRouen and Mitchell (1974), Gupta and Huang (1975, 1977), Berger (1977) and Miescke (1979).

In Section 2.2 definitions and notations are introduced, and a formulation of the problem is given. The loss function and the incomplete prior are introduced. Results analogous to standard ones on minimaxity are given to help find \(r \)-minimax decision rules.

In Section 2.3 a \(r \)-minimax decision rule is derived for the case in which \(\theta_0 \) is known and a minimax decision rule is found for the same case when a specific loss function is assumed. A solution is provided for the example in which \(\theta_0, \ldots, \theta_k \) are unknown means of normal distributions.
In Section 2.4, the case in which the control population parameter θ_0 is unknown is treated. Rules are derived which are Γ-minimax among procedures for which the classification of the i-th population depends only on x_i and x_0 where x_0, \ldots, x_k are independent random variables representing populations π_0, \ldots, π_k, respectively. Specific examples are again given. One example is to classify normal populations by their locations (means) wrt the mean of a normal control population. Another is to classify normal populations by their variances.

Section 2.5 consists of comparisons of Γ-minimax rules with Bayes rules wrt independent normal priors for the case of normal populations with common known variance.

2.2 Formulation of the problem

Let X_0, X_1, \ldots, X_k be $k+1$ independent random variables representing the control π_0 and the k treatment populations π_1, \ldots, π_k, respectively, with X_i having probability density function $f_i(x-\theta_i)$ with respect to the Lebesgue measure on the real line \mathbb{R} where $\theta_i \in \Theta = \mathbb{R}, i = 0, 1, \ldots, k$. The random variables X_0, \ldots, X_k may represent sufficient statistics or other statistics based on which we wish to make statistical decisions. We assume that each $f_i(\cdot) (i = 0, 1, \ldots, k)$ is symmetric about the origin and strongly unimodal, i.e., $f_i(\cdot)$ is log-concave on the real line. Hence $f_i(x-\theta_i)$ has the monotone likelihood ratio (MLR) property. Obviously, we do not need any observations from π_0 when θ_0 is assumed known; therefore, it will be understood that, in such a case, the random variable X_0 is deleted from our consideration.
The action space \mathcal{A} can be written as $\mathcal{A} = \mathcal{G}_1 \times \ldots \times \mathcal{G}_k$ where $\mathcal{G}_i = \{1,2,3\}$ for $i = 1, \ldots, k$. The action $a = (a_1, \ldots, a_k) \in \mathcal{A}$ is to be interpreted in such a way that, for $i = 1, \ldots, k$, the treatment population π_i is classified as 'worse' if $a_i = 1$, 'close' if $a_i = 2$ and 'better' if $a_i = 3$. The loss $L(\theta, a)$ incurred by the action $a \in \mathcal{A}$ for $\theta = (\theta_0, \theta_1, \ldots, \theta_k)$ is assumed to be of the following form.

$$L(\theta, a) = \sum_{i=1}^{k} L_i(\theta, a_i) \quad (2.2.1)$$

where $L_i(\theta, a_i)$ is defined below and denotes the loss in each component problem incurred by the component action a_i. For arbitrary but fixed positive constants Δ_1 and Δ_2 such that $\Delta_1 < \Delta_2$, we define five disjoint and exhaustive subregions $R_w, R_{I_1}, R_c, R_{I_2}, R_B$ of the real line R by $R_w = (-\infty, -\Delta_2]$, $R_{I_1} = (-\Delta_2, -\Delta_1]$, $R_c = [-\Delta_1, \Delta_1]$, $R_{I_2} = (\Delta_1, \Delta_2]$ and $R_B = [\Delta_2, \infty)$, and define $L_i(\theta, a_i)$ as in the next table.

<table>
<thead>
<tr>
<th>Action a_i</th>
<th>State of nature</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\theta_i - \theta_0 \in R_w$</td>
<td>0</td>
<td>ℓ_1</td>
<td>$\ell_1 + \ell_3$</td>
<td></td>
</tr>
<tr>
<td>$\theta_i - \theta_0 \in R_{I_1}$</td>
<td>0</td>
<td>0</td>
<td>ℓ_4 \hspace{1cm} ($\ell_4 \geq 0, i=1, \ldots, 4$)</td>
<td></td>
</tr>
<tr>
<td>$\theta_i - \theta_0 \in R_c$</td>
<td>ℓ_2</td>
<td>0</td>
<td>ℓ_2 \hspace{1cm} ($2.2.2$)</td>
<td></td>
</tr>
<tr>
<td>$\theta_i - \theta_0 \in R_{I_2}$</td>
<td>ℓ_4</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>$\theta_i - \theta_0 \in R_B$</td>
<td>$\ell_1 + \ell_3$</td>
<td>ℓ_1</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
This loss function reduces to the one considered in Bhattacharyya (1958) and in Seeger (1972) if \(\lambda_1 = \lambda_2 = \lambda_4 = \lambda_1 + \lambda_3 = 1 \). Note that the above loss function assumes the indifference zones in the sense that we do not distinguish between the actions 1 and 2 (2 and 3) when \(\theta_i - \theta_0 \in R_{1} \) \(\theta_i - \theta_0 \in R_{2} \), respectively. It should be pointed out that Bhattacharyya (1958) considered this loss function to avoid an irregularity of a similar loss function without indifference zones. In fact, Bhattacharyya (1956) derived an admissible minimax decision rule assuming a simple 0-1 type loss function when \(\theta_0 \) is assumed known and \(\theta_1, ..., \theta_k \) are unknown means of normal distributions. However, the irregularity of such a loss function has been pointed out in the sense that the minimax risk does not tend to zero even if the sample sizes increase indefinitely, and the same problem has been studied afresh by Bhattacharyya (1958) with a loss function of the type given in (2.2.2).

For given \(x = (x_0, x_1, ..., x_k) \) consider decision rules of the form

\[
\delta(x) = (\delta_1(x), ..., \delta_k(x))
\]

(2.2.3)

where \(\delta_i(x) = (\delta_i(1|x), \delta_i(2|x), \delta_i(3|x)) \) and, for \(j = 1, 2, 3 \), \(\delta_i(j|x) \) denotes the conditional probability of taking action \(j \) in the \(i \)-th component problem. Note that there is no loss of generality in considering decision rules of the form given in (2.2.3). The risk function of a rule \(\delta \) for fixed \(\theta \) is then

\[
R(\theta, \delta) = \sum_{i=1}^{k} R_i(\theta, \delta_i)
\]

where

\[
R_i(\theta, \delta_i) = E_\theta[L_i(\theta, \delta_i(x))]
\]

For a prior distribution \(\tau(\theta) \) of \(\theta \), the overall risk of a rule \(\delta \) wrt \(\tau \) is denoted by

\[
r(\tau, \delta) = \sum_{i=1}^{k} r_i(\tau, \delta_i)
\]

where

\[
r_i(\tau, \delta_i) = \int R_i(\theta, \delta_i) d\tau(\theta).
\]
Suppose that partial prior information is available to a decision maker such that, for each \(i \), he can specify \(\gamma_i = P[\theta_1 - \theta_0 \in R_i \cup R_B] \) and \(\gamma_i' = P[\theta_1 - \theta_0 \in R_i] \) where \(\gamma_i + \gamma_i' \leq 1 \) for \(i = 1, \ldots, k \). Let \(\Gamma \) denote the class of all such prior distributions, i.e.,

\[
\Gamma = \{ \tau(\theta) : \int_{\theta_1 - \theta_0 \in R_i \cup R_B} d\tau(\theta) = \gamma_i, \int_{\theta_1 - \theta_0 \in R_i} d\tau(\theta) = \gamma_i' \} \quad (2.2.4)
\]

Now our goal is to find a \(\Gamma \)-minimax rule \(\delta^* \) as defined below.

Definition 2.2.1. A rule \(\delta^* \) is a \(\Gamma \)-minimax decision rule if

\[
sup_{\tau \in \Gamma} r(\tau, \delta^*) = \inf_{\delta \in \Gamma} \sup_{\tau \in \Gamma} r(\tau, \delta),
\]

and \(\sup_{\tau \in \Gamma} r(\tau, \delta^*) \) is called the \(\Gamma \)-minimax value.

Many authors have found \(\Gamma \)-minimax rules by finding Bayes rules with respect to 'least favorable' priors in the class \(\Gamma \). However, such a method was found not to lead to the solution of our problem; the following results analogous to standard results on minimaxity are found useful.

Lemma 2.2.1. Suppose \(\{ \tau_n, n = 1, 2, \ldots \} \) is a sequence of priors in \(\Gamma \).

If \(\liminf_n r(\tau_n, \delta) \geq c \) and if \(\sup_{\tau \in \Gamma} r(\tau, \delta) \leq c \), then \(\delta^* \) is a \(\Gamma \)-minimax decision rule and \(c \) is the \(\Gamma \)-minimax value.

Proof. The result is an immediate consequence of the following inequalities.
\[
\sup_{\tau \in \Gamma} \inf_{\delta} r(\tau, \delta) \geq \lim_{n \to \infty} \inf_{\delta} r(\tau_n, \delta) \\
\geq c \\
\geq \sup_{\tau \in \Gamma} r(\tau, \delta^*) \\
\geq \inf_{\delta} \sup_{\tau \in \Gamma} r(\tau, \delta) \\
\geq \sup_{\tau \in \Gamma} \inf_{\delta} r(\tau, \delta).
\]

The next result is useful when we have certain invariance under a finite group. Following Ferguson (1967), let \(G = \{g_1, \ldots, g_N\} \), \(\bar{G} \) and \(\bar{G} \) denote the group of transformations on the sample space \(\mathcal{X} \), the induced group on the parameter space and that on the action space, respectively.

Lemma 2.2.2. Suppose that a given decision problem is invariant under a finite group. If \(\bar{g}_\tau \in \bar{G} \) for any \(\tau \in \Gamma \) and \(g \in G \) where \(\bar{g}_\tau(B) = \tau(\bar{g}^{-1}(B)) \), then a \(\Gamma \)-minimax rule within the class of invariant behavioral decision rules is \(\Gamma \)-minimax.

Proof. Let \(\delta^I \) denote the invariant rule generated from a given rule \(\delta \), i.e., \(\delta^I(x, A) = \frac{1}{N} \sum_{j=1}^{N} \delta(g_j(x), \bar{g}_j(A)) \) for each \(x \in \mathcal{X} \) and \(A \subset \mathcal{A} \). Then clearly \(\delta^I \) is invariant, and

\[
\sup_{\tau \in \Gamma} r(\tau, \delta^I) = \sup_{\tau \in \Gamma} \frac{1}{N} \sum_{j=1}^{N} r(\tau, \delta^I) \text{ where } \delta^I(x, A) = \delta(g_j(x), \bar{g}_j(A)) \\
= \sup_{\tau \in \Gamma} \frac{1}{N} \sum_{j=1}^{N} r(\bar{g}_j \tau, \delta) \\
\leq \frac{1}{N} \sum_{j=1}^{N} \sup_{\tau \in \Gamma} r(\bar{g}_j \tau, \delta)
\]
\[\leq \frac{1}{N} \sum_{j=1}^{N} \sup_{\tau \in \Gamma} r(\tau, \delta) \text{ since } \tilde{g}_\tau \in \Gamma \text{ for any } \tau \in \Gamma \text{ and } g \in G \]
\[= \sup_{\tau \in \Gamma} r(\tau, \delta). \]
This completes the proof.

It should be pointed out that our decision problem is invariant under the symmetry about the origin, and that randomized decision rules and behavioral rules are equivalent since the distributions of \(X \)'s are assumed to be continuous.

2.3 Known control

In this section \(\theta_0 \) is assumed known and thus we may assume \(\theta_0 = 0 \) without loss of generality. Hence \(x \) and \(\theta \) in this section denote \((x_1, \ldots, x_k)\) and \((\theta_1, \ldots, \theta_k)\), respectively.

Lemma 2.3.1. Suppose that a decision rule \(\delta(x) \) of the form in (2.2.3) is determined by \(\delta_1(1|x) = I_{(-\infty, d_1]}(x_1), \delta_1(2|x) = I_{[-d_1, d_1]}(x_1) \) and \(\delta_1(3|x) = I_{(d_1, \infty)}(x_1) \) for \(d_1 \geq 0 \) and \(i = 1, \ldots, k \). Then, for \(i = 1, \ldots, k \),

\[\sup_{\tau \in \Gamma} r_i(\tau, \delta_1) \leq r_i \quad (2.3.1) \]

where, for \(i = 1, \ldots, k \),

\[r_i = \int_{d_1}^{\infty} [\gamma_2 \gamma_4 f_i(x+\Delta_1) + \gamma_2 \gamma_1 f_i(x-\Delta_1) + f_i(x+\Delta_1) + f_i(x+\Delta_1)] \gamma_i \gamma_2 \gamma_4 (1-\gamma_i-\gamma_i') dx \]

\[+ \int_{-\infty}^{d_1} \gamma_i f_i(x-\Delta_2) dx. \]

Proof. It follows from (2.2.2) that, for \(\theta_i \leq -\Delta_2 \),
\[R_i(\theta, \delta_i) = \varepsilon_1 \int_{-d_i}^{d_i} f_i(x-\theta_i) \, dx + \varepsilon_3 \int_{d_i}^{\infty} f_i(x-\theta_i) \, dx \]

\[\leq \varepsilon_1 \int_{-d_i}^{\infty} f_i(x+\Delta_2) \, dx + \varepsilon_3 \int_{d_i}^{\infty} f_i(x+\Delta_2) \, dx \]

\[= \varepsilon_1 \int_{-\infty}^{\infty} f_i(x-\Delta_2) \, dx + \varepsilon_3 \int_{d_i}^{\infty} f_i(x+\Delta_2) \, dx \text{ by the symmetry of } f_i(\cdot). \]

In a similar manner it can be shown that

\[R_i(\theta, \delta_i) \left\{ \begin{array}{ll}
\leq \varepsilon_1 \int_{-\infty}^{d_i} f_i(x-\Delta_2) \, dx + \varepsilon_3 \int_{d_i}^{\infty} f_i(x+\Delta_2) \, dx & \text{for } \theta_i > \Delta_2, \\
\leq \varepsilon_3 \int_{d_i}^{\infty} f_i(x+\Delta_1) \, dx & \text{for } \Delta_1 < |\theta_i| < \Delta_2.
\end{array} \right. \]

If \(-\Delta_1 \leq \theta_i \leq \Delta_1\), then

\[R_i(\theta, \delta_i) = \varepsilon_2 \int_{-\infty}^{\infty} f_i(x-\theta_i) \, dx + \int_{d_i}^{\infty} f_i(x-\theta_i) \, dx, \]

therefore,

\[R_i'(\theta, \delta_i) = \varepsilon_2 [f_i(d_i-\theta_i) - f_i(-d_i-\theta_i)] \]

\[= \varepsilon_2 \left[f_i(\theta_i+d_i) \left(\frac{f_i(\theta_i-d_i)}{f_i(\theta_i+d_i)} - 1 \right) \right], \]

where \(R_i' \) denotes the derivative of \(R_i \) w.r.t. \(\theta_i \).

It follows from the MLR property of \(f_i(x-\theta_i) \) that \(R_i'(\theta, \delta_i) \) has at most one change of sign, from negative to positive if there is any sign change at all; therefore, \(R_i(\theta, \delta_i) \) attains its supremum over \(\theta_i \in [-\Delta_1, \Delta_1] \) at either \(\theta_i = -\Delta_1 \) or \(\theta_i = \Delta_1 \). Hence it follows from the symmetry of \(f_i(\cdot) \) that, for \(\theta_i \in [-\Delta_1, \Delta_1] \),

\[R_i(\theta, \delta_i) \leq \varepsilon_2 \int_{d_i}^{\infty} [f_i(x-\Delta_1) + f_i(x+\Delta_1)] \, dx. \]

It follows from (2.2.4) that \(\sup_{\tau \in \Theta_i} r_i(\tau, \delta_i) \leq r_i \).
Now we derive the r-minimax rule in the following result.

