Elfving's Theorem and Optimal Designs for Quadratic Loss

by

W.J. Studden*

Department of Statistics
Division of Mathematics Science
Mimeograph Series #227
June 23, 1970

*This research was supported by the National Science Foundation Grants GP 8986 and GP 20306. Reproduction is permitted in whole or in part for any purposes of the United States Government.
Abstract - Elfving's Theorem and Optimal Designs for Quadratic Loss

by W.J. Studden

The theorem due to Elfving mentioned in the title is concerned with the optimal allocation of experiments in estimating linear functions of regression parameters. The purpose of the present paper is to give a matrix analog of this theorem and to give some simple applications.
Elfving's Theorem and Optimal Designs for Quadratic Loss

by

W.J. Studden*

Purdue University

§1. Introduction. The purpose of this paper is to give a matrix analog of a geometric result of Elfving in the theory of optimal design of experiments. The connection with quadratic loss is indicated below.

Let $f=(f_1, \ldots, f_m)$ denote m linearly independent continuous functions on a compact set X. For each $x \in X$ an experiment can be performed. The outcome is a random variable $y(x)$ with mean value $\Theta f'(x) = \sum \theta_i f_i(x)$ and a variance σ^2 independent of x. (Primes will denote transposes.) The functions f_1, \ldots, f_m, called the regression functions, are assumed known while $\theta=(\theta_1, \ldots, \theta_m)$ and σ^2 are unknown. An experimental design is a probability measure μ on X. In practice, the experimenter is allowed N uncorrelated observations and the number of observations that he takes at each $x \in X$ is "proportional" to the measure μ. For a given design μ let $m_{ij} = m_{i,j}(\mu) = \int f_i f_j d\mu$ and $M(\mu) = \|m_{ij}\|_{i,j=1}^m$. The matrix $M(\mu)$ is called the information matrix of the design.

Suppose μ concentrates mass μ_i at the points $x_i, i=1, \ldots, r$ and $N\mu_i = n_i$ are integers. If N uncorrelated observations are made, taking n_i observations of x_i, then the variance of the best linear unbiased estimate of

*This research was supported by the National Science Foundation Grants GP 8986 and GP 20306. Reproduction is permitted in whole or in part for any purposes of the United States Government.
\(a_\theta ' = \sum_i a_i \theta_i \) is given by \(\sigma \sum_i a_i M^{-1}(\mu) a_i \). The inverse \(M^{-1}(\mu) \) must be suitably defined if \(M(\mu) \) is nonsingular. A design \(\mu \) is called \(a \)-optimal if \(\mu \) minimizes \(V(a,\mu) = a M^{-1}(\mu) a ' \). The following geometric result was given by Elfving (1952); see also Karlin and Studden (1966).

Theorem (Elfving). Let \(R \) denote the smallest convex set in Euclidean \(m \)-space which is symmetric with respect to the origin and contains all of the vectors \(f(x) = (f_1(x), \ldots, f_m(x)) \), \(x \in \mathbb{R}^m \). A design \(\mu_0 \) is \(a \)-optimal if and only if there exists a scalar valued function \(\phi(x) \) satisfying \(|\phi(x)| = 1 \) such that (i) \(\int \phi(x) f(x) d\mu_0(x) = \beta a \) for some \(\beta \) and (ii) \(\beta a \) is a boundary point of \(R \). Moreover \(\beta a \) lies on the boundary of \(R \) if and only if \(\beta^2 = v^{-1} \) where \(v = \min_{\mu} V(a,\mu) \).

The quantity, analogous to \(V(a,\mu) \), that we wish to consider is

\[
(1.1) \quad V(A,\mu) = \text{tr} A' M^{-1}(\mu) A = \text{tr} M^{-1}(\mu) AA' \]

where \(A \) is an \(m \times k \) matrix and \(\text{tr} \) denotes the trace. We thus wish to minimize the sum of quantities \(V(a,\mu) \) where the \(a \)'s are given by the columns of \(A \).

The expression \(V(A,\mu) \) can be also be seen to be proportional to \(E(\hat{\theta} - \theta) AA'(\hat{\theta} - \theta)' \), where \(\hat{\theta} \) denotes the least squares estimate of \(\theta \). This is the reason for part of the title of the paper.

In the following sense the expression \(V(A,\mu) \) provides some "generality". Let \(L(B) \) denote a linear function on the set of \(m \times m \) matrices which is positive in the sense that \(L(B) \geq 0 \) for \(B \) positive semidefinite. Then \(L(B) = \text{tr} BC \) for some positive definite \(C \). Thus \(V(A,\mu) \) is the most general positive linear function in \(M^{-1}(\mu) \).
A design \(\mu \) is called \(A \)-optimal if it minimizes \(V(A,\mu) \). In order to state the matrix analog of Elfving's theorem we let \(\phi=(\phi_1,\ldots,\phi_k) \) and define \(R \) as the smallest convex set of \(m \times k \) matrices which contains all the matrices \(\phi' \) where \(x \in X \) and \(\sum_{i=1}^{k} |\phi_i|^2 \leq 1 \). (The symbol \(| \cdot | \) will denote the usual Euclidean norm.) We then have the following result.

Theorem 1.1. A design \(\mu_0 \) is \(A_0 \)-optimal if and only if there exists a function \(\phi(x) \) satisfying \(|\phi(x)|=1 \) such that (i) \(\int \phi' \phi \, d\mu_0 = \beta \lambda_0 \) for some scalar \(\beta \) and (ii) \(\beta A_0 \) is contained in the boundary of \(R \). Moreover \(\beta A_0 \) lies on the boundary of \(R \) if and only if \(\beta^{-2} = v_0 = \min_{\mu} V(A_0,\mu) \).

A more complete discussion of the function \(V(A,\mu) \) is given in \$2\) while the proof of Theorem 1.1 and some preliminary lemmas are given in \$3\). A more useful from of the theorem is given in Theorem 3.1. Various simple applications are given in \$4\) and in \$5\) we discuss briefly the choice of a basis in regression theory.

The application of Theorem 1.1 is, at present, somewhat limited (as are most results on the optimal choice of design) in that it appears difficult in any given situation to determine the points where the observations are to be taken. Some iterative computational procedures are available both for the minimization of \(\text{tr } M^{-1}(\mu) A A' \) and for maximizing the determinant of \(M(\mu) \). See for example Fedorov (1968) and Fedorov and Dukova (1968).

We wish to thank Professor J. Yackel for a helpful discussion concerning Lemma 3.1.

\$2. The Function \(V(A,\mu) \). Whenever \(M(\mu) \) is nonsingular the quantity \(V(A,\mu)=\text{tr } A A' M^{-1}(\mu) \) is well defined. With the aid of Schwartz's inequality it can be shown that for any \(m \times k \) matrix \(E \)
\[(2.1) \quad \text{tr}^2 E'A \leq \text{tr} E'M(\mu) E \text{ tr } A'M^{-1}A.\]

and equality occurs if and only if A is proportional to M(\mu)E. Therefore

\[(2.2) \quad V(A,\mu) = \sup_E \frac{\text{tr}^2 E'A}{\text{tr} E'M(\mu)E}\]

When M=M(\mu) is singular we take V(A,\mu) as defined by (2.2) where the sup

is over those E such the both numerator and denominator do not vanish simul-

taneously. Thus, in order that V(A,\mu) be finite we must have each column of

A orthogonal to every vector e such that Me = 0. That is, the columns of A

must be in the range of M(\mu). We can therefore restrict the columns of E to

also be in the range of M. Let \(\lambda_1, ..., \lambda_s\) be the nonzero eigenvalues of M

with associated orthonormal eigenvectors \(v_1, ..., v_s\). Then M=\(\sum_1^s \lambda_i v_i^t v_i\) and if we define