Theorem 2.3.1. Assume that independent random variables X_1, \ldots, X_k have strong unimodal symmetric p.d.f's $f_1(x_{1-\theta_1}), \ldots, f_k(x_{k-\theta_k})$, respectively, and that the loss function is given by (2.2.1) and (2.2.2). Then the r-minimax rule δ^* is given by $\delta^*_i(1|x) = I(-\omega_i, d_i)(x_i)$, $\delta^*_i(2|x) = I[-d_i, d_i](x_i)$ and $\delta^*_i(3|x) = I(d_i, \omega)(x_i)$ for $i = 1, \ldots, k$ where each d_i is determined by $d_i = c_i^+ = \max(c_i, 0)$ with c_i being defined by

$$
\kappa_3 \gamma_i f_i(x+\Delta_2) + \kappa_2 \gamma_i' f_i(x-\Delta_1) + f_i(x+\Delta_1) - \kappa_4 (1-\gamma_i - \gamma_i') f_i(x-\Delta_1)
$$

$$
\leq \kappa_1 \gamma_i f_i(x-\Delta_2) \quad \text{as} \quad x \geq, < c_i.
$$

(2.3.2)

Proof. We first show that the decision rule δ^* is well defined by verifying the existence of a c_i satisfying (2.3.2). Note that the difference between both sides in (2.3.2) can be written as

$$
\kappa_3 \gamma_i f_i(x+\Delta_2) + \kappa_2 \gamma_i' f_i(x-\Delta_1) + f_i(x+\Delta_1) - \kappa_4 (1-\gamma_i - \gamma_i') f_i(x-\Delta_1) = f_i(x-\Delta_2) \left[\frac{f_i(x+\Delta_2)}{f_i(x-\Delta_2)} + \frac{f_i(x-\Delta_1)}{f_i(x-\Delta_2)} + \frac{f_i(x+\Delta_1)}{f_i(x-\Delta_2)} - \kappa_4 (1-\gamma_i - \gamma_i') \right].
$$

Then the existence of such a c_i follows from the MLR property of $f_i(x-\theta_i)$. Consider a sequence of prior distributions (τ_n) of θ under which $\theta_1, \ldots, \theta_k$ are independent, $P(\theta_i=\Delta_2) = P(\theta_i = -\Delta_2) = \gamma_i/2$, $P(\theta_i=\Delta_1) = P(\theta_i = -\Delta_1) = \gamma_i'/2$ and $P(\theta_i = -\Delta_1^{-1}) = P(\theta_i=\Delta_1+n^{-1}) = (1-\gamma_i - \gamma_i')/2$. Then clearly $\tau_n \in \Gamma$ for $n > (\Delta_2-\Delta_1)^{-1}$, and the overall
risk of the Bayes rule w.r.t τ_n for the i-th component problem can be written as, for $i = 1, \ldots, k$,

$$\inf_{\delta_i} r_i(\tau_n, \delta_i) = \int_{-\infty}^{\infty} p_n(x)dx,$$

where $p_n(x) = \frac{1}{2} \min\{p_n(1,x), p(2,x), p_n(3,x)\}$,

$$p_n(1,x) = \frac{1}{2} \gamma_i f_i(x-\Delta_1) + f_i(x+\Delta_1) + \varepsilon_4 (1-\gamma_i') f_i(x-\Delta_1 - \frac{1}{n}) + (\varepsilon_1 + \varepsilon_3) \gamma_i f_i(x-\Delta_2),$$

$$p(2,x) = \varepsilon_1 \gamma_i f_i(x+\Delta_2) + f_i(x-\Delta_2)$$

and

$$p_n(3,x) = (\varepsilon_1 + \varepsilon_3) \gamma_i f_i(x+\Delta_2) + \varepsilon_4 (1-\gamma_i' - \gamma_i) f_i(x+\Delta_1 + \frac{1}{n}) + \varepsilon_2 \gamma_i f_i(x+\Delta_1) + \varepsilon_2 \gamma_i f_i(x-\Delta_1).$$

Since strongly unimodality of $f_i(\cdot)$ implies the continuity of $f_i(\cdot)$, $p_n(x)$ converges, as $n \to \infty$, to $p(x) = \frac{1}{2} \min\{p(j,x)\}$ where $p(2,x)$ is defined as above,

$$p(1,x) = \frac{1}{2} \gamma_i f_i(x-\Delta_1) + f_i(x+\Delta_1) + \varepsilon_4 (1-\gamma_i' - \gamma_i) f_i(x-\Delta_1) + (\varepsilon_1 + \varepsilon_3) \gamma_i f_i(x-\Delta_2)$$

and

$$p(3,x) = (\varepsilon_1 + \varepsilon_3) \gamma_i f_i(x+\Delta_2) + \varepsilon_4 (1-\gamma_i' - \gamma_i) f_i(x+\Delta_1) + \varepsilon_2 \gamma_i f_i(x+\Delta_1) + \varepsilon_2 \gamma_i f_i(x-\Delta_1).$$

Since $p_n(x)$ is bounded above by $p(2,x)$ which is integrable, it follows from the Lebesgue convergence theorem that

$$\lim_{n} \inf_{\delta_i} r_i(\tau_n, \delta_i) = \int_{-\infty}^{\infty} p(x)dx = \frac{1}{2} \int_{-\infty}^{\infty} \min_{1 \leq j \leq 3} p(j,x)dx.$$ (2.3.3)
Furthermore, it can be easily shown that, for any $\Delta > 0$, $f_i(x-\Delta) - f_i(x+\Delta) \geq 0$, ≤ 0 as $x \geq 0$, ≤ 0 and therefore $p(1, x) \geq, \leq p(3, x)$ as $x \geq 0$, ≤ 0. It follows from (2.3.3) that

$$
\liminf_{n} r_1(\tau_n, \delta_1) = \frac{1}{2} \int_{-\infty}^{0} \min_{1 \leq j \leq 2} p(j, x) dx + \frac{1}{2} \int_{0}^{\infty} \min_{2 \leq j \leq 3} p(j, x) dx
$$

$$
= \int_{0}^{\infty} \min_{2 \leq j \leq 3} p(j, x) dx
$$

$$
= \int_{0}^{\infty} \left[\ell_{\Delta 2} f_i(x+\Delta) + \varepsilon_4(1-\gamma_1) f_i(x+\Delta) + \varepsilon_2 \gamma_1 f_i(x+\Delta) + \varepsilon_1 \gamma_1 f_i(x-\Delta) \right] dx
$$

$$
+ \int_{-\infty}^{0} \ell_{\Delta 2} f_i(x-\Delta) dx.
$$

The second equality in the above follows from the fact that $p(1, x) = p(3, x)$ and $p(2, x) = p(2, -x)$. It follows from (2.3.2) and (2.3.4) that

$$
\liminf_{n} r_1(\tau_n, \delta_1) = \int_{d_i} \left[\ell_{\Delta 2} f_i(x+\Delta) + \varepsilon_4(1-\gamma_1) f_i(x+\Delta) + \varepsilon_2 \gamma_1 f_i(x+\Delta) + \varepsilon_1 \gamma_1 f_i(x-\Delta) \right] dx
$$

$$
+ \int_{-\infty}^{d_i} \ell_{\Delta 2} f_i(x-\Delta) dx
$$

$$
\geq \sup_{\tau \in \Gamma} r_i(\tau, \delta^*_i) \text{ by Lemma 2.3.1.}
$$

Therefore,

$$
\liminf_{n} r(\tau_n, \delta) = \lim_{k} \inf_{n} \sum_{i=1}^{k} r_i(\tau_n, \delta_i)
$$

$$
\geq \sum_{i=1}^{k} \sup_{\tau \in \Gamma} r_i(\tau, \delta^*_i)
$$

$$
\geq \sup_{\tau \in \Gamma} r(\tau, \delta^*). \tag{2.3.5}
$$
Here, the first equality follows from the fact that the Bayes rule consists of the Bayes rules for the component problems. Lemma 2.2.1 then yields that the decision rule δ^* is τ-minimax among all decision rules.

We can derive a minimax rule using the proof of the above result. For this purpose, assume that $\varepsilon_1 = \varepsilon_2 = \varepsilon_4 = 1$ and $\varepsilon_3 = \varepsilon < 1$. Let us consider a rule δ^M of the type given in Lemma 2.3.1 where each d_i is determined so that, for $F_i(x) = \int_{-\infty}^{x} f_i(t) \, dt$,

$$F_i(d_i-\Delta_2) + \varepsilon F_i(-d_i+\Delta_2) = F_i(-d_i-\Delta_1)+F_i(-d_i+\Delta_1). \quad (2.3.6)$$

Note that the existence of such a positive d_i follows from strong unimodality and the symmetry of $f_i(.)$. Let us define γ_i and $\gamma_i' = 1 - \gamma_i$ for each $i = 1, \ldots, k$ by

$$\gamma_i = \frac{[f_i(d_i-\Delta_1)+f_i(d_i+\Delta_1)]/[f_i(d_i-\Delta_2)-\varepsilon f_i(d_i+\Delta_2)+f_i(d_i-\Delta_1)+f_i(d_i+\Delta_1)]}{[f_i(d_i-\Delta_1)+f_i(d_i+\Delta_1)]/[f_i(d_i-\Delta_2)-\varepsilon f_i(d_i+\Delta_2)+f_i(d_i-\Delta_1)+f_i(d_i+\Delta_1)]}.$$

Since $\gamma_i \in [0,1]$, we can consider a family of priors, π given in (2.2.4). Then it follows from Theorem 2.3.1 that the corresponding τ-minimax rule is of the same type as δ^M except that now $d_i^* = \max(c_i,0)$ where c_i is determined so that

$$H(c_i) = \gamma_i[\varepsilon f_i(c_i+\Delta_2)-f_i(c_i-\Delta_2)]+\gamma_i'(f_i(c_i-\Delta_1)+f_i(c_i+\Delta_1)) = 0.$$

Since $H(d_i) = 0$ and $d_i > 0$, $d_i^* = d_i$, i.e., the rule δ^M is the τ-minimax procedure; therefore it follows from (2.3.5) and (2.3.1) that, for some sequence of priors,
\[
\lim \inf_{n \to \infty} r(\tau_n, \delta) \geq \sum_{i=1}^{k} \gamma_i [F_i(d_i^\Delta_2) + \varepsilon F_i(-d_i^\Delta_2)] + \gamma_i [F_i(-d_i^\Delta_1) + F_i(d_i^\Delta_1)]
\]

\[
= \sum_{i=1}^{k} [F_i(-d_i^\Delta_1) + F_i(d_i^\Delta_1)] \text{ by (2.3.6)}
\]

\[
= \sum_{i=1}^{k} \sup_{\theta} R_i(\theta, \delta^M)
\]

\[
\geq \sup_{\theta} R(\theta, \delta^M).
\]

The last equality in the above follows from similar arguments as in the proof of Lemma 2.3.1. Therefore, we have the next general result which includes Bhattacharyya's (1958) result as a special case.

Corollary 2.3.1. Under the assumptions in Theorem 2.3.1, if \(\varepsilon_1 = \varepsilon_2 = \varepsilon_4 = 1\) and \(\varepsilon_3 \varepsilon_2 < 1\), then a minimax decision rule \(\delta^M\) is given by \(\delta^M_i(l|x) = I_{(-\infty, -d_i)}(x_i), \delta^M_i(2|x) = I_{[-d_i, d_i]}(x_i)\) and \(\delta^M_i(3|x) = I_{(d_i, \infty)}(x_i)\) where each \(d_i\) is determined by (2.3.6).

The following example illustrates the application of these results.

Example 2.3.1. Suppose \(\pi_i\) represents normal population \(N(\theta_i, \sigma^2)\) for \(i = 0, 1, \ldots, k\) with \(\theta_0\) and \(\sigma^2\) known. We assume that a random sample of size \(n_i\) is taken from each of the \(k\) populations \(\pi_1, \pi_2, \ldots, \pi_k\). By sufficiency we can restrict our attention to the decision rules depending only on the sample means \(x_1, \ldots, x_k\) where \(x_i\) has normal distribution with mean \(\theta_i\) and variance \(\sigma_i^2 = \sigma^2/n_i\) for \(i = 1, \ldots, k\).

(A) \(r\)-minimax rule: Application of Theorem 2.3.1 yields the \(r\)-minimax decision rule \(\delta^*\) of the type in Theorem 2.3.1 with \(x_i - \theta_0\) replacing \(x_i\) and \(d_i\) being \(\sigma_i \max(t_i, 0)\) where \(t_i\) is determined by
where $\lambda_i + \epsilon_i = \Delta_i / \sigma_i$ and $\lambda_i - \epsilon_i = \Delta_i / \sigma_i$ for $i = 1, ..., k$.

(B) **Minimax rule:** We assume $\lambda_1 = \lambda_2 = \lambda_4 = 1$ and $\lambda_3 = \lambda < 1$. Then a
minimax decision rule δ^M is of the type in Corollary 2.3.1 with $x_i > 0$
replacing x_i and d_i being $\sigma_i t_i$ where t_i is determined by

$$\phi(t_i - \lambda_i - \epsilon_i) + \phi(-t_i - \lambda_i + \epsilon_i) = \phi(-t_i - \lambda_i + \epsilon_i) + \phi(-t_i + \lambda_i - \epsilon_i)$$

(2.3.8)

with λ_i and ϵ_i defined as in (A).

2.4 Unknown control

In this section we will consider the case when θ_0 is unknown and
will derive a \mathcal{R}-minimax decision rule δ^* in the class \mathcal{R}_0 of decision
rules $\delta = (\delta_1, ..., \delta_k)$ for which δ_i depends only on X_0 and X_i.

We state the following well-known lemma of Ibragimov (1956).

Lemma 2.4.1. The convolution of two strongly unimodal probability
density functions is also strongly unimodal.

It follows that the pdf of $Y_i = X_i - X_0$ given by

$$g_i(y-(\theta_i-\theta_0)) = \int_{-\infty}^{\infty} f_i(x+y-\theta_i)f_0(x-\theta_0)dx,$$

(2.4.1)
is strongly unimodal and symmetric about the origin. The next result
follows from this fact and Lemma 2.3.1.
Lemma 2.4.2. Suppose that a decision rule \(\delta(x) \) is defined by

\[
\delta_i(1|x) = I_{[-\alpha_i, x]}(x \mid x_0), \quad \delta_i(2|x) = I_{[-x, -\alpha_i]}(x \mid x_0) \quad \text{and} \quad \delta_i(3|x) = I_{[x, \infty]}(x \mid x_0)
\]

for \(d_i \geq 0, \ i = 1, \ldots, k \).

Then, for \(i = 1, \ldots, k \),

\[
\sup_{\tau \in \Theta_i} r_i(\tau, \delta_i) \leq r_i
\]

(2.4.2)

where, for \(i = 1, \ldots, k \),

\[
r_i = \int_{-\infty}^{\infty} \left[\gamma_i g_i(y + \Delta_2) + \gamma_{i-1} g_i(y - \Delta_1) + \gamma_i g_i(y + \Delta_1) + \gamma_{i-1} g_i(y - \Delta_1) \right] dy
\]

We now proceed as in Theorem 2.3.1 by considering the following sequence \(\{\tau_n, n = 1, 2, \ldots\} \) of prior distributions.

Under \(\tau_n \), (i) \(\theta_1 \sim \theta_0, \ldots, \theta_k \sim \theta_0 \) are independent,

(ii) \(P[\theta_i - \theta_0 = \Delta_2] = \gamma_i / 2 = P[\theta_i - \theta_0 = -\Delta_2] \),

\(P[\theta_i - \theta_0 = \Delta_1] = \gamma_i / 2 = P[\theta_i - \theta_0 = -\Delta_1] \),

\(P[\theta_i - \theta_0 = -\Delta_1 + \frac{1}{n}] = (1 - \gamma_i - \gamma_i') / 2 = P[\theta_i - \theta_0 = -\Delta_1 - \frac{1}{n}] \) and

(iii) \(\theta_0 \) has uniform distribution over \([-n, n]\) and is independent of \(\theta_1 - \theta_0, \ldots, \theta_k - \theta_0 \).