\[(2.3) \quad M^\varepsilon = \sum_1^s \lambda_i^\varepsilon v_i^t v_i \quad \text{for } \varepsilon = \pm 1 \text{ or } \pm 1/2\]

\[\text{then } M^{1/2} M^{-1/2} = \sum v_i^t v_i. \text{ If the columns of A are in the range of M it fol}-\]

\[\text{ows that } (\sum v_i^t v_i)A = A. \text{ Then by Schwartz's inequality}

\[(2.4) \quad \text{tr}^2 E'A = \text{tr}^2 E'M^{1/2} M^{-1/2}A \leq \text{tr} E'M E \text{ tr } A'M^{-1}A\]

and equality occurs if and only if A is proportional to ME. We shall usually

take the proportionality constant so that
(2.5) \[\beta A = ME \quad \text{or} \quad \beta A^{-1} M^{-1} = E \]

where \(\beta^{-2} = \text{tr} A'M^{-1}A \).

We have now shown that when the columns of \(A \) are in the range of \(M(\mu) \) then \(V(A, \mu) = \text{tr} A'M^{-1}(\mu)A \) where the inverse is given by (2.3). Otherwise \(V(A, \mu) = \infty \).

§3. Preliminary Lemmas and Proof of Theorem 1.1.

Lemma 3.1. Let \(R \) denote the smallest convex set containing the \(m x k \) matrices \(f'(x)\phi, x \in X \) and \(\|\phi\|^2 = \sum \phi_i^2 \leq 1 \). Then

\[R = \{ A | \text{tr}^2 E'A \leq \sup_x f(x) EE'f'(x) \quad \forall E \} \]

where \(E \) is an \(m x k \) matrix.

Proof. Let \(R_0 \) denote the convex set defined in parenthesis above. Then for \(A = f'(x)\phi \),

\[\text{tr}^2 E'f'\phi \leq \text{tr} f(x) EE'f'(x) \\
\leq f(x) EE'f'(x). \]

Therefore \(R \subseteq R_0 \). Now suppose \(A_0 \nsubseteq R \). Since \(R \) is easily seen to be closed and bounded there exists a hyperplane strictly separating \(A_0 \) and \(R \). Thus there exists \(E_0 \) and \(a_0 \) such that

\[\text{tr} E_0' A \leq a_0 < \text{tr} E_0' A_0 \quad \text{for all } A \in R \]

Without loss of generality we take \(a_0 = 1 \). In (3.2) we take \(A = f'(x)\phi \) where
\[\phi = f(x) E_o / |f(x)E_o|. \] Then

\[
(3.3) \quad f(x) E_o E_o^t f'(x) \leq 1 < tr^2 E_o^t A_o
\]

for all \(x \) and hence \(A_o \nless R_o \).

Corollary 3.1. (i) Every matrix \(A \in R \) has a representation \(A = \sum_{\nu} f'(x_\nu) \phi(\nu) p_\nu \)

where \(|\phi(\nu)| \leq 1 \) and \(\sum p_\nu = 1 \) and the \(x_\nu \) are not necessarily distinct.

(ii) Every matrix \(A \) in the boundary of \(R \) has a representation

\[
(3.4) \quad A = \sum_{\nu} f'(x_\nu) \phi(x_\nu) p_\nu
\]

where \(|\phi(x_\nu)| = 1 \), \(\sum p_\nu = 1 \) and the \(x_\nu \) are all distinct. Both of the sums in the above representations are finite.

Arguments similar to those used in Lemma 3.1 may be used to prove the following lemma.

Lemma 3.2. A matrix \(A \) of the form (3.4) is a boundary point of \(R \) if and only if there exists a "supporting plane" \(E \) such that

\[
(3.5) \quad f(x) EE' f'(x) \leq 1 \quad \text{for all } x \in X
\]

and equality holds for each \(x_\nu \) (if \(p_\nu > 0 \)). Moreover \(\phi(x_\nu) = f(x_\nu)E / |f(x_\nu)E| \) and \(tr E' A = 1 \).