It can be easily shown that the Bayes rule in \(\Theta_0 \) w.r.t. \(\tau_n \) is determined by Bayes rules for component problems and that the Bayes rule for the \(i \)-th component problem depends on \(x \) only through \(x_i \) and \(x_0 \). It follows from simple computation of the posterior risk of each possible action.
that the overall risk of the Bayes rule for the i-th component problem is given by

\[
\inf_{\delta \in \Omega_0} r_i(\tau_n, \delta) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{1}{4n} p_n(s, t) ds dt
\]

where \(p_n(s, t) = \min\{p_n(1, s, t), p_n(2, s, t), p_n(1, -s, -t)\} \),

\[
p_n(1, s, t) = \varepsilon_2^{n} \int_{-n}^{n} [f_i(s-\Delta_1) + f_i(s+\Delta_1)] f_0(t-u) du + \varepsilon_4(1-\gamma_i-\gamma_i') \int_{-n}^{n} f_i(s-\Delta_2) f_0(t-u) du + (\varepsilon_1+\varepsilon_3) \gamma_i \int_{-n}^{n} f_i(s-\Delta_2) f_0(t-u) du \quad \text{and}
\]

\[
p_n(2, s, t) = \varepsilon_1 \gamma_i \int_{-n}^{n} [f_i(s+\Delta_2) + f_i(s-\Delta_2)] f_0(t-u) du.
\]

From change of variables \(s = nv-w \) and \(t = nv+w \), it follows that

\[
\inf_{\delta \in \Omega_0} r_i(\tau_n, \delta) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{1}{2} p_n(nv-w, nv+w) dv dw
\]

\[
\geq \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{1}{2} p_n(nv-w, nv+w) dv dw.
\]

(2.4.3)

Note that \(h_n(v, w) = p_n(nv-w, nv+w) \) can be written as

\[
h_n(v, w) = \min\{h_n(1, v, w), h_n(2, v, w), h_n(1, -v, -w)\}
\]

where \(h_n(1, v, w) = \varepsilon_2^{n} \int_{n(v-1)}^{n(v+1)} [f_i(z-w-\Delta_1) + f_i(z-w+\Delta_1)] f_0(z+w) dz + \varepsilon_4(1-\gamma_i-\gamma_i') \int_{n(v-1)}^{n(v+1)} f_i(z-w-\Delta_2) f_0(z+w) dz + (\varepsilon_1+\varepsilon_3) \gamma_i \int_{n(v-1)}^{n(v+1)} f_i(z-w-\Delta_2) f_0(z+w) dz \).
\[h_n(2,v,w) = \varepsilon_1 \gamma_i \int_{n(v-1)}^{n(v+1)} f_1(z-w-\Delta_2) f_0(z+w) dz \quad \text{and} \]
\[h_n(2,v,w) = \varepsilon_1 \gamma_i \int_{n(v-1)}^{n(v+1)} [f_1(z-w+\Delta_2)+f_1(z-w-\Delta_2)] f_0(z+w) dz. \]

Furthermore it is easy to see that, for any \((v,w) \in (-1,1) \times \mathbb{R}, h_n(v,w)\)
converges to \(h(w) = \min\{h(1,w), h(2,w), h(1,-w)\}\) where
\[h(1,w) = \varepsilon_2 \gamma_i \int_{-\infty}^{\infty} [f_1(z-w-\Delta_1)+f_1(z-w+\Delta_1)] f_0(z+w) dz + \]
\[+ \varepsilon_4 (1-\gamma_i-\gamma_i') \int_{-\infty}^{\infty} f_1(z-w-\Delta_1) f_0(z+w) dz + \]
\[+ (\varepsilon_1+\varepsilon_3) \gamma_i \int_{-\infty}^{\infty} f_1(z-w-\Delta_2) f_0(z+w) dz \quad \text{and} \]
\[h(2,w) = \varepsilon_1 \gamma_i \int_{-\infty}^{\infty} [f_1(z-w+\Delta_2)+f_1(z-w-\Delta_2)] f_0(z+w) dz. \]

Since \(h_n(v,w)\) is bounded above by \(h(2,w)\) which is integrable, it
follows from (2.4.3) and the Lebesgue convergence theorem that
\[\lim_{n \to \infty} \inf_{\delta \in \Omega} r_1(\tau_n, \delta_i) \geq \int_{-\infty}^{\infty} h(w) dw \]
\[= \frac{1}{2} \int_{-\infty}^{\infty} \min\{p(1,y), p(2,y), p(1,-y)\} dy \quad (2.4.4) \]
where \(p(1,y) = \varepsilon_2 \gamma_i [g_i(y-\Delta_1)+g_i(y+\Delta_1)] + \varepsilon_4 (1-\gamma_i-\gamma_i') g_i(y-\Delta_1) + \)
\[(\varepsilon_1+\varepsilon_3) \gamma_i g_i(y-\Delta_2) \quad \text{and} \]
\[p(2,y) = \varepsilon_1 \gamma_i [g_i(y+\Delta_2)+g_i(y-\Delta_2)]. \]

The identity in (2.4.4) follows from (2.4.1) and a change of
variable. Since \(p(1,y) \geq p(1,-y) \) as \(y \geq 0 \), \(\leq 0 \), (2.4.4) yields that

\[
\lim_{n \to \infty} \inf_{\delta \in \mathcal{D}_0} r_i(\tau_n, \delta_i) \geq \min\{ \varepsilon \gamma_1 g_i(y+\Delta_2) + \varepsilon \gamma_4 (1-\gamma_1 - \gamma_1') g_i(y+\Delta_1) +
\varepsilon \gamma_2 g_i(y+\Delta_1) + g_i(y-\Delta_1), \varepsilon \gamma_3 g_i(y-\Delta_2)\} dy + \int_{-\infty}^{0} \varepsilon \gamma_1 g_i(y-\Delta_2) dy.
\]

(2.4.5)

Now consider a decision rule \(\delta^* \) defined by \(\delta_i^*(1|x) = I_{(-\infty, -d_i]}(x_i - x_0) \), \(\delta_i^*(2|x) = I_{[-d_i, d_i]}(x_i - x_0) \) and \(\delta_i^*(3|x) = I_{(d_i, \infty)}(x_i - x_0) \) for \(i = 1, \ldots, k \)

where each \(d_i \) is determined by \(d_i = \max(c_i, 0) \) so that

\[
\varepsilon \gamma_3 g_i(y+\Delta_2) + \varepsilon \gamma_2 g_i(y+\Delta_1) + g_i(y+\Delta_1) + \varepsilon \gamma_3 (1-\gamma_1 - \gamma_1') g_i(y+\Delta_1)
\leq \varepsilon \gamma_1 g_i(y-\Delta_2) \text{ as } y \geq \leq c_i.
\]

(2.4.6)

From Lemma 2.4.1, Lemma 2.4.2, (2.4.5) and (2.4.6) it follows that

\[
\lim_{n \to \infty} \inf_{\delta \in \mathcal{D}_0} r_i(\tau_n, \delta_i) \geq \sup_{\tau \in \mathcal{R}} r_i(\tau, \delta_i^*),
\]

and this in turn implies that

\[
\lim_{n \to \infty} \inf_{\delta \in \mathcal{D}_0} r(\tau_n, \delta) = \lim_{n \to \infty} \sum_{i=1}^{k} \inf_{\delta \in \mathcal{D}_0} r_i(\tau_n, \delta_i)
\leq \sum_{i=1}^{k} \lim_{n \to \infty} \inf_{\delta \in \mathcal{D}_0} r_i(\tau_n, \delta_i)
\geq \sum_{i=1}^{k} \sup_{\tau \in \mathcal{R}} r_i(\tau, \delta_i^*)
\geq \sup_{\tau \in \mathcal{R}} r(\tau, \delta^*).
\]
Lemma 2.2.1 then yields the next result.

Theorem 2.4.1. Assume that independent random variables \(X_0, \ldots, X_k \) have strongly unimodal symmetric pdf's \(f_0(x_0 - \theta_0), \ldots, f_k(x_k - \theta_k) \), respectively, and that the loss function is given by (2.2.1) and (2.2.2). Then the \(r \)-minimax decision rule \(\delta^* \) in \(\mathcal{A}_0 \) is given by

- \(\delta^*_1(1|x) = I_{(-\infty, -d_i]}(x_i - x_0) \),
- \(\delta^*_2(2|x) = I_{[-d_i, d_i]}(x_i - x_0) \),
- \(\delta^*_3(3|x) = I_{(d_i, \infty)}(x_i - x_0) \)

for \(i = 1, \ldots, k \) where \(d_i = \max(c_i, 0) \)

with \(c_i \) being determined by (2.4.6).

Remark 2.4.1. Note that the symmetry of \(f_i(\cdot) \) can be replaced by the symmetry of \(g_i(\cdot) \) for Theorem 2.4.1 to hold. It can be easily shown that the relation (2.4.4) holds without the assumption of the symmetry of \(f_i(\cdot) \). Then all the steps after (2.4.4) still remain true provided \(g_i(\cdot) \) is symmetric. It should also be pointed out that the symmetry of \(g_i(\cdot) \) follows when \(f_0(\cdot), f_1(\cdot), \ldots, f_k(\cdot) \) are identical.

The next result follows in exactly the same manner as Corollary 2.3.1 was proved.

Corollary 2.4.1. Under the assumptions in Theorem 2.4.1, if \(\lambda_1 = \lambda_2 = \lambda_4 = 1 \) and \(\lambda_3 = \xi < 1 \), then a minimax decision rule \(\delta^M \) in \(\mathcal{A}_0 \) is given by

- \(\delta^M_1(1|x) = I_{(-\infty, -d_i]}(x_i - x_0) \),
- \(\delta^M_2(2|x) = I_{[-d_i, d_i]}(x_i - x_0) \),
- \(\delta^M_3(3|x) = I_{(d_i, \infty)}(x_i - x_0) \)

for \(i = 1, \ldots, k \) where \(d_i > 0 \)

is determined so that, for \(G_i(x) = \int_{-\infty}^{x} g_i(t) \, dt \),

\[
G_i(d_i - \Delta_2) + G_i(-d_i + \Delta_2) = G_i(-d_i - \Delta_1) + G_i(-d_i + \Delta_1).
\]
We illustrate the application of the above results by the following examples.

Example 2.4.1. Consider the same problem in Example 2.3.1 except that \(\theta_0 \) is unknown. In this case a random sample of size \(n_0 \) is also taken from the control \(\pi_0 \). Let \(X_0, X_1, \ldots, X_k \) denote the sample means corresponding to \(\pi_0, \ldots, \pi_k \), respectively. Here, \(\sigma_0^2 = \sigma^2 / n_0 \).

(A) **\(\pi \)-minimax rule:** The \(\pi \)-minimax rule \(\delta^* \) in \(\mathcal{D}_0 \) given in Theorem 2.4.1 is determined by \(d_i = (\sigma_1^2 + \sigma_0^2)^{1/2} \max(t_i, 0) \) where \(t_i \) satisfies (2.3.7) with \(\lambda_i + \epsilon_i = \Delta_2 (\sigma_1^2 + \sigma_0^2)^{-1/2} \) and \(\lambda_i - \epsilon_i = \Delta_1 (\sigma_1^2 + \sigma_0^2)^{-1/2} \).

(B) **Minimax rule:** Assume \(\lambda_1 = \lambda_2 = \lambda_4 = 1 \) and \(\lambda_3 = \lambda < 1 \). Then the minimax rule \(\delta^M \) in \(\mathcal{D}_0 \) given in Corollary 2.4.1 is determined by \(d_i = (\sigma_1^2 + \sigma_0^2)^{1/2} t_i \) with \(t_i \) satisfying (2.3.8) where \(\lambda_i \) and \(\epsilon_i \) are defined as in the above. This offers a partial solution of the problem in Section 5.1 of Bhattacharyya (1956).

Example 2.4.2. Assume that \(\pi_i \) represents normal population \(N(0, \sigma_i^2) \) for \(i = 0, 1, \ldots, k \) with \(\sigma_i^2 \) unknown, and that we have a random sample of size \(n \) taken from each population \(\pi_i \). Consider a problem of partitioning the treatment populations in terms of variances \(\sigma_1^2, \ldots, \sigma_k^2 \) with a loss structure analogous to that given by (2.2.1) and (2.2.2), i.e. a loss function obtained from the latter by substituting \(\log \sigma_i^2 \), \(\log \Delta_1 \) and \(\log \Delta_2 \) for \(\theta_i \), \(\Delta_1 \) and \(\Delta_2 \), respectively. Thus \(\Delta_1 \) and \(\Delta_2 \) here are assumed such that \(1 < \Delta_1 < \Delta_2 \). By sufficiency we need to consider only the decision rules depending on \(S_1^2, \ldots, S_k^2 \) where \(S_i^2 \) denotes the sample variance corresponding to
\[n_i. \text{ Since } nS_i^2/\sigma_i^2 (i = 0,1,\ldots,k) \text{ are independently distributed chi-square random variables with degrees of freedom } n, \text{ it can be easily seen that the associated location parameter problem satisfies the assumptions in Theorem 2.4.1 except the symmetry which are not necessary in this problem because of Remark 2.4.1. Therefore, with obvious modifications we have the following results.} \]

Let \(\varphi_0 \) denote the class of decision rules \(\delta = (\delta_1,\ldots,\delta_k) \) for which \(\delta_i \) depends only on \(s_0^2 \) and \(s_i^2 \), and let \(T_i \) denote \(s_i^2/s_0^2 \) for \(i = 1,\ldots,k \).

(A) \(\tau \)-minimax rule: A \(\tau \)-minimax rule \(\delta^* \) in \(\varphi_0 \) is given by

\[
\delta^*_i(1|T_i) = I_{(0,d_i^{-1})}(T_i), \quad \delta^*_i(2|T_i) = I_{[d_i^{-1},d_i]}(T_i) \quad \text{and} \quad \delta^*_i(3|T_i) = I_{(d_i,\infty)}(T_i) \quad \text{for } i = 1,\ldots,k.
\]

With each \(d_i \) being determined by

\[
d_i = \max(c_i,1) \text{ so that}
\]

\[
\frac{\Delta_2^2}{\Delta_1^2 + \Delta_2^2} \gamma_1 \left(\frac{\Delta_2^2}{\Delta_1^2 + \Delta_2^2} \right)^n + \frac{\Delta_2^2}{\Delta_1^2 + \Delta_2^2} \gamma_2 \left(\frac{\Delta_2^2}{\Delta_1^2 + \Delta_2^2} \right)^n \left(\frac{\Delta_1^2}{\Delta_2^2} \right)^2 + \frac{\Delta_2^2}{\Delta_1^2 + \Delta_2^2} \gamma_2 \left(\frac{\Delta_2^2}{\Delta_1^2 + \Delta_2^2} \right)^n \left(\frac{\Delta_1^2}{\Delta_2^2} \right)^n \left(1 + \frac{\Delta_1^2}{\Delta_2^2} \right)^{n-2}
\]

\[\leq \left(\frac{\Delta_2^2}{\Delta_1^2 + \Delta_2^2} \right) \gamma_1 \gamma_2 \quad \text{as} \quad y \geq \frac{\Delta_1}{\Delta_2} \]

(2.4.7)

(B) Minimax rule: Assume \(\varepsilon_1 = \varepsilon_2 = \varepsilon_4 = 1 \) and \(\varepsilon_3 = \varepsilon < 1 \). Then the minimax rule \(\delta^M \) in \(\varphi_0 \) is the same as \(\delta^* \) in (A) except that \(d_i = d \) for \(i = 1,\ldots,k \) where \(d \) is determined so that

(2.4.8) \[G_n(d/\Delta_2) + \varepsilon [1 - G_n(d\Delta_2)] = G_n(\Delta_1/d) + 1 - G_n(d\Delta_1) \]

where \(G_n \) denotes the distribution function of \(F \)-distribution with degrees of freedom \(n \) and \(n \).

We note that if \(\pi_i \) represents \(N(\mu_i,\sigma_i^2) \) with both \(\mu_i \) and \(\sigma_i^2 \) unknown, then the above results still hold with \(n-1 \) replacing \(n \) where \(s_i^2 \) in
such a case is the best unbiased estimator of σ_i^2.

2.5 Comparison of Γ-minimax rules with Bayes rules

When we represent our a priori information about the parameters by prior distributions over the parameter space, one method for the use of such information is to find a rule which is Γ-minimax with respect to the class of such priors. Another way is to select one of such priors and use the corresponding Bayes rule. Thus Bayes rules wrt prior distributions in Γ are natural competitors for a Γ-minimax rule.

In this section we consider $k+1$ normal populations $N(\theta_i, \sigma^2)$ with σ^2 known, and will derive Bayes rules wrt a normal prior and then we compare them with the corresponding Γ-minimax rules from both points of view. Assume that $(\theta_0, ..., \theta_k)$ have prior distribution τ_0 under which

(i) $\theta_0, ..., \theta_k$ are independent and

(ii) each θ_i has a (marginal) normal distribution with mean μ_i and variance ν_i^2.

Let $x_0, ..., x_k$ denote the sample means based on samples of size n_i ($i = 0, 1, ..., k$). To simplify forthcoming formulae, let us introduce the following notations.

$$\sigma_i^2 = \sigma^2/n_i, \quad b_i = \left[(\sigma_i^{-2} + \nu_i^{-2})^{-1} + (\sigma_0^{-2} + \nu_0^{-2})^{-1} \right]^{1/2},$$
\[\lambda_i + \epsilon_i = \frac{\Delta_2}{b_i}, \quad \lambda_i - \epsilon_i = \frac{\Delta_1}{b_i} \]
\[m_i = (\sigma_i^{-2} \chi_i + v_i^{-2} \mu_i)(\sigma_i^{-2} + v_i^{-2})^{-1}, \quad y_i = (m_i - m_0)/b_i. \]
\[(2.5.2) \]

The following theorem describes the Bayes rule.

Theorem 2.5.1. Assume the prior \(\tau_0 \) as specified in (2.5.1). Then the Bayes rule \(\delta_i^B \) wrt \(\tau \) is given by \[\delta_i^B(1|y) = I_{(-\infty, -d_i)}(y_i), \]
\[\delta_i^B(2|y) = I_{[-d_i, d_i]}(y_i) \text{ and } \delta_i^B(3|y) = I_{(d_i, \infty)}(y_i) \] for \(i = 1, \ldots, k \)

where each \(d_i = \max(c_i, 0) \) is determined so that

\[\lambda_{2} \phi(-\lambda_i - \epsilon_i - y) + \lambda_{4} [\phi(-\lambda_i + \epsilon_i - y) - \phi(-\lambda_i - \epsilon_i - y)] \]
\[+ \lambda_{2} [\phi(\lambda_i - \epsilon_i - y) - \phi(-\lambda_i + \epsilon_i - y)] - \lambda_{1} \phi(-\lambda_i - \epsilon_i + y) \]
\[(2.5.3) \]

\[\geq 0, \leq 0 \quad \text{as} \quad y \leq c_i, \quad y \geq c_i \]

with \(\phi \) denoting the distribution function of \(N(0,1) \) distribution.

Proof. It suffices to find the Bayes rule for each of the \(k \) component problems. This reduces to comparison of posterior risks of three possible actions. Let \(p_1(y_i), p_2(y_i) \) and \(p_3(y_i) \) denote the posterior risks of action 1, 2 and 3, respectively, in the \(i \)-th component problem, then it can be shown that

\[p_1(y) = (\lambda_1 + \lambda_3) \phi(-\lambda_i - \epsilon_i + y) + \lambda_4 [\phi(\lambda_i + \epsilon_i - y) - \phi(\lambda_i - \epsilon_i - y)] + \]
\[+ \lambda_2 [\phi(\lambda_i - \epsilon_i - y) - \phi(-\lambda_i + \epsilon_i - y)], \]
\[p_2(y) = \lambda_1 [\phi(-\lambda_i - \epsilon_i - y) + \phi(-\lambda_i + \epsilon_i + y)] \text{ and} \]
\[p_3(y) = p_1(-y). \]
Note that $p_1(y) - p_3(y)$ can be written as $E_y H(z)$ where Z has normal distribution with mean y and variance 1 and $H(\cdot)$ is given by

$$H(z) = \begin{cases}
\lambda_1 + \lambda_3 & \text{if } z \geq \lambda_1 + \epsilon_i \\
\lambda_4 & \text{if } \lambda_1 - \epsilon_i < z < \lambda_1 + \epsilon_i \\
0 & \text{if } -\lambda_1 + \epsilon_i \leq z \leq \lambda_1 - \epsilon_i \\
-\lambda_4 & \text{if } -\lambda_1 - \epsilon_i < z < -\lambda_1 + \epsilon_i \\
-(\lambda_1 + \lambda_3) & \text{if } z \leq -\lambda_1 - \epsilon_i.
\end{cases}$$

Since the density of normal distribution $N(y,1)$ has MLR property, it follows that $p_1(y) - p_3(y)$ has at most one change of sign. Furthermore, it can be shown that $p_1(y) - p_3(y)$ is increasing on $(-\epsilon_i, \epsilon_i)$ and $p_1(0) - p_3(0) = 0$. Thus $p_1(y) - p_3(y) \geq 0$, ≤ 0 as $y \geq 0$, $y \leq 0$.

Similarly, we can show that $p_3(y) - p_2(y) \geq 0$, ≤ 0 as $y \leq c_i$, $y \geq c_i$ for some real number c_i unless $p_3(y) - p_2(y) \leq 0$ for all y. Therefore the result follows.

Thus comparison can be made between the r-minimax rule δ^* given in Example 2.4.1 and the Bayes rule δ^B given in Theorem 2.5.1 under the relations $\gamma_i = \phi[(-\Delta_2 + \mu_i - \mu_0)(v_i^2 + v_0^2)^{-\frac{3}{2}}] + \phi[(-\Delta_2 - \mu_i + \mu_0)(v_i^2 + v_0^2)^{-\frac{3}{2}}]$ and $\gamma_i' = \phi[(\Delta_1 - \mu_i + \mu_0)(v_i^2 + v_0^2)^{-\frac{3}{2}}] - \phi[(-\Delta_1 - \mu_i + \mu_0)(v_i^2 + v_0^2)^{-\frac{3}{2}}]$. We compare these rules under the assumption that $\lambda_1 = \lambda_2 = \lambda_4 = 1$, $\lambda_3 = \lambda$, $n_i = n$ and $v_i^2 = v_0^2$ for $i = 1, \ldots, k$. There are two ways of any meaningful comparison of these rules. One way is to examine the increase in overall risk wrt r_0 resulting from the use of the r-minimax rule. Another way is to compare these rules in terms of $\sup_{\tau \in \Gamma} r(\tau, \delta)$. When
\(n_i = n \) and \(v_i^2 = v_0^2 \), the Bayes rule depends on \(x \) only through
\[x_1 \cdot x_0, \ldots, x_k \cdot x_0 \]
and it can be shown that \(\sup_{\tau \in \Gamma} r(\tau, \delta^B) = \sum_{i=1}^k \sup_{\tau \in \Gamma} r_i(\tau, \delta^B_i) \).
Thus it suffices to compare these rules with respect to classification of one population. We choose \(\pi_1 \) for this purpose without loss of generality.

Now we introduce the parameters used in the comparison as follows.

\[\beta_1 = \frac{v_0^2}{\sigma_0^2}, \beta_2 = \frac{\Delta_2 + \Delta_1}{2\sqrt{2}v_0^2}, \beta_3 = \frac{\Delta_2 - \Delta_1}{2\sqrt{2}v_0^2}, \text{ and } \beta_4 = \frac{\mu_1 - \mu_0}{\sqrt{2}v_0^2}. \]

The overall risk wrt \(\tau_0 \) of these rules can be written as

\[\int \Phi(-A-B-C) + \Phi(A-B-C) + \Phi(D-E) + \Phi(-D-E) \]

\[- \Phi_0(-A-B-C, -D-E; \rho) + (1-\xi)\Phi_0(-A-B-C, D-E; \rho) \]

\[- \Phi_0(-A+B-C, D-E; \rho) + \Phi_0(A-B-C, -D-E; \rho) \]

\[- \Phi_0(-A+B-C, -D-E; \rho) - \Phi_0(A-B-C, D-E; \rho) \]

\[+ \Phi_0(-A+B-C, D-E; \rho) - \Phi_0(A-B-C, -D-E; \rho) \]

\[- \Phi_0(A+B-C, D-E; \rho) + (1-\xi)\Phi_0(A+B-C, -D-E; \rho) \]

where \(\Phi_0(\cdot, \cdot; \rho) \) is the cdf of a bivariate normal distribution with zero means, unit variances and correlation coefficient \(\rho \), \(A=\beta_2 \), \(B=\beta_3 \), \(C = \beta_4 \), \(\rho = \beta_1^2 (1+\beta_1)^{-1} \) for both \(\delta^B \) and \(\delta^* \), \(D = d_1 \beta_1^{-\frac{1}{2}} \) for \(\delta^B \),

\(D = \max(t_1, 0)(1+\beta_1)^{-\frac{1}{2}} \) for \(\delta^* \), \(E = \rho^{-1} \beta_4 \) for \(\delta^B \) and \(E = \rho \beta_4 \) for \(\delta^* \) with \(d_1 \) and \(t_1 \) being those in Theorem 2.5.1 and in Example 2.4.1. Also

\[\sup_{\tau \in \Gamma} r_1(\tau, \delta_1) \] for both rules can be written as

\[\tau \in \Gamma \]
\[\gamma_1[\phi(R+|S|-T-U)-\phi(-R+|S|-T+U)+2\phi(-R+|S|-T-U)] \\
+ \gamma_1^V[\phi(-R-S+T-U)+\phi(-R+S-T+U)]^V[\phi(-R+S+T-U)+\phi(-R-S+T-U)] \\
+ (1-\gamma_1^V)\phi(-R+|S|-T+U) \]

where \(x^V y = \max(x, y) \), \(T = \beta_2\beta_1^{1/2} \), \(U = \beta_3\beta_1^{1/2} \) for both \(\delta^B \) and \(\delta^* \), \\
\(S = \beta_4\beta_1^{3/2} \) for \(\delta^B \), \(S = 0 \) for \(\delta^* \), \(R = \beta_1^{1/2}(1+\beta_1)^{3/2}d_1 \) for \(\delta^B \), \(R = \max(t_1, 0) \) with \(d_1 \) and \(t_1 \) being those in Theorem 2.5.1 and in Example 2.4.1.

Note that \(y_1^V \), \(\lambda_1 \) and \(\epsilon_1 \) in Theorem 2.5.1 can be written as

\[y_1 = \frac{\sqrt{\beta_1}}{\sqrt{1+\beta_1}} \frac{x_1-x_0}{\sqrt{1+\beta_1}} + \frac{\beta_4}{\sqrt{1+\beta_1}}, \lambda_1 = \beta_2\sqrt{1+\beta_1} \] and \(\epsilon_1 = \beta_3\sqrt{1+\beta_1} \). Thus the constant \(d_1 \) does not change for the different values of \(\beta_4 \) when \(\beta_1, \beta_2 \) and \(\beta_3 \) are fixed. Particularly, if \(\epsilon = 1 \), then \(d_1 \) is easily found to be \(\beta_2\sqrt{1+\beta_1} \) which does not vary for different values of \(\beta_3 \). Table IV and Table V give \(r_1(\tau_0, \delta_1) \) and \(\sup_{\tau \in \Gamma} r_1(\tau, \delta_1) \) for \(\delta_1 = \delta_1^B, \delta_1^* \) for \(\epsilon = 0 \) and \(\epsilon = 1 \), respectively. As by products they also provide the constants to implement these rules. It can be observed from these tables that the increase in overall risk wrt \(\tau_0 \) from the use of \(\delta^* \) is only slight compared to that in \(\sup_{\tau \in \Gamma} r_1(\tau, \delta_1) \) from the use of \(\delta^B \). In this sense, \(\delta^* \) is more robust against other formulation. As it can be expected, such a robustness of \(\delta^* \) becomes more prominent as the difference between the prior means (\(\beta_4 \)) increases and the prior variance (\(\beta_1 \)) gets smaller. When the prior variance is large and we have the same prior means, both rules compare favorably with each other. In many cases, we can observe that the \(\tau \)-minimax decision rule compares favorably with the given Bayes rule in terms of overall risk.
TABLE IV

Lists the overall risks and the values of $\sup_{\tau \in \Omega} r(\tau, \delta)$ of Bayes rules and γ-minimax rules when $\gamma = 0$.

<table>
<thead>
<tr>
<th>Entries</th>
<th>$r_1^(\tau_0, \delta^_1)$</th>
<th>$r_1^(\tau_0, \delta^_1)$</th>
<th>$r_1^(\tau_0, \delta^_1)$</th>
<th>$r_1^(\tau_0, \delta^_1)$</th>
<th>$r_1^(\tau_0, \delta^_1)$</th>
<th>$r_1^(\tau_0, \delta^_1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>β_1</td>
<td>β_1</td>
<td>β_1</td>
<td>β_1</td>
<td>β_1</td>
<td>β_1</td>
<td>β_1</td>
</tr>
<tr>
<td>1.0</td>
<td>.6388</td>
<td>.0000</td>
<td>.3590</td>
<td>.4239</td>
<td>.2173</td>
<td>.0000</td>
</tr>
<tr>
<td>1.0</td>
<td>.1210</td>
<td>.4552</td>
<td>.9648</td>
<td>.3622</td>
<td>.7339</td>
<td>.2184</td>
</tr>
<tr>
<td>0.5</td>
<td>.5069</td>
<td>.7865</td>
<td>.3935</td>
<td>.3361</td>
<td>.6156</td>
<td>.2614</td>
</tr>
<tr>
<td>0.5</td>
<td>.1747</td>
<td>.4680</td>
<td>.8022</td>
<td>.3841</td>
<td>.5554</td>
<td>.2370</td>
</tr>
<tr>
<td>0.0</td>
<td>.4533</td>
<td>1.3128</td>
<td>.3924</td>
<td>.3692</td>
<td>.8832</td>
<td>.2537</td>
</tr>
<tr>
<td>0.0</td>
<td>.1974</td>
<td>.4386</td>
<td>.4926</td>
<td>.3729</td>
<td>.3879</td>
<td>.2365</td>
</tr>
<tr>
<td>$\beta_2 = 0.5$</td>
<td>$\beta_3 = 0.25$</td>
<td>$\beta_2 = 0.5$</td>
<td>$\beta_3 = 0.125$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>.6983</td>
<td>.0000</td>
<td>.3930</td>
<td>.3807</td>
<td>.2587</td>
<td>.0000</td>
</tr>
<tr>
<td>1.0</td>
<td>.1614</td>
<td>.4961</td>
<td>.9695</td>
<td>.6907</td>
<td>.7734</td>
<td>.2816</td>
</tr>
<tr>
<td>0.5</td>
<td>.5806</td>
<td>.5402</td>
<td>.4520</td>
<td>.3957</td>
<td>.4107</td>
<td>.3321</td>
</tr>
<tr>
<td>0.5</td>
<td>.2567</td>
<td>.5344</td>
<td>.8247</td>
<td>.4577</td>
<td>.5201</td>
<td>.3312</td>
</tr>
<tr>
<td>0.0</td>
<td>.5320</td>
<td>1.1559</td>
<td>.4599</td>
<td>.4544</td>
<td>.7288</td>
<td>.3341</td>
</tr>
<tr>
<td>0.0</td>
<td>.2923</td>
<td>.5164</td>
<td>.5527</td>
<td>.4650</td>
<td>.4626</td>
<td>.3413</td>
</tr>
<tr>
<td>$\beta_2 = 0.5$</td>
<td>$\beta_3 = 0.05$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>.7342</td>
<td>.0000</td>
<td>.4140</td>
<td>.3462</td>
<td>.2853</td>
<td>.0000</td>
</tr>
<tr>
<td>1.0</td>
<td>.2176</td>
<td>.5230</td>
<td>.9731</td>
<td>.4471</td>
<td>.3117</td>
<td>.3261</td>
</tr>
<tr>
<td>0.5</td>
<td>.6269</td>
<td>.3366</td>
<td>.4898</td>
<td>.4330</td>
<td>.2363</td>
<td>.3840</td>
</tr>
<tr>
<td>0.5</td>
<td>.3090</td>
<td>.5768</td>
<td>.8460</td>
<td>.5038</td>
<td>.3703</td>
<td>.3999</td>
</tr>
<tr>
<td>0.0</td>
<td>.5823</td>
<td>1.0539</td>
<td>.5027</td>
<td>.4978</td>
<td>.6091</td>
<td>.3828</td>
</tr>
<tr>
<td>0.0</td>
<td>.3473</td>
<td>.5630</td>
<td>.5937</td>
<td>.5170</td>
<td>.5190</td>
<td>.4210</td>
</tr>
</tbody>
</table>