Proof of Theorem 1.1. First suppose that \(\nu_o \) and \(\phi \) are such that

\[
\int f'(x) \phi(x) d\nu_o(x) = \beta A_o
\]

and that \(\beta A_o \) is on the boundary of \(R \). Then by
Lemma 3.2 there exists an E_0 such that

\[(3.6) \quad \beta \tr E_0' A_0 = 1 \quad \text{and} \quad f(x) \ E_0 E_0' f'(x) \leq 1 \quad \text{for all} \ x \]

with equality holding for x in the spectrum of μ_0. Therefore,

\[(3.7) \quad \sup_x f(x) \ E_0 E_0' f'(x) = 1. \]

For any design μ we have

\[
\tr E'M(\mu) E = \tr EE' \int f' f \, d\mu \\
\leq \sup_x \tr EE' f'(x) f(x) \\
= \sup_x f(x) \ EE' f'(x)
\]

Then

\[
V(A_0, \mu) \geq \frac{\tr^2 E_0' A_0}{\tr \ E_0' M(\mu) E_0} \\
\geq \frac{\tr^2 E_0' A_0}{\sup_x f(x) E_0 E_0' f'(x)}
\]

This inequality together with (3.6) and (3.7) imply that

\[(3.8) \quad V(A_0, \mu) \geq \frac{1}{\beta^2}. \]

Now for the measure μ_0 and any E we apply Schwartz's inequality twice to give
\[\text{tr}^2 E'A_o = \beta^{-2} (\text{tr} E' f'(x) \phi(x) \, d\mu_o(x))^2 \]
\[\leq \beta^{-2} \int [\text{tr} E' f'(x) \phi(x)]^2 \, d\mu_o(x) \]
\[\leq \beta^{-2} \text{tr}(E' f'(x) f(x) \, E) \, d\mu_o(x) \]
\[= \beta^{-2} \text{tr} E'M(\mu_o) \, E \]

Therefore

\[V(A_o, \mu_o) = \sup \frac{\text{tr}^2 E'A_o}{\text{tr} E'M(\mu_o) \, E} \leq \frac{1}{\beta^2}. \]

This inequality combined with (3.8) shows that \(\mu_o \) is \(A_o \)-optimal.

Note that there always exists a design \(\mu \) satisfying (i) and (ii) so that the above analysis proves the last sentence of the theorem, namely that \(v_o = \beta^{-2} \) for \(BA \) on the boundary of \(R \).

We now let \(\mu_o \) be any \(A_o \)-optimal design and wish to show that (i) and (ii) are satisfied for some \(\phi \). We take \(\beta^{-2} = v_o \) so the \(BA_o \) lies on the boundary of \(R \). Then there exists \(E_o \) so that

\[f(x) \, E_o E'_o \, f'(x) \leq 1 = \beta^2 \, \text{tr}^2 E'_o A_o. \]

Integrating the left side with respect to \(\mu_o \) we obtain

\[\text{tr} E'_o M(\mu_o) \, E_o \leq 1 \]

However since \(\mu_o \) is \(A_o \)-optimal we have
\[
\frac{\text{tr}^2 E_o^t A_o}{\text{tr} E_o^t M(\mu) E_o} \leq V(A_o, \mu_o) = \frac{1}{\beta^2}
\]

so that \(\text{tr} E_o^t M(\mu_o) E_o \geq \beta^2 \text{tr}^2 E_o^t A_o = 1 \). Therefore \(\text{tr} E_o^t M(\mu_o) E_o = \beta^2 \text{tr}^2 E_o^t A_o \)

and by the sentence containing (2.4) we must have \(A_o \) proportional to \(M(\mu_o) E_o \).