* $t_1^+ = \max(t_1, 0)$ in Example 2.4.1 and d_1 is the constant for implementing the Bayes rule in Theorem 2.5.1.
Table IV: \(\kappa = 0 \) (continued)

<table>
<thead>
<tr>
<th>(\beta_4)</th>
<th>.25</th>
<th>1.0</th>
<th>4.0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\beta_2 = 0.8)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>.4346</td>
<td>1.0534</td>
<td>.3188</td>
</tr>
<tr>
<td>0.5</td>
<td>.2865</td>
<td>2.1529</td>
<td>.2870</td>
</tr>
<tr>
<td>0.0</td>
<td>.2301</td>
<td>2.6845</td>
<td>.2247</td>
</tr>
<tr>
<td>(\beta_3 = 0.4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>.1935</td>
<td>.3908</td>
<td>.9486</td>
</tr>
<tr>
<td>0.5</td>
<td>.2761</td>
<td>.2829</td>
<td>.7468</td>
</tr>
<tr>
<td>0.0</td>
<td>.3108</td>
<td>.2294</td>
<td>.4411</td>
</tr>
<tr>
<td>(\beta_2 = 0.8)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>.5228</td>
<td>.8653</td>
<td>.3909</td>
</tr>
<tr>
<td>0.5</td>
<td>.3753</td>
<td>2.3613</td>
<td>.3594</td>
</tr>
<tr>
<td>0.0</td>
<td>.3173</td>
<td>3.1771</td>
<td>.3151</td>
</tr>
<tr>
<td>(\beta_3 = 0.2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>.2898</td>
<td>.4770</td>
<td>.9598</td>
</tr>
<tr>
<td>0.5</td>
<td>.4042</td>
<td>.3739</td>
<td>.7920</td>
</tr>
<tr>
<td>0.0</td>
<td>.4515</td>
<td>.3172</td>
<td>.5226</td>
</tr>
<tr>
<td>(\beta_2 = 0.8)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>.5778</td>
<td>.7448</td>
<td>.4380</td>
</tr>
<tr>
<td>0.5</td>
<td>.4358</td>
<td>3.0492</td>
<td>.4311</td>
</tr>
<tr>
<td>0.0</td>
<td>.3789</td>
<td>4.9653</td>
<td>.3789</td>
</tr>
<tr>
<td>(\beta_3 = 0.08)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>.3470</td>
<td>.5365</td>
<td>.9699</td>
</tr>
<tr>
<td>0.5</td>
<td>.4758</td>
<td>.4357</td>
<td>.8308</td>
</tr>
<tr>
<td>0.0</td>
<td>.5285</td>
<td>.3789</td>
<td>.5827</td>
</tr>
</tbody>
</table>
TABLE V

Lists the overall risks and the values of $\sup_{\tau \in \Gamma} r(\tau, \delta)$ of Bayes rules and Γ-minimax rules when $k=1$.

<table>
<thead>
<tr>
<th>Entries</th>
<th>γ_1</th>
<th>τ^+_1</th>
<th>t^+_1</th>
<th>$\sup_{\tau \in \Gamma} r_1(\tau, \delta^1)$</th>
<th>d_1</th>
<th>$\sup_{\tau \in \Gamma} r_1(\tau, \delta^1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>β_1</td>
<td>.25</td>
<td>1.0</td>
<td>4.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\beta_2 = .5$</td>
<td>.6288</td>
<td>.9905</td>
<td>.4570</td>
<td>.5590</td>
<td>.2422</td>
<td>.5867</td>
<td>.2438</td>
<td>.7071</td>
<td>.1715</td>
</tr>
<tr>
<td>$\beta_3 = .25$</td>
<td>.5530</td>
<td>.6275</td>
<td>.4565</td>
<td>.1555</td>
<td>.2522</td>
<td>.5941</td>
<td>.3974</td>
<td>.7071</td>
<td>.2195</td>
</tr>
<tr>
<td>$\beta_2 = 0$</td>
<td>.1086</td>
<td>1.0867</td>
<td>.5218</td>
<td>.5590</td>
<td>.2923</td>
<td>.5941</td>
<td>.2947</td>
<td>.7071</td>
<td>.2195</td>
</tr>
<tr>
<td>$\beta_3 = .125$</td>
<td>.1814</td>
<td>.6555</td>
<td>1.1617</td>
<td>.5435</td>
<td>1.0979</td>
<td>.5355</td>
<td>.5355</td>
<td>.5355</td>
<td>.5355</td>
</tr>
<tr>
<td>$\beta_2 = .05$</td>
<td>.5896</td>
<td>1.7899</td>
<td>.5260</td>
<td>.4325</td>
<td>.9767</td>
<td>.3361</td>
<td>.3082</td>
<td>.6898</td>
<td>.1941</td>
</tr>
<tr>
<td>$\beta_3 = .05$</td>
<td>.5232</td>
<td>2.1609</td>
<td>.5086</td>
<td>.4817</td>
<td>1.1782</td>
<td>.3474</td>
<td>.3437</td>
<td>.8297</td>
<td>.1985</td>
</tr>
<tr>
<td>$\beta_2 = .05$</td>
<td>.7342</td>
<td>1.2017</td>
<td>.5688</td>
<td>.5590</td>
<td>.3264</td>
<td>.6241</td>
<td>.3280</td>
<td>.7071</td>
<td>.2523</td>
</tr>
<tr>
<td>$\beta_3 = .05$</td>
<td>.2176</td>
<td>.7177</td>
<td>1.6582</td>
<td>.6084</td>
<td>1.1721</td>
<td>.6084</td>
<td>.6084</td>
<td>.6084</td>
<td>.6084</td>
</tr>
<tr>
<td>$\beta_2 = .05$</td>
<td>.6269</td>
<td>2.0195</td>
<td>.5872</td>
<td>.4778</td>
<td>1.0508</td>
<td>.3828</td>
<td>.3522</td>
<td>.6180</td>
<td>.2445</td>
</tr>
<tr>
<td>$\beta_3 = .05$</td>
<td>.3090</td>
<td>.6242</td>
<td>1.2762</td>
<td>.5775</td>
<td>.6666</td>
<td>.4372</td>
<td>.4372</td>
<td>.4372</td>
<td>.4372</td>
</tr>
<tr>
<td>$\beta_2 = .05$</td>
<td>.5823</td>
<td>2.4774</td>
<td>.5683</td>
<td>.5316</td>
<td>1.2912</td>
<td>.4017</td>
<td>.4017</td>
<td>.4017</td>
<td>.4017</td>
</tr>
<tr>
<td>$\beta_3 = .05$</td>
<td>.3473</td>
<td>.5617</td>
<td>.7627</td>
<td>.5545</td>
<td>.6032</td>
<td>.4452</td>
<td>.4452</td>
<td>.4452</td>
<td>.4452</td>
</tr>
<tr>
<td>β_4</td>
<td>0.25</td>
<td>1.0</td>
<td>4.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
<td>-----</td>
<td>-----</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\beta_2 = 0.8$</td>
<td>$\beta_3 = 0.4$</td>
<td>$\beta_2 = 0.8$</td>
<td>$\beta_3 = 0.2$</td>
<td>$\beta_2 = 0.8$</td>
<td>$\beta_3 = 0.08$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>1.3771</td>
<td>0.9763</td>
<td>1.2921</td>
<td>0.5228</td>
<td>0.8959</td>
<td>1.0409</td>
<td>0.5778</td>
<td>1.6000</td>
<td>0.7167</td>
</tr>
<tr>
<td>0.5</td>
<td>2.2654</td>
<td>1.5052</td>
<td>1.6785</td>
<td>0.3753</td>
<td>1.5998</td>
<td>1.7242</td>
<td>0.3458</td>
<td>3.3848</td>
<td>1.8946</td>
</tr>
<tr>
<td>0.0</td>
<td>2.7491</td>
<td>1.7785</td>
<td>1.8621</td>
<td>0.3173</td>
<td>3.0623</td>
<td>2.0548</td>
<td>0.3589</td>
<td>5.0783</td>
<td>2.6422</td>
</tr>
</tbody>
</table>

Table V: $\varepsilon = 1$ (continued)
CHAPTER 3

SELECTION PROCEDURES FOR A PROBLEM IN RELIABILITY AND FOR A PROBLEM OF SCALE PARAMETERS

3.1 Introduction

In this chapter we discuss two selection problems, one arising in reliability theory and another for symmetric scale parameter populations. The first problem deals with an ε-out-of-m system where m components are to be placed and at least ε of them should function to make the system work. In many situations several brands (populations) of components are available from which we need to choose m components for a system. Note that it is allowed to draw more than one component from a population. It is assumed that the lifethread of a component from population π_i is exponentially distributed with mean λ_i^{-1} for $i = 1, \ldots, k$ and that the components in the system are statistically independent. Broström (1977) considered the 1-out-of-2 system when only two populations are available. He assumed a loss function depending on (λ_1, λ_2) only through λ_1/λ_2 so that the problem is invariant under the scale transformation, and then studied the admissibility and the minimaxity of some rules. In Section 3.2, we consider two cases; (A) m-out-of-m, i.e., series system and (B) 1-out-of-2 system when $k(k \geq 2)$ populations are available. We assume a loss function inversely proportional
to the expected lifelength of the system, and derive a uniformly best decision rule among the permutation invariant rules for the series system and a Bayes rule wrt a natural conjugate prior for the 1-out-of-2 system. Tables to implement the Bayes rule are provided at the end of this chapter.

The second part of this chapter consists of the investigation of the selection procedures for scale parameters of symmetric distributions. Contributions for this problem have been made by Puri and Puri (1969), Blumenthal and Patterson (1969), Gupta and McDonald (1970), Bhapkar and Gore (1971) and McDonald (1977) among others. Since ranking the populations with regard to scale parameters is equivalent to ranking them in terms of measures of dispersion, we can consider selection procedures based on estimators of measures of dispersion. In Section 3.3, we consider two problems; (A) selection of the t 'best' populations under the indiﬀerence-zone approach, (B) selecting a subset containing the 'best' population. We consider selection procedures based on the p-th power sample deviations and on the trimmed standard deviations for problem (A), and derive a large sample solution of the sample size required by the basic probability condition. Asymptotic relative efficiencies of the procedures in (B) are shown to be the same as those in (A) as well as those of the corresponding estimators of Bickel and Lehmann (1976).

3.2 Some selection problems arising in reliability theory

Let π_1, \ldots, π_k ($k \geq 2$) denote the available populations (brands) and assume that each component from π_1 has an exponentially distributed
lifelength with mean lifelength λ_i^{-1} for $i = 1, \ldots, k$. Based on n

independent observations X_{i1}, \ldots, X_{in} from each π_i ($i = 1, \ldots, k$), we
want to find an 'optimal' selection rule assuming a suitable loss
function. By sufficiency the problem can be reduced to the one based
on X_1, \ldots, X_k where $X_i = \sum_{j=1}^{n} X_{ij}$ has gamma distribution with mean
$n\lambda_i^{-1}$ and variance $n\lambda_i^{-2}$. Throughout this section let $x_{[1]} \leq \ldots \leq x_{[k]}

denote the ordered observations x_1, \ldots, x_k, and $\pi(i)$ and $\lambda(i)$ denote the
n and the λ associated with $x_{[i]}$ for $i = 1, \ldots, k$. Given $x = (x_1, \ldots, x_k)$, the posterior risk of a decision rule δ will be denoted
by $r(\delta, x)$.

(A) The series system

Here we denote the action space by $\mathcal{A} = \{i_1, \ldots, i_m\}$:

$1 \leq i_1 \leq \ldots \leq i_m \leq k$) where (i_1, \ldots, i_m) is to be interpreted as the
action of drawing the j-th component from π_{ij} for $j = 1, \ldots, m$. For
the series system the expected lifelength of the system for the
action (i_1, \ldots, i_m) is easily seen to be $(\sum_{j=1}^{m} \lambda_{ij})^{-1}$. We will consider
a loss function which is inversely proportional to the expected life-
length corresponding to an action, i.e., loss function is assumed to be

$$L(\Lambda, (i_1, \ldots, i_m)) = \sum_{j=1}^{m} \lambda_{ij}.$$ \hspace{1cm} (3.2.1)

Thus the posterior risk of a decision rule δ, which leads to an action
$(i_1, \ldots, i_m) \in \mathcal{A}$ with probability l is given by
\[r(\delta, x) = E[\sum_{j=1}^{m} \lambda_{ij} | x] . \] (3.2.2)

Let \(N_s = \{ n_s = (n_1, \ldots, n_s) : n_1 \geq \ldots \geq n_s \geq 1, \sum_{j=1}^{s} n_j = m \}, \) \(n_i \)'s are integers) and let \(a \wedge b = \min(a, b) \). The next result leads to considerable reduction in the number of decision rules to be compared for the Bayes rule when the prior of \(A \) is assumed to be permutationally symmetric.

Lemma 3.2.1. If the prior distribution of \(\lambda \) is permutationally symmetric on \((0, \infty)^k\), then the Bayes rule \(\delta^* \) is determined by
\[
\[r(\delta^*, x) = \min_{1 \leq s \leq k \wedge m} \min_{n_s \in N_s} \min_{n_s} r(\delta_{n_s}, x) \] (3.2.3)
\]
where \(\delta_{n_s} \) selects an action of drawing \(n_j \) components from \(\pi_{k-j+1} \) for \(j = 1, \ldots, s \).

Proof. For \(s = 1, \ldots, k \wedge m \), let us define \(\mathcal{G}_s^* = \{ (i_1, \ldots, i_s ; n_1, \ldots, n_s) : n_s \in N_s, 1 \leq i_j \leq k, i_j \not= i_{j'} \text{ for } j \not= j' \} \) where \((i_1, \ldots, i_s ; n_1, \ldots, n_s) \) is interpreted as drawing \(n_j \) components from \(\pi_{i_j} \) for \(j = 1, \ldots, s \). Note that the action space \(\mathcal{G} \) can be partitioned into \(k \wedge m \) components \(\mathcal{G}_s \) \((s = 1, \ldots, k \wedge m)\) where we should choose \(s \) different populations for \(m \) components. Again, \(\mathcal{G}_s \) can be written as
\[
\mathcal{G}_s = \bigcup_{n_s \in N_s} \mathcal{G}_{n_s}^* \quad \text{where} \quad \mathcal{G}_{n_s}^* = \{ (i_1, \ldots, i_s ; n_1, \ldots, n_s) \in \mathcal{G}_s^* \}.
\]
The loss function given by (3.2.1) can be written as \(L(A, \lambda, a) = \sum_{j=1}^{s} n_j \lambda_{ij} \) for \(a \in \mathcal{G}_{n_s}^* \). Now consider a decision problem with the action space \(\mathcal{G}_{n_s}^* \), the above loss function and the observation
vector \(x \). Clearly this problem is equivalent to partitioning \(k \) populations \(\pi_1, \ldots, \pi_k \) into \(s+1 \) subsets \(\gamma_1, \ldots, \gamma_s, \gamma_{s+1} \) where \(\gamma_j \) is of size \(j \) for \(j = 1, \ldots, s \), \(\gamma_{s+1} \) is of size \(k-s \) and the action \((i_1, \ldots, i_s) \) corresponds to the action \((\{\pi_i\}_{i=1}^{s}, \{\pi_i\}_{i=s+1}^{k}, i_1, \ldots, i_k) \). Note that this decision problem is invariant under the permutation group, and that the loss function satisfies the monotonicity and the invariance properties of Eaton (1967) with \(\lambda_i^{-1} \) being the parameter \(\theta_i \) in Eaton's paper. Since the density \(f(x, \lambda_i) \) of \(x_i \) has the monotone likelihood ratio property in \(x \) and \(\theta_i = \lambda_i^{-1} \), it follows from Eaton's result that the rule which assigns \(\pi_{(k-j+1)} \) to \(\gamma_j \) for \(j = 1, \ldots, s \) and the remaining brands to \(\gamma_{s+1} \) is Bayes wrt any permutorially symmetric prior distribution of \(\lambda \).