The latter part of (3.9) shows that

(3.11) \(\beta A_o = \epsilon M(\mu_o) E_o \) \(\text{where } \epsilon = \pm 1 \)

In this case

\[
\beta A_o = \epsilon \int f'(x) f(x) E_o d\mu_o(x)
\]

\[
= \int f'(x) \phi(x) d\mu_o(x)
\]

where \(\phi(x) = \epsilon f(x) E_o \) for \(x \) in the spectrum of \(\mu_o \). The vector \(\phi \) has length one since equality must occur in (3.9) for \(x \) in the spectrum of \(\mu_o \).

For a given matrix \(A \) it is usually difficult to determine the spectrum of any \(A \)-optimal design \(\mu \). Theorem 3.1 below is sometimes useful in determining those \(A \) which have an optimal design supported on a given set of points.

In many cases the "boundary representation"

(3.12) \(\beta A = \sum \frac{f'(x_v)}{\phi(x_v)} p_v \)

will reduce to a finite sum with at most \(m \) terms. If the number of terms is less than \(m \) we add arbitrary points with corresponding \(p_v = 0 \). We shall assume
in this case that the determinant \(F \) with columns \(\varphi(x_v) \) is nonsingular.

Let \(\ell'(x) = T\ell'(x) \) denote the vector of Lagrange functions for the points \(x_1, \ldots, x_m \), i.e. \(\ell_i'(x_j) = \delta_{ij} \). Inserting the values \(x_1, \ldots, x_m \) in \(\ell'(x) = T\ell'(x) \) gives \(I = TF \) so that \(T = F^{-1} \). If we multiply (3.12) by \(T \) and let \(TA = B \) then

\[
BB = \sum_v \ell_v'(x_v) \phi(x_v) p_v.
\]

In this case \(b_v = \phi(x_v) p_v \), where \(b_v \) denotes the \(v \)th row of \(B \). Then

\[
(3.13) \quad \beta = (\Sigma |b_j|)^{-1}, \quad p_v = \beta |b_v| \quad \text{and} \quad \phi(x_v) = b_v |b_v|^{-1}
\]

In case \(|b_v| = 0 \) we have \(p_v = 0 \) and \(\phi(x_v) \) need not be defined.

For any matrix \(B \) we take each nonzero row and replace it by \(b_v |b_v|^{-1} \). The resulting matrix is denoted by \(B_o \). Thus if \(B_d^{-1} \) denotes the diagonal matrix with diagonal elements \(|b_v|^{-1} \) for \(|b_v| \neq 0 \) and zero if \(|b_v| = 0 \) then

\[
(3.14) \quad B_o = B_d^{-1} B.
\]

The following theorem characterizes those \(A \) with an optimal design supported on a given set \(x_1, \ldots, x_m \).

Theorem 3.1. If \(F \) is nonsingular then an \(A \)-optimal design is supported on \(x_1, \ldots, x_m \) if and only if there exists a matrix \(B \) such that

(i) \(\ell(x) B_o B_o' \ell'(x) \leq 1 \quad \forall x \).

(ii) \(A = FB \)

The optimal weights are then proportional to the lengths of the rows of \(B \).

Proof. Suppose first that a matrix \(B \) exists satisfying (i) and (ii).
An A-optimal design then concentrates mass p_v on x_v where p_v is proportional to the vth row of B. To see this we observe that with p_v and $\phi(x_v)$ as in (3.13) we have (3.12) holding. Moreover (i) implies that

$$f(x) \quad B_0 B_0' \quad T \quad f'(x) \leq 1 \quad \text{for all } x$$

and

$$\text{tr} \ B_0' \quad T(\beta A) = \text{tr} \ B_0' \quad B_{d}^{-1} \quad B$$

$$= \text{tr} \ B_{d}^{-1} \quad BB' = 1$$

Therefore $\beta A \in B_{d} \quad R$ and the result follows by Theorem 1.1.

Now suppose that an optimal design μ_0 is supported on x_1, \ldots, x_m. The optimal weights p_v must be as in (3.13) and $\beta A = \Sigma p_v \quad f'(x_v) \quad \phi(x_v)$ with $\beta A \in B_{d} \quad R$. The hyperplane supporting R at βA then gives

$$(3.15) \quad f'(x) \quad E_0 E_0' \quad f(x) \leq 1 = \text{tr} \ E_0' \quad A$$

so that (i) holds with $B_0 = F' E_0$. From (2.5) we know that $\beta A = M_0 E_0$ so that $\beta A = \beta F_{C_d} F' \quad E_0$ where $C = TA$. In this case (iii) holds with $B = C_d B_0$.

§4. Applications. Polynomial extrapolation: Theorem 3.1 with $k=1$, $X=[-1,1]$, $f(x)=(1,x,\ldots,x^n)$ reduces fairly readily to the extrapolation result of Hoel and Levine (1964); see also Studden (1968). If $k=1$ the matrix A has one column. We take $x_v \quad v = 0, \ldots, n$ to be the extrema of the Tchebycheff polynomial T_n of the first kind, i.e. $x_v = -\cos \frac{\pi v}{n}, \quad v=0,1,\ldots,n$ and $T_n^2(x) \leq 1$ with equality holding at $x=x_v$. If we take the elements of the column vector B to have alternating sign then $z(x) \quad B_0 B_0' \quad z'(x) \leq 1$ since $z(x) \quad B_0 = \pm \quad T_n(x)$. Clearly $A = FB$ for some such B if $A = f'(x_0), \quad |x_0| > 1$. Thus the optimal design .
for extrapolating to \(x_0 \) concentrates on the \(x_y \) defined above.

Linear Regression. In this case we take \(f(x) = (1, x) \) and \(X = [a, b] \) and apply Theorem 3.1. It is readily seen that (i) holds with \(x_1 = a \) and \(x_2 = b \) for any matrix \(B \) due to the linearity of the regression functions. That is, if \(\lambda(x) B_0 = (P_1(x), P_2(x)) \) then \(P_1^2(a) + P_2^2(a) \leq 1 \) and \(P_1^2(b) + P_2^2(b) \leq 1 \), (usually equality will hold). Then \(x = \alpha a + (1-\alpha) b \) where \(\alpha = (b-x)/(b-a) \) so that

\[
P_1(x) = \alpha P_1(a) + (1-\alpha) P_1(b) \quad \text{and} \quad P_2^2(x) + P_2^2(x) \leq 1.
\]

For any matrix \(A \) we let \(a_1 \) and \(a_2 \) denote its rows. Since the weights of the \(A \)-optimal design are then proportional to the rows of \(B \), we find that the weights on \(a \) and \(b \) are proportional to the square roots of \(b^2|a_1|^2 + |a_2|^2 - ba_1 a_2^t \) and \(a^2|a_1|^2 + |a_2|^2 - aa_1 a_2^t \).

Note that in the case \(a = -b \) the weights will be equal if and only if \(a_1 a_2^t = 0 \), i.e. the two rows of \(A \) are orthogonal. This is the situation when, for example, (i) \(A \) is diagonal or (ii) \(A \) has rows \((1,1) \) and \((1,-1) \), i.e. we estimate the sum and difference of the regression coefficients.

Linear Spline Regression. Here we take \(X = [a, b] \) and let \(f(x) \) consist of the functions \(1, (x-\xi_0)^+, (x-\xi_1)^+, \ldots, (x-\xi_h)^+ \) where \(\xi_0 = a < \xi_1 < \ldots < \xi_h < \xi_{h+1} = b \) and \(z_+ = z \) for \(z \geq 0 \) and \(0 \) for \(z \leq 0 \). The regression function is a polygonal line segment. The argument used for the ordinary linear case shows that (i) again holds for \(x_1, \ldots, x_m \) equal \(\xi_0, \xi_1, \ldots, \xi_{h+1} \) and any matrix \(B \).