Hence, the result follows.

The following lemma is needed for the main result.

Lemma 3.2.2. Assume that \(X_1, \ldots, X_k \), given \(\theta = (\theta_1, \ldots, \theta_k) \in \Theta^k \), are independently distributed random variables with \(X_i \) having pdf \(f(x, \theta_i) \). If \(f(x, \theta) \) has the monotone likelihood ratio (MLR) property in \(x \) and \(\theta \), and if the prior distribution, \(\tau(\theta) \), of \(\theta = (\theta_1, \ldots, \theta_k) \) is permutorially symmetric on \(\Theta^k \), then, for \(i \geq j \),

\[
E[g(\theta_i)|x] \geq E[g(\theta_j)|x]
\]

provided \(g(\cdot) \) is non-decreasing on \(\Theta \) where \(\theta_i \) is the \(\theta \) associated with \(x[i] \).

Proof. Let \(\Theta_0 = \{ \theta \in \Theta^k : \theta(i) \geq \theta(j) \} \), then
\[
\int_{\Theta_0} \left[g(\theta_{(i)}) - g(\theta_{(j)}) \right] f(x, \theta) d\tau(\theta) = \int_{\Theta_0} \int_{\Theta_0} \left[g(\theta_{(i)}) - g(\theta_{(j)}) \right] f(x, \theta) d\tau(\theta)
\]
where \(f(x, \theta) = \prod_{i=1}^{k} f(x_i, \theta_i) \) and \(\theta' \) is obtained from \(\theta \) by interchanging \(\theta_{(i)} \) and \(\theta_{(j)} \), keeping other components fixed. Therefore,

\[
E[g(\theta_{(i)}) - g(\theta_{(j)}) | x] = n(x) \int_{\Theta_0} \left[g(\theta_{(i)}) - g(\theta_{(j)}) \right] f(x, \theta) d\tau(\theta)
\]
where \(n(x) \) is a normalizing factor. The result follows from the MLR property of \(f(x, \theta) \) and the fact that \(g(\theta_{(i)}) - g(\theta_{(j)}) \geq 0 \) for \(\theta \in \Theta_0 \) if \(g \) is non-decreasing.

Now we state the following result.

Theorem 3.2.1. For any permutationally symmetric prior distribution of \(\lambda \) on \((0, \infty)^k\), the Bayes rule \(\delta^* = \delta_{\Pi} \), i.e., \(\delta^* \) draws all \(m \) components from \(\pi_{(k)} \).

Proof. It follows from (3.2.2) that \(r(\delta_{\Pi}, x) \) can be written as

\[
r(\delta_{\Pi}, x) = E[\sum_{j=1}^{s} n_j \lambda_{(k-j+1)} | x] \text{ for } n_{S} \in N_{S}.
\]

Therefore

\[
r(\delta_{\Pi}, x) = E[(m-s+1)\lambda_{(k)} + \sum_{j=2}^{s} \lambda_{(k-j+1)} | x]
\]

\[
= E[(m-\sum_{j=2}^{s} n_j) \lambda_{(k)} + \sum_{j=2}^{s} n_j \lambda_{(k-j+1)} | x] - E[(m-s+1)\lambda_{(k)} + \sum_{j=2}^{s} \lambda_{(k-j+1)} | x]
\]

\[= E \left[\sum_{j=2}^{S} (n_j-1) (\lambda_{(k-j+1)} - \lambda_k) | \bar{x} \right] \]

\[\geq 0 \text{ by Lemma 3.2.2.} \]

Thus, \(\min_{n_s \in \mathbb{N}_s} r(\delta_{n_s}, \bar{x}) = r(\delta_{\bar{x}}, \bar{x}) \) where \(\delta_s = \delta_{n_s} \) with \(n_s^* = (m-s+1, 1, \ldots, 1) \in \mathbb{N}_s \), i.e., \(\delta_s \) draws \((m-s+1)\) components from \(\pi_k \) and one component from each \(\pi_{(k-j+1)}(j = 2, \ldots, s) \). Since, for any \(s; 2 \leq s \leq k \wedge m \),

\[r(\delta_{\bar{x}}, \bar{x}) - r(\delta_{\bar{x}}, \bar{x}) = E \left[\sum_{j=2}^{S} (\lambda_{(k-j+1)} - \lambda_k) \right] \]

\[\geq 0 \text{ by Lemma 3.2.2,} \]

the result follows from Lemma 3.2.1.

The next result follows from considering a permutation symmetric prior which gives mass \(1/k! \) at each parameter point obtained from a fixed parameter \(\lambda \in (0, \infty)^k \) by permuting its components.

Corollary 3.2.1. The 'natural' rule \(\delta^* \) is uniformly best among the permutation invariant rules.

It follows from the above result that the natural rule \(\delta^* \) is admissible and minimax among all decision rules.

Remark 3.2.1. If we consider a loss function \(L_1(\lambda, (i_1, \ldots, i_m)) = (m \min_{1 \leq i \leq k} \lambda_i)^{-1} - (\sum_{j=1}^{m} \lambda_j)^{-1} \), it can be easily shown that Lemma 3.2.1 holds for this loss function. Assuming an exchangeable prior for \(\lambda \) on \((0, \infty)^k \), it can be verified that the Bayes rule \(\delta^* \) for the loss function \(L_1 \) satisfies \(r(\delta^*, \bar{x}) = \min_{1 \leq s \leq k \wedge m} r(\delta_{\bar{x}}, \bar{x}) \) where the rule \(\delta_s \) is
as in the proof of Theorem 3.2.1. Even though this is a considerable reduction in a number of candidates for the Bayes rule, specification of it seems difficult except when \(m = 2 \). Further simplification of the Bayes rule with respect to a specific prior would be interesting along with some numerical results.

(B) The 1-out-of-2 system

Here, the action space is \(\Omega = \{(i,j): 1 \leq i \leq j \leq k\} \) where \((i,j)\) is the action of drawing one component each from \(\pi_i \) and \(\pi_j \), respectively. For the 1-out-of-2 system the expected lifespan of the system for the action \((i,j)\) is given by \(\lambda_i^{-1} + \lambda_j^{-1} - (\lambda_i + \lambda_j)^{-1} \).

Again as in (A), the loss function is assumed to be given by

\[
L(\lambda, (i,j)) = (\lambda_i^{-1} + \lambda_j^{-1} - (\lambda_i + \lambda_j)^{-1})^{-1}. \tag{3.2.4}
\]

As mentioned earlier, Broström (1977) considered a scale invariant loss function obtained by dividing (3.2.4) by \(L(\lambda, (1,2)) \), i.e., the loss incurred by an 'intermediate' action which we don't have in the case when \(k > 2 \).

We will derive a Bayes rule with respect to a prior distribution of \(\lambda \). The prior distribution of \(\lambda \) is assumed to be independent natural conjugate gamma distribution with two parameters, i.e., the joint a priori pdf of \(\lambda \) is given by

\[
\tau(\lambda) = \prod_{i=1}^{k} \left[\frac{\beta}{\Gamma(\alpha)} \lambda_i^{\alpha-1} e^{-\beta \lambda_i} \right], \alpha > 0 \text{ and } \beta > 0. \tag{3.2.5}
\]

The improper prior corresponding to the vague prior knowledge can be given by the above with \(\alpha = \beta = 0 \). It can be easily observed that,
given \(X = x, \lambda(1), \ldots, \lambda(k) \) are, a posteriori, independently distributed gamma random variables with mean \((n+\alpha)(x[i]+\beta)^{-1}\) and variance \((n+\alpha)(x[i]+\beta)^{-2}\).

As in (A), the action space \(\mathcal{A} \) can be partitioned into \(\mathcal{A}_1 = \{(i,i) : i = 1, \ldots, k\} \) and \(\mathcal{A}_2 = \{(i,j) : 1 \leq i < j \leq k\} \). Then the decision problem with \(\mathcal{A}_s (s = 1, 2) \) is equivalent to partitioning \(\pi_1, \ldots, \pi_k \) into two subsets \(\gamma_1 \), and \(\gamma_2 \) with \(\gamma_1 \) being of size \(s \) and \(\gamma_2 \) being of size \(k-s \). Then by the same arguments as in Lemma 3.2.1, we have the next result.

Lemma 3.2.3. Assume that the prior of \(\lambda \) on \((0,\infty)^k\) is permutationally symmetric. Then the Bayes rule \(\delta^* \) is given by

\[
\hat{r}(\delta^*, X) = \min(r(\delta_1, X), r(\delta_2, X))
\]

(3.2.6)

where \(\delta_1 \) chooses 2 components from \(\pi(k) \), and \(\delta_2 \) chooses one component from \(\pi(k) \) and another from \(\pi(k-1) \).

Now we state the Bayes rule.

Theorem 3.2.2. Assume that the prior is given by (3.2.5). Then the Bayes rule \(\delta^* \) is given by

\[
\delta^* = \begin{cases}
\delta_1 & \text{if } x[k-1] + \beta \leq c(x[k] + \beta) \\
\delta_2 & \text{if } x[k-1] + \beta > c(x[k] + \beta)
\end{cases}
\]

(3.2.7)

where \(c = H^{-1}_{\alpha, \alpha}(0) \in (0,1), H_{\alpha, \alpha}(c) = E\left[\frac{UV(U+cV)}{U+cV^2+cUV}\right]-\frac{2}{3}(n+\alpha) \) for \(c > 0 \), and \(U, V \) are iid gamma random variables with mean \((n+\alpha)\) and variance \((n+\alpha)\).
Proof. It follows from (3.2.4) and (3.2.5) that

\[r(\delta_1, x) = \frac{2}{3} E[z(k) | x] = \frac{2}{3} \frac{n+\alpha}{x(k)^{\beta}} \] and

\[r(\delta_2, x) = E[z(k) \lambda^2 (k-1) (\lambda(k)^{\beta} + \lambda(k-1)^{\beta}) (\lambda(k)^{\beta} + \lambda(k)^{\beta} + \lambda(k)^{\beta})^{-1} | x] \]

\[= \frac{1}{x(k)^{\beta}} E[\frac{UV(U+r_i V)}{U^2+r_i UV+r_i V^2}] \text { for } r_i = \frac{x(k-1)^{\beta}}{x(k)^{\beta}} \]

where \(U \) and \(V \) are gamma variables with mean \((n+\alpha)\) and variance \((n+\alpha)\). Since \(H_{\alpha,n}(t) \) is non-increasing in \(t > 0 \), \(r(\delta_1, x) \geq r(\delta_2, x) \)

if and only if \(H_{\alpha,n}(r_i) \leq 0 \), i.e., \(r_i \leq H_{\alpha,n}^{-1}(0) \). Furthermore, it can be easily observable that

\[H_{\alpha,n}(1) = E[\frac{UV(U+V)}{U^2+UV+V^2}] - \frac{2}{3} (n+\alpha) < 0 \]

which implies \(0 < H_{\alpha,n}^{-1}(0) < 1 \). Hence the result follows from Lemma 3.2.3.

As it was pointed out, the Bayes rule wrt the vague prior knowledge can be obtained from (3.2.7) by taking \(\alpha = \beta = 0 \). It can be easily shown that \(x_1(x_1+\beta)^{-1}, \ldots, x_k(x_k+\beta)^{-1} \) are marginally independent beta random variables with mean \(n(n+\alpha)^{-1} \) when the prior is given by (3.2.5). It follows that the overall risk of the rule \(\delta_1 \) is given by

\[r(\delta_1) = \frac{2}{3} (n+\alpha)^{-1} E[Z[1]] < \frac{2}{3} \frac{\alpha}{\beta} \]

where \(Z[1] \) is the smallest order statistic based on a sample of size \(k \) from beta distribution with mean \(\alpha(n+\alpha)^{-1} \). Therefore the overall risk of the Bayes rule \(\delta^* \) is finite. Furthermore it can be shown that the risk function \(R(\lambda, \delta) \) is a continuous function of \(\lambda \) for
non-randomized rule \(\delta \). It follows that the Bayes rule \(\delta^* \) is admissible in the class of non-randomized decision rules.

Remark 3.2.2. If a loss function is given by \(L_2(\lambda, (i,j)) = \frac{3}{2} (\text{Min}_{1 \leq i < k} \lambda_i^{-1} - [\lambda_i^{-1} + \lambda_j^{-1} - (\lambda_i + \lambda_j)^{-1}]) \), it follows from similar methods that the Bayes rule wrt the prior given by (3.2.5) is given by (3.2.7) with \(c = G_{\alpha,n}^{-1}(0) \in (0,1) \) and \(G_{\alpha,n}(t) = \frac{1}{2} \frac{1}{n+\alpha-1} - \frac{t}{n+\alpha-1} + \mathbb{E}[\frac{t}{U+V}] \) for \(t > 0 \) where \(U \) and \(V \) are iid gamma random variables with mean and variance equal to \((n+\alpha) \).

At the end of this chapter tables of the constants \(c \) are provided to implement the Bayes rules given in Theorem 3.2.2 and Remark 3.2.2. Values of \(c \) are found by numerically integrating \(H_{\alpha,n}(c) \) and \(G_{\alpha,n}(c) \) using Laguerre polynomials. In doing this the first fifteen Laguerre polynomials were used (see Abramowitz and Stegun (1964)).

3.3 Some selection procedures for symmetric scale parameter populations

Let \(\pi_1, \ldots, \pi_k \) denote \(k \) independent populations with continuous cumulative distribution functions \(F_1(x) = F(x/\sigma_1), \ldots, F_k(x) = F(x/\sigma_k) \), respectively, where \(\sigma_i > 0, i = 1,2, \ldots, k \), and \(F \) is symmetric about the origin. Suppose we are interested in ranking or screening these populations with regard to some measures of dispersion. One measure of dispersion for a symmetric distribution \(G \) is a non-negative functional \(\tau(G) \) or equivalently \(\tau(Z) \) with \(Z \) being a random variable with distribution function \(G \) (see Bickel and Lehmann (1976)) such that
\[\tau(aZ) = a\tau(Z) \text{ for } a > 0 \]
\[\tau(Z+b) = \tau(Z) \text{ for any real } b \]
\[(3.3.1) \]
\[\tau(Z) \leq \tau(Z') \text{ whenever } |Z'| \text{ is stochastically larger than } |Z|. \]

It follows that the measure of dispersion of \(F_i \) is \(\tau(F_i) = \sigma_i \tau(F) \) for \(i = 1, \ldots, k \). Hence ranking the populations with regard to the measure of dispersion becomes equivalent to the ranking in terms of \(\sigma_i \)'s. This leads to selection and ranking problem in terms of \(\sigma_i \)'s.

Several procedures for this problem have been proposed. When we know the functional form of \(F \), some suitable estimators of \(\sigma_i \)'s are usually used for selection or ranking purpose. For example we might use sample standard deviations for normal populations and sample mean deviations for double exponential populations. When we do not assume the functional form of \(F \), we may use the estimators of some measures of dispersion of \(F_i \)'s and study the robustness of the selection procedures.

This is the approach taken in this section.