The matrix \(T = F^{-1} \) has three nonzero entries starting at the diagonal (except for the last two rows). The first row has \(1, -(\xi_1-\xi_0)^{-1}, (\xi_1-\xi_0)^{-1} \) while the \(i \)th row, for \(i = 2, \ldots, h+2 \), has entries

\[
\frac{1}{\xi_1-\xi_{i-1}}, \quad \frac{-(\xi_{i+1}-\xi_{i-1})}{(\xi_{i+1}-\xi_i)(\xi_i-\xi_{i-1})}, \quad \frac{1}{\xi_{i+1}-\xi_i}.
\]
If we take $h=1$, and A to have zero entries except in the lower right corner we then wish to estimate the coefficient of $(x-\xi_1)_+$. The optimal design has weights

$$
\frac{\xi_2 - \xi_1}{2(\xi_2 - \xi_0)}, \quad \frac{1}{2}, \quad \frac{\xi_1 - \xi_0}{2(\xi_2 - \xi_0)}
$$

on the points $a = \xi_0, \xi_1$ and $b = \xi_2$.

For general h we take $A = (a_{ij})$ again to be diagonal with $a_{11} = a_{22} = 0$ and $a_{1i} = \gamma$ for $i = 2, \ldots, h+2$. If the ξ_i are equally spaced on (ξ_0, ξ_{h+1}) the optimal design has weights on $\xi_0, \xi_1, \ldots, \xi_{h+1}$ proportional to $1, \sqrt{5}, \sqrt{6}, \sqrt{6}, \ldots, \sqrt{6}, \sqrt{5}, 1$.

Quadratic Regression. For simplicity we take $X = [-1,1]$ and $f(x) = (1, x, x^2)$ and consider those designs supported on the three points -1, 0, 1. Since $\mathcal{L}(x) B_0 B_0' \mathcal{L}'(x)$ is a quadratic form and a polynomial of degree four, it can be checked that it is at most one on $[-1,1]$ if and only if its derivative vanishes at $x = 0$. This can be seen to be the case if and only if the second row of B is orthogonal to the first minus the second. For example we can take B of the form

$$
B = \begin{pmatrix}
 b_{11} & b_{12} & b_{13} \\
 b_{21} & 0 & b_{23} \\
 b_{11} & -b_{12} & b_{13}
\end{pmatrix}
$$

The corresponding matrix $A = FB$ is of the form

$$
A = \begin{pmatrix}
 \alpha & 0 & \epsilon \\
 0 & \beta & 0 \\
 \delta & 0 & \gamma
\end{pmatrix}
$$
Again the weights are proportional to the square roots of the diagonal of $BB' = TA A'T'$. If a_1, a_2 and a_3 denote the rows of A then the diagonal elements of $TA A'T'$ are

$$
|b_1|^2 = |b_3|^2 = \frac{1}{4}(|a_2|^2 + |a_3|^2),
|b_2|^2 = |a_1|^2 + |a_3|^2 - 2a_1^T a_3
$$

As special cases we take $\delta = \epsilon = 0$ then

$$
|b_1|^2 = |b_3|^2 = (\beta^2 + \gamma^2)/4
$$

$$
|b_2|^2 = \alpha^2 + \gamma^2
$$

If $A = I$ = the identity, then $\alpha = \beta = \gamma = 1$ and the weights on $-1, 0, 1$ are proportional to $1, 2, 1$. This design can also be shown to minimize

$$
\int f(x) M^{-1}(u) f'(x) dx = \text{tr} M^{-1}(u) C
$$

where

$$
C = \begin{pmatrix}
c_0 & 0 & c_2 \\
0 & c_2 & 0 \\
c_2 & 0 & c_4
\end{pmatrix}
$$

and $c_i = \int_{-1}^{1} x^i dx$.

Cubic Regression. For simplicity we take $A = I$, $X = [-1, 1]$ and $f(x) = (1, x, x^2, x^3)$. One can show that there exists an A-optimal symmetric design on four points $-1, -s, s, 1$. The quantities A and F are thus determined and $B = TA$. We can argue that $\lambda(x) B_o B'_o \lambda'(x) \leq 1$ for all x if and only if the derivative of the left side is zero at $x=s$. A rather tedious calculation
shows that \(s = (\sqrt{7} - 2)/3 \) and that the weights on \(-1, -s, s, 1\) are proportional to the square roots of \(1 + s^4, (1 + s^2)s^{-2}, (1 + s^2)s^{-2}, 1 + s^4\). These values are approximately \(s = .215 \) and the weights are \(.087, .413, .413 \) and \(.087\).

§5. **Choice of Basis.** In this section we indicate a connection between the quadratic loss designs discussed above and the design which maximizes the determinant of \(M(\mu) \) (see Kiefer (1960)). The result is of a simple nature and follows fairly readily from the known result that if \(G \) is a positive semidefinite matrix and \(|G| \) denotes the determinant then

\[
(5.1) \quad n |G|^{1/n} = \min_{|H|=1} \text{tr} \, GH
\]

where \(H \) is also positive semidefinite.

If we consider a change of basis \(g' = Pf' \), then \(M_g^{-1}(\mu) = \int g'g \, d\mu = PM_f(\mu)P' \)
and \(\text{tr} \, M_g^{-1}(\mu) = \text{tr} \, M_f^{-1}(\mu) \, AA' \) where \(A = P^{-1} \). As a measure of how good the basis is we consider

\[
(5.2) \quad L(P) = \min_{\mu} \text{tr} \, M_f^{-1}(\mu).
\]

Some normalization of \(P \) must be used and we consider those \(P \) with \(|P| = 1 \).

Using (5.1) we then have

Theorem 5.1. If \(L(P) \) is defined as in (5.2) then

\[
\min_{|P|=1} L(P) = m |M_f^{-1}(\mu_0)|^{1/m}
\]

where \(\mu_0 \) is the design maximizing \(|M_f(\mu)| \).
As an example we consider \(f(x) = (1, x, \ldots, x^n) \) on \(X = [-1,1] \) for \(n=1,2 \).
It is well known that the design maximizing \(|M_x(\mu)| \) concentrates equal mass
on -1 and 1 for \(n=1 \) and on -1, 0 and 1 for \(n=2 \). (The general case has equal
mass on the \(n+1 \) zeros of \((1-x^2)^n P_n(x) = 0 \) where \(P_n \) is the Legendre polynomial).

We consider four different basis; namely

1. \(f(x) = (1, x, \ldots, x^n) \)

2. T-basis: \(g = k(T_0, \ldots, T_n) \) where \(T_n \) is the \(n \)th Tchebycheff polynomial.

3. B-basis: \(g' = k(B_0, B_1, \ldots, B_n) \) where \(B_i \) denotes the Bernoulli poly-
 nomial \(B_i(x) = \binom{n}{i}(1-x)^i(1+x)^{n-i} \).

4. L-basis: where \(L_i(x) \) denotes the \(i \)th Lagrange polynomial correspond-
 ing to \(n+1 \) points \(x_0, x_1, \ldots, x_n \), i.e. \(L_i(x_j) = \delta_{ij} \).

In each case the proportionality constant \(k \) is used so that \(P = 1 \).

The case \(n=1 \) shows no distinction between the four basis. In each case
\(L(P) = 2 \) as a direct calculation will verify. For \(n=2 \) however we get
\(1. L(P) = 8; \quad 2. L(P) = 5.90; \quad 3. L(P) = 8.03; \quad 4. L(P) = 5.67 \). It is not
clear that the ordering will be the same for higher values of \(n \). The result
for \(n=2 \) is in accord with results in approximation theory which indicate that
the Tchebycheff basis is "good". By the above definition the Lagrange polynom-
ials on -1,0,1 are better.
References