(A) Selection of the t 'best' populations - Indifference-zone approach

Let \(X_{i1}, \ldots, X_{in}(i=1, \ldots, k) \) be the independent observations from population \(\pi_i \) with cdf \(F_i(x) = F\left(\frac{x-\theta_i}{\sigma_i}\right) \) where \(F \) is continuous and symmetric about the origin. Here \(\sigma_1, \ldots, \sigma_k \) are unknown and \(\theta_1, \ldots, \theta_k \) may be either known or unknown. Let \(\sigma[1] \leq \ldots \leq \sigma[k] \) be the ordered \(\sigma_i \)'s where no a priori information about the correct pairing of \(\pi_i \) and \(\sigma[i] \) is assumed. Our goal is to select the \(t(1 \leq t \leq k-1) \) populations associated with \(t \) smallest scale parameters \(\sigma[1], \ldots, \sigma[t] \) based on the independent observations \(X_{i1}, \ldots, X_{in}, i = 1, \ldots, k \).

The indifference-zone formulation, due to Bechhofer (1954), of this problem may be briefly described as follows;
(i) Choose an appropriate statistic T and observe $T_i = T(x_{i1}, \ldots, x_{in})$ for $i = 1, \ldots, k$.

(ii) Use the natural procedure R_T which selects populations associated with the smallest T_i values.

(iii) For preassigned $p^* \in (1/(k^t), 1)$ and $\Delta > 1$, determine the smallest sample size $n = n(k, p^*, \Delta)$ such that $\inf_{\theta \in \Omega(\Delta)} P(CS|\theta) \geq p^*$, where $\Omega(\Delta) = \{\theta = (\sigma_1, \ldots, \sigma_k) : \sigma_{[t+1]} \geq \Delta \sigma_{[t]} \}$ and CS stands for a correct selection of the t populations associated with $\sigma_{[1]}, \ldots, \sigma_{[t]}$.

Several optimum properties of the above procedure with suitable statistic T have been proved under certain assumptions on F (see, for example, Bahadur and Goodman (1952), Lehmann (1966), Eaton (1967)).

First we will consider the case when the location parameters are known.

Case (I): $\theta_1, \ldots, \theta_k$ known

In this case we may assume $\theta_1 = \ldots = \theta_k = 0$ without loss of generality. Let us consider the following selection procedures based on robust estimators studied by Bickel and Lehmann (1976); for $1 \leq p \leq 2$ and $0 < \alpha \leq \frac{1}{2} \leq \beta < 1$,

Procedure $R(p)$: Use $T(x_{i1}, \ldots, x_{in}) = (\frac{1}{n} \sum_{j=1}^{n} |x_{ij}|)^{1/p}$ in (3.3.2)

Procedure $R(\alpha, \beta)$: Use $T(x_{i1}, \ldots, x_{in}) = [\frac{1}{n} \sum_{j=1}^{[n\beta]} x_{ij}^2 / ([n\beta] - [n\alpha])]^{1/2}$ in (3.3.2),
where $X_1^2[1] \leq \cdots \leq X_i^2[n]$ denote the ordered $X_1^2[1], \ldots, X_i^2[n]$ and $[\cdot]$ is the greatest integer function. Note that $R(2)$ is the procedure proposed by Bechhofer and Sobel (1954) for the normal populations. This procedure will be taken as the standard one for the comparison of procedures.

The next result gives the least favorable configurations for the above procedures.

Lemma 3.3.1. Let R_T denote the procedure defined by (3.3.2) where the statistic T is scale invariant, i.e., $T(aX_1[1], \ldots, aX_n[1]) = aT(X_1[1], \ldots, X_n[1])$ for any $a > 0$. Then the following holds:

$$\inf_{q \in \Omega(\Delta)} P(CS|q) = P(CS|q = (1, \ldots, 1, \Delta, \ldots, \Delta)) \quad (3.3.3)$$

t-times

Proof. Using a theorem of Barr and Rizvi (1966) it follows that

$$P(CS|q) = P(\text{Max}_{1 \leq j \leq t} T(j < \text{Min}_{t+1 \leq j \leq k} T(j)|q) \text{ with } T(1), \ldots, T(k) \text{ being associated with } \sigma[1] \leq \cdots \leq \sigma[k] \text{ is a non-decreasing function of } \sigma[t+1], \ldots, \sigma[k] \text{ and non-increasing in } \sigma[1], \ldots, \sigma[t].$$

Therefore the result follows from the scale invariance of T.

It follows from the above result that we have the same least favorable configuration as long as the statistic T is scale invariant. However, this slippage configuration of parameters is not the least favorable for the procedures based on ranks (see Rizvi and Woodworth (1970)). Now the sample size n required by the basic probability condition can be found by

$$P(\text{Max}_{1 \leq j \leq t} T(j < \text{Min}_{t+1 \leq j \leq k} T(j)|q) = P^* \quad (3.3.4)$$
subject to the condition

\[g = (1, \ldots, 1, \Delta, \ldots, \Delta). \]

(3.3.5)

To solve this we need the complete knowledge about F. But if we do not wish to rely on the distributional assumption on F, we can find a large sample solution.

Large Sample Solution and Asymptotic Efficiency

To find the large sample solution for n, following Lehmann (1963), we use the device of replacing \(\Delta \) by \(\Delta_n \) and determine the large sample solution of \(n \) required to satisfy (3.3.4) subject to the condition

\[\sigma[k] = \ldots = \sigma[t+1] = \Delta_n \sigma[t] = \Delta_n \sigma[1]. \]

(3.3.6)

As Lehmann (1963) and Puri and Puri (1969) have pointed out, considering \(\Delta_n \) as a sequence depending on \(n \) is only a mathematical device to approximate the actual situation and in practice \(\Delta_n \) will be identified with the given value of \(\Delta \).

Assume that \(\sqrt{n} (T(Z_1, \ldots, Z_n) - \tau(F)) \) is asymptotically normally distributed with mean 0 and variance \(v^2(F) \) when \(Z_1, \ldots, Z_n \) are iid random variables with cdf \(F(z) \), where \(\tau(F) \) is a measure of dispersion of \(F \) satisfying (3.3.1). Let \(Y_i = T(Z_{i1}, \ldots, Z_{ikn}) \) for \(i = 1, \ldots, k \), where \(Z_{i1}, \ldots, Z_{ikn} \) are \(kn \) iid random variables with cdf \(F(.) \). Then from (3.3.6), we see that equation (3.3.4) is equivalent to \(P(Y_i \leq \Delta_n Y_j, i = 1, \ldots, t, j = t+1, \ldots, k) = P^* \). This implies, after taking logarithmic transformation, that
\[
\lim_{n \to \infty} P(U_i - U_j \leq \sqrt{n} (\log \Delta_n) \tau(F)/\nu(F), \ i = 1, \ldots, t, \ j = t+1, \ldots, k) = \ast
\]
where \(U_1, \ldots, U_k \) are iid standard normal variables. This equation will be satisfied if and only if

\[
\Delta_n = 1 + \frac{\Delta^* \nu(F)}{\sqrt{n} \tau(F)} + o(n^{-\frac{1}{2}})
\]
where \(\Delta^* \) is determined by

\[
P^\ast = \int_{-\infty}^{\infty} \phi^{-1}(x) \phi^{-1}(\Delta^*-x) d\phi(x).
\]
(3.3.7)

Thus we have proved the following result.

Lemma 3.3.2. Consider the procedure \(R_T \) in (3.3.2) with \(T \) being scale invariant and satisfying the properties in the above paragraph. Let \(n \) be the solution of (3.3.4) subject to (3.3.6), then as \(n \to \infty \)

\[
\Delta_n = 1 + \frac{\Delta^* \nu(F)}{\sqrt{n} \tau(F)} + o(n^{-\frac{1}{2}})
\]
(3.3.8)

where \(\Delta^* \) is determined by (3.3.7).

It follows from the above result that, for given \(\Delta \) and \(P^\ast \), a large sample solution of \(n \) is given by

\[
n = \left(\frac{\Delta^*}{\Delta - 1}\right)^2 \frac{\nu^2(F)}{\tau^2(F)}.
\]
(3.3.9)

The values of \(\Delta^* \) satisfying (3.3.7) can be found in Bechhofer (1954).

From the central limit theorem it follows that if \(\int x^4 dF(x) < \infty \), then (3.3.9) holds for \(R(p) \) (1 \(\leq p \leq 2 \)) with \(\tau(F) = (\int |x|^P dF(x))^\frac{1}{P} \) and

\[
\nu^2(F) = p^{-2} (\int |x|^P dF(x))^\frac{2}{P} - \left[\int |x|^{2P} dF(x) - (\int |x|^P dF(x))^2 \right].
\]

Therefore, the large sample solution for the procedure \(R(p) \) is given by
\[n(p) = \left(\frac{\Delta^*}{\Delta - 1} \right)^2 \left[\frac{E|Z|^2}{(E|Z|^p)^2} - 1 \right] p^{-2} \]

(3.3.10)

where the expectations are taken with respect to the distribution \(F(\cdot) \). Let us consider \(R(\alpha, \beta) \) and let

\[T_n(\alpha, \beta) = \left[\frac{1}{n\beta} \right] \sum_{j=\lfloor n\alpha \rfloor + 1}^{\lfloor n\beta \rfloor} Z_j^2 \]

where \(Z_1^2 \leq \ldots \leq Z_n^2 \) are the ordered \(Z_1, \ldots, Z_n \) with \(Z_1, \ldots, Z_n \)

being iid random variables with cdf \(F(\cdot) \). Then the following theorem (see, for example, Stigler (1973)) gives the sufficient condition for the procedure \(R(\alpha, \beta) \) to satisfy the assumptions in the above lemma.

Theorem 3.3.1. Let \(G(\cdot) \) denote the cdf of \(Z_1^2 \). Assume that \(a = G^{-1}(\alpha) \) and \(b = G^{-1}(\beta) \) are uniquely determined. Then as \(n \to \infty \), the limiting distribution of

\[\sqrt{n} \left(T_n(\alpha, \beta) - \tau^2(\alpha, \beta) \right) \]

is normal with mean 0 and variance \(\nu^2(\alpha, \beta) \) where

\[\nu^2(\alpha, \beta) = \left[\frac{1}{\beta - \alpha} \right] \int y dG(y) \]

\[\nu^2(\alpha, \beta) = (\beta - \alpha)^{-2} \left[(\beta - \alpha) c + (b - \tau^2(\alpha, \beta)) \beta (1 - \beta) + (a - \tau^2(\alpha, \beta)) \alpha (1 - \alpha) \right. \]

\[- 2(b - \tau^2(\alpha, \beta)) (a - \tau^2(\alpha, \beta)) \alpha (1 - \beta) \] and

\[c = \frac{1}{\beta - \alpha} \int y^2 dG(y) - \tau^2(\alpha, \beta) \]

It follows that under the assumptions in the above theorem, the large sample solution for the procedure \(R(\alpha, \beta) \) is given by

\[n(\alpha, \beta) = \frac{1}{4} \left(\frac{\Delta^*}{\Delta - 1} \right)^2 \frac{\nu^2(\alpha, \beta)}{\tau^4(\alpha, \beta)} \]

(3.3.11)

Now comparison between the procedures is in order. To this end, the procedure \(R(2) \) is taken as the standard one and, following Lehmann (1963), the asymptotic relative efficiency (ARE) of a procedure wrt \(R(2) \) is then defined to be the limiting ratio of the reciprocals of the corresponding sample size required to achieve...
the same minimum probability of a correct selection over $\Omega(\Delta)$.

These are given as follows:

$$
\text{ARE}(R(p), R(2); F) = \frac{p^2}{4} \left[\frac{\mathbb{E}Z^4}{(EZ^2)^2} - 1 \right] / \left[\frac{\mathbb{E}|Z|^{2p}}{(E|Z|^p)^2} - 1 \right] - 1
$$

$$
\text{ARE}(R(\alpha, \beta), R(2); F) = \left[\frac{-\mathbb{E}Z^4}{(EZ^2)^2} - 1 \right] \frac{\Gamma_4(\alpha, \beta)}{\Gamma^2(\alpha, \beta)}
$$

where the expectations are taken with respect to the distribution $F(\cdot)$. Note that the above ARE's are the same as those of the estimators in Bickel and Lehmann (1976) where one can find several examples of the ARE's. For example, \(\text{ARE}(R(p), R(2); F) \geq \frac{3}{4\sqrt{\pi}} \cdot p^2 \) for all F which is the cdf of a scale mixture of normal distributions with a common mean.

Case (II): $\theta_1, \ldots, \theta_k$ unknown

In this case we use $T_i = T(X_{i1}, \ldots, X_{in}) = (\frac{1}{n} \sum_{j=1}^{n} |X_{ij} - \bar{X}_i|)^p$ for the procedure $R(p)$ and $T_i = \left[\frac{[n\beta]}{n\alpha + 1} (X_{i[j]} - \bar{M}_i)^2 / ([n\beta] - [n\alpha]) \right]^{\frac{1}{2}}$ for the procedure $R(\alpha, \beta)$ where \bar{M}_i is the median of X_{i1}, \ldots, X_{in} and $\bar{X}_i = \frac{1}{n} \sum_{j=1}^{n} X_{ij}$. Then it follows from Bickel and Lehmann (1976) that the results analogous to the case (I) hold for $R(p)$ without any further assumption, and hold for $R(\alpha, \beta)$ with the further assumption that F is differentiable with positive and continuous derivative f.

(B) Selection of a subset containing the 'best' population

Here we consider the problem of selecting a subset of k populations which includes the population associated with the
smallest scale parameter with at least probability \(P^* \). This problem has been studied by Gupta and Sobel (1962) and Gupta (1965) when a specific form of the cdf is assumed. Also nonparametric or robust selection procedures have been proposed and studied by Sobel (1967), Blumenthal and Patterson (1969), Wong (1976) and McDonald (1977) among others.

Let \(X_{i1}, \ldots, X_{in} \) be the independent observations from \(\pi_i \) with cdf \(F_i(x) = F\left(\frac{x - \theta_i}{\sigma_i} \right) \) for \(i = 1, \ldots, k \). Here, \(F \) is assumed to be continuous and symmetric about the origin, \(\sigma_i \) is unknown and \(\theta_i \) is known. We may assume \(\theta_1 = \ldots = \theta_k = 0 \). Let \(\sigma_1 \leq \ldots \leq \sigma_k \) denote the ordered \(\sigma \)'s and \(\pi_i \) denote the population \(\pi \) associated with \(\sigma_i \). Our goal is to select a subset of random size depending on the observed data so that, for given \(P^*(\frac{1}{k} < p^* < 1) \),

\[
\inf_{\Omega} P(\text{CS}|\sigma) \geq p^* \tag{3.3.13}
\]

where \(\Omega = \{ \sigma = (\sigma_1, \ldots, \sigma_k) : \sigma_i > 0, i = 1, \ldots, k \} \) and CS denotes the correct selection of a subset which includes \(\pi_i \).

We will consider the procedure \(R^*(p)(1 \leq p \leq 2) \) which includes \(\pi_i \) in the selected subset if \(T_i \leq c^{-1} \min_{1 \leq j \leq k} T_j \) where \(T_i = T(X_{i1}, \ldots, X_{in}) = \frac{1}{n} \sum_{j=1}^{n} |X_{ij}|^p \) and \(c(0 < c \leq 1) \) is determined to satisfy (3.3.13).

Then it can be easily shown that, for the procedure \(R^*(p) \), the infimum of \(P(\text{CS}|\sigma) \) occurs when all the \(\sigma_i \)'s are equal; therefore, the constant \(c = c(n, k, p, P^*) \) is obtained by \(\int_0^\infty [1 - G(cx)]^{k-1} dG(x) = p^* \), where \(G \) is the cdf of \(T_1 \) when \(\sigma_1 = 1 \). By the same reason as in (A) one can find a large sample solution of \(c \) if he wishes to avoid the
distributional assumption on F. Similarly as in (A) we can get the large sample solution of c as in the next result.

Lemma 3.3.3. Let c be the constant satisfying the basic probability condition. Then, as \(n \to \infty \),

\[
c = 1 - d \left(n^{-\frac{1}{2}p} \right) \left[\frac{E[Z|p]^{2p}}{(E[Z|p])^2} - 1 \right]^{\frac{1}{2}} + o(n^{-\frac{1}{2}}) \tag{3.3.14}
\]

where the expectations are taken wrt the distribution \(F(\cdot) \) and \(d \) is determined by

\[
\int \phi^{k-1}(x+d) d\phi(x) = P^* \tag{3.3.15}
\]

Values of \(d \) satisfying (3.3.15) are available in Gupta (1956) for various values of \(k \) and \(P^* \). Let \(S_p \) and \(S^*_p \) denote the random size of the selected subset and the random number of the non-best populations in the selected subset, respectively for the procedure \(R^*(p) \). It follows from the result in Gupta and Sobel (1962) that

\[
\sup_{q \in \Omega} E(S_p|q) = kP^* \text{ provided } f(x) = F'(x) \text{ is log-concave}. \text{ Since small values of } S^*_p \text{ are desirable, we would like to keep } E(S_p|q) \text{ as small as possible. Let us consider the following slippage configuration:}
\]

\[
\Delta_\sigma[1] = \sigma[2] = \ldots = \sigma[k] \text{ for some } \Delta > 1. \tag{3.3.16}
\]

Then for a given \(\epsilon > 0 \), we would like to have small sample size \(n \) where \(n \) is determined, subject to (3.3.16), by

\[
E(S^*_p|q) = \epsilon. \tag{3.3.17}
\]

Following McDonald (1969) we define the asymptotic relative efficiency \(ARE(p, 2; \Delta, F) \) of \(R^*(p) \) to be the limiting ratio of
n(2,ε) to n(p,ε) as ε → 0. To find the large sample solution of (3.3.17), we use the device of replacing Δ by Δ_n.

Lemma 3.3.4. Assume (3.3.14) and (3.3.16). Then as n → ∞,

$$
\Delta_n = 1 + \Delta^* n^{-\frac{1}{2}} p^{-1} \left[- \frac{E|Z|^{2p}}{(E|Z|^p)^2} - 1 \right]^{\frac{1}{2}} + o(n^{-\frac{1}{2}}) \tag{3.3.18}
$$

where the expectations are taken wrt F(·) and Δ* is determined by $(k-1) \int \phi^{k-2}(d-x)\phi(d-\Delta*-x)d\phi(x) = \epsilon$ for d given by (3.3.15).

Hence the large sample solution of (3.3.17), keeping in terms of order $n^{\frac{1}{2}}$, is given by

$$
n(p,\epsilon) = \left(\frac{\Delta^*}{\Delta - 1} \right)^2 p^{-2} \left[- \frac{E|Z|^{2p}}{(E|Z|^p)^2} - 1 \right].
$$

It follows that the ARE of $R^*(p)$ relative to $R(2)$ is given by

$$
\text{ARE}(p,2;\Delta,F) = \frac{p^2}{4} \left[- \frac{E|Z|^4}{(E|Z|^2)^2} - 1 \right] / \left[- \frac{E|Z|^{2p}}{(E|Z|^p)^2} - 1 \right]
$$

which is the same as that in (A).
Table VI

Lists c-values to implement the Bayes rule in Theorem 3.2.2.

which depends on n and α through the quantity \(m = n + \alpha \).

<table>
<thead>
<tr>
<th>m</th>
<th>c</th>
<th>m</th>
<th>c</th>
<th>m</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>.3033</td>
<td>11.0</td>
<td>.8870</td>
<td>21.0</td>
<td>.9388</td>
</tr>
<tr>
<td>1.5</td>
<td>.4392</td>
<td>11.5</td>
<td>.8916</td>
<td>21.5</td>
<td>.9402</td>
</tr>
<tr>
<td>2.0</td>
<td>.5342</td>
<td>12.0</td>
<td>.8958</td>
<td>22.0</td>
<td>.9415</td>
</tr>
<tr>
<td>2.5</td>
<td>.6021</td>
<td>12.5</td>
<td>.8997</td>
<td>22.5</td>
<td>.9428</td>
</tr>
<tr>
<td>3.0</td>
<td>.6530</td>
<td>13.0</td>
<td>.9034</td>
<td>23.0</td>
<td>.9440</td>
</tr>
<tr>
<td>3.5</td>
<td>.6925</td>
<td>13.5</td>
<td>.9067</td>
<td>23.5</td>
<td>.9451</td>
</tr>
<tr>
<td>4.0</td>
<td>.7240</td>
<td>14.0</td>
<td>.9099</td>
<td>24.0</td>
<td>.9462</td>
</tr>
<tr>
<td>4.5</td>
<td>.7496</td>
<td>14.5</td>
<td>.9128</td>
<td>24.5</td>
<td>.9473</td>
</tr>
<tr>
<td>5.0</td>
<td>.7710</td>
<td>15.0</td>
<td>.9156</td>
<td>25.0</td>
<td>.9483</td>
</tr>
<tr>
<td>5.5</td>
<td>.7890</td>
<td>15.5</td>
<td>.9182</td>
<td>25.5</td>
<td>.9493</td>
</tr>
<tr>
<td>6.0</td>
<td>.8044</td>
<td>16.0</td>
<td>.9206</td>
<td>26.0</td>
<td>.9502</td>
</tr>
<tr>
<td>6.5</td>
<td>.8177</td>
<td>16.5</td>
<td>.9229</td>
<td>26.5</td>
<td>.9511</td>
</tr>
<tr>
<td>7.0</td>
<td>.8293</td>
<td>17.0</td>
<td>.9251</td>
<td>27.0</td>
<td>.9520</td>
</tr>
<tr>
<td>7.5</td>
<td>.8396</td>
<td>17.5</td>
<td>.9271</td>
<td>27.5</td>
<td>.9529</td>
</tr>
<tr>
<td>8.0</td>
<td>.8486</td>
<td>18.0</td>
<td>.9291</td>
<td>28.0</td>
<td>.9537</td>
</tr>
<tr>
<td>8.5</td>
<td>.8567</td>
<td>18.5</td>
<td>.9309</td>
<td>28.5</td>
<td>.9545</td>
</tr>
<tr>
<td>9.0</td>
<td>.8640</td>
<td>19.0</td>
<td>.9326</td>
<td>29.0</td>
<td>.9552</td>
</tr>
<tr>
<td>9.5</td>
<td>.8706</td>
<td>19.5</td>
<td>.9343</td>
<td>29.5</td>
<td>.9560</td>
</tr>
<tr>
<td>10.0</td>
<td>.8766</td>
<td>20.0</td>
<td>.9359</td>
<td>30.0</td>
<td>.9567</td>
</tr>
<tr>
<td>10.5</td>
<td>.8820</td>
<td>20.5</td>
<td>.9374</td>
<td>30.5</td>
<td>.9574</td>
</tr>
</tbody>
</table>
Table VII

Lists c-values to implement the Bayes rule in Remark 3.2.2.
which depends on n and α through the quantity $m = n + \alpha$.

<table>
<thead>
<tr>
<th>m</th>
<th>c</th>
<th>m</th>
<th>c</th>
<th>m</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>.7854</td>
<td>11.5</td>
<td>.9817</td>
<td>21.5</td>
<td>.9904</td>
</tr>
<tr>
<td>2.0</td>
<td>.8592</td>
<td>12.0</td>
<td>.9825</td>
<td>22.0</td>
<td>.9907</td>
</tr>
<tr>
<td>2.5</td>
<td>.8957</td>
<td>12.5</td>
<td>.9832</td>
<td>22.5</td>
<td>.9909</td>
</tr>
<tr>
<td>3.0</td>
<td>.9173</td>
<td>13.0</td>
<td>.9839</td>
<td>23.0</td>
<td>.9911</td>
</tr>
<tr>
<td>3.5</td>
<td>.9315</td>
<td>13.5</td>
<td>.9845</td>
<td>23.5</td>
<td>.9913</td>
</tr>
<tr>
<td>4.0</td>
<td>.9415</td>
<td>14.0</td>
<td>.9851</td>
<td>24.0</td>
<td>.9915</td>
</tr>
<tr>
<td>4.5</td>
<td>.9490</td>
<td>14.5</td>
<td>.9856</td>
<td>24.5</td>
<td>.9916</td>
</tr>
<tr>
<td>5.0</td>
<td>.9548</td>
<td>15.0</td>
<td>.9861</td>
<td>25.0</td>
<td>.9918</td>
</tr>
<tr>
<td>5.5</td>
<td>.9594</td>
<td>15.5</td>
<td>.9866</td>
<td>25.5</td>
<td>.9920</td>
</tr>
<tr>
<td>6.0</td>
<td>.9631</td>
<td>16.0</td>
<td>.9870</td>
<td>26.0</td>
<td>.9921</td>
</tr>
<tr>
<td>6.5</td>
<td>.9662</td>
<td>16.5</td>
<td>.9874</td>
<td>26.5</td>
<td>.9923</td>
</tr>
<tr>
<td>7.0</td>
<td>.9688</td>
<td>17.0</td>
<td>.9878</td>
<td>27.0</td>
<td>.9924</td>
</tr>
<tr>
<td>7.5</td>
<td>.9711</td>
<td>17.5</td>
<td>.9882</td>
<td>27.5</td>
<td>.9926</td>
</tr>
<tr>
<td>8.0</td>
<td>.9730</td>
<td>18.0</td>
<td>.9885</td>
<td>28.0</td>
<td>.9927</td>
</tr>
<tr>
<td>8.5</td>
<td>.9747</td>
<td>18.5</td>
<td>.9888</td>
<td>28.5</td>
<td>.9928</td>
</tr>
<tr>
<td>9.0</td>
<td>.9762</td>
<td>19.0</td>
<td>.9891</td>
<td>29.0</td>
<td>.9930</td>
</tr>
<tr>
<td>9.5</td>
<td>.9776</td>
<td>19.5</td>
<td>.9894</td>
<td>29.5</td>
<td>.9931</td>
</tr>
<tr>
<td>10.0</td>
<td>.9788</td>
<td>20.0</td>
<td>.9897</td>
<td>30.0</td>
<td>.9932</td>
</tr>
<tr>
<td>10.5</td>
<td>.9798</td>
<td>20.5</td>
<td>.9900</td>
<td>30.5</td>
<td>.9933</td>
</tr>
<tr>
<td>11.0</td>
<td>.9808</td>
<td>21.0</td>
<td>.9902</td>
<td>31.0</td>
<td>.9934</td>
</tr>
</tbody>
</table>
BIBLIOGRAPHY
BIBLIOGRAPHY

<table>
<thead>
<tr>
<th>REPORT DOCUMENTATION PAGE</th>
<th>READ INSTRUCTIONS BEFORE COMPLETING FORM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. REPORT NUMBER</td>
<td>2. GOVT ACCESSION NO.</td>
</tr>
<tr>
<td>Mimeograph Series #79-7</td>
<td></td>
</tr>
<tr>
<td>4. TITLE (and Subtitle)</td>
<td>5. TYPE OF REPORT & PERIOD COVERED</td>
</tr>
<tr>
<td>On Bayes and Gamma-minimax Subset Selection Rules</td>
<td>Technical</td>
</tr>
<tr>
<td>7. AUTHOR(s)</td>
<td>6. PERFORMING ORG. REPORT NUMBER</td>
</tr>
<tr>
<td>Woo-Chul Kim</td>
<td>Mimeo, Series #79-7</td>
</tr>
<tr>
<td>9. PERFORMING ORGANIZATION NAME AND ADDRESS</td>
<td>8. CONTRACT OR GRANT NUMBER(s)</td>
</tr>
<tr>
<td>Purdue University</td>
<td>ONR N00014-75-C-0455</td>
</tr>
<tr>
<td>Department of Statistics</td>
<td></td>
</tr>
<tr>
<td>West Lafayette, IN 47907</td>
<td></td>
</tr>
<tr>
<td>11. CONTROLLING OFFICE NAME AND ADDRESS</td>
<td>10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS</td>
</tr>
<tr>
<td>Office of Naval Research</td>
<td></td>
</tr>
<tr>
<td>Washington, DC</td>
<td></td>
</tr>
<tr>
<td>12. REPORT DATE</td>
<td>13. NUMBER OF PAGES</td>
</tr>
<tr>
<td>May 1979</td>
<td>106</td>
</tr>
<tr>
<td>14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)</td>
<td>15. SECURITY CLASS. OF THIS REPORT</td>
</tr>
<tr>
<td></td>
<td>Unclassified</td>
</tr>
<tr>
<td>16. DISTRIBUTION STATEMENT (of this Report)</td>
<td>15a. DECLASSIFICATION/DOWNGRADING SCHEDULE</td>
</tr>
<tr>
<td>Approved for public release, distribution unlimited.</td>
<td></td>
</tr>
<tr>
<td>17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)</td>
<td></td>
</tr>
<tr>
<td>18. SUPPLEMENTARY NOTES</td>
<td></td>
</tr>
<tr>
<td>19. KEY WORDS (Continue on reverse side if necessary and identify by block number)</td>
<td></td>
</tr>
<tr>
<td>Selection of Good Populations, Bayes Rule, Minimax Rule, Extended Bayes Rule, Monte Carlo Study, (\gamma)-minimax Rule, Strong Unimodality, Series Systems, Parallel Systems, Reliability, Measure of Dispersion, Asymptotic Relative Efficiency.</td>
<td></td>
</tr>
<tr>
<td>20. ABSTRACT (Continue on reverse side if necessary and identify by block number)</td>
<td></td>
</tr>
</tbody>
</table>
| Selection and ranking problems arise because the classical tests of homogeneity are often inadequate in practice when the experimenter wishes to make decisions regarding \(k (\geq 2) \) populations or treatments. Chapter 1 deals with the problem of selecting 'good' populations from a set of \(k \) given populations \(\pi_1, \ldots, \pi_k \) where the quality of each population \(\pi_j \) is characterized by an unknown parameter \(\theta_j \). A population \(\pi_j \) is called 'good' if \(\theta_j \geq \max_{1 \leq j \leq k} \theta_j - \Delta \) and
'bad' otherwise. In the preceding Δ is assumed known and is positive. Assuming a permutationally symmetric prior of $(\theta_1, \ldots, \theta_k)$ and the monotone likelihood ratio of the probability density function $f(x, \theta_i)$ associated with π_i, a Bayes rule is derived when a loss function is of a certain type. Also, some properties of the Bayes rule are given when an independently and identically distributed prior is assumed. The rest of Chapter 1 pertains to further simplification and approximation of the Bayes rules when the loss is c_1 for selecting a 'bad' population and c_2 for excluding a 'good' one. It turns out that, in some sense, some rules which are explicitly computable and have been studied in the past provide approximations to the Bayes rule. This is an interesting result since very often Bayes rules are analytically and computationally intractable. Further, it is shown that rules of the type proposed by Gupta (1955) are extended Bayes rules for the case of normal populations problem. Monte Carlo studies are carried out to see how well the rules proposed by Seal (1955) and by Gupta (1956) approximate the Bayes rules in terms of overall risks with respect to normal exchangeable priors.

Chapter 2 deals with the problem of partitioning k treatment populations with regard to a control population. The goal is to partition the k treatment populations into 'better' populations, 'worse' populations or 'close' populations in an optimal way. It is assumed that population π_i is characterized by a parameter θ_i and observable independent random variables X_i has probability density function $f_i(x_i - \theta_i)$ for all $i = 0, 1, \ldots, k$, with $f_i(\cdot)$ being strongly unimodal and symmetric. Assuming a specific loss function, Γ-minimax rules are derived when Γ consists of prior distributions under which we can specify the probability of being 'close' to the control and being 'better' or 'worse' than it. Minimax rules are also derived. For the normal means problem, Bayes rules are derived with respect to independent normal priors, and comparisons between Γ-minimax rules and the corresponding Bayes rules are made.

In Chapter 3, a selection problem arising in reliability theory and another for the selection in terms of scale parameters are considered. The first problem deals with the selection of components (units) for parallel and series systems from k populations (brands) with exponentially distributed life-length times. An optimal rule is derived for the series system and the Bayes rule with respect to a natural conjugate prior is derived for the 1-out-of-k system. The second problem deals with the investigation of the selection procedures based on robust estimators of measures of dispersion for selecting the populations in terms of scale parameters. Large sample solutions and the asymptotic relative efficiencies of the proposed procedures are studied.