Buffon in the Round

by

M. F. Neuts* and P. Purdue**

Purdue University

Department of Statistics
Division of Mathematical Sciences
Mimeograph Series No. 221
July 1970

(*) The research of this author was partly supported by ONR contract NONR 1100(26) at Purdue University. Reproduction in whole or in part is permitted for any purpose of the United States Government.

(**) This author is the recipient of an XR David Ross grant from the Purdue Research Foundation.
Buffon in the Round

by

M. F. Neuts* and P. Purdue**

Purdue University

1. Introduction. Suppose that a needle of length 2d is thrown at ran-
dom onto a circle of radius R so that its mid-point M falls within or on the
circumference. We can define the term "at random" in a number of ways. In
this paper we consider the following alternative models.

A. The needle is tossed so that the position of M is uniformly dis-
tributed along the radius vector passing through it. Let U be the distance
from the center O of the circle to M. Then U is a random variable with dens-
ity function f given by

\[f(u) = \begin{cases} \frac{1}{R} & 0 \leq u \leq R \\ 0 & \text{otherwise} \end{cases} \]

B. The needle is tossed so that the position of M is uniformly dis-
tributed over the whole circle. In this case U has density function g,

where

\[g(u) = \begin{cases} \frac{2u}{R^2} & 0 \leq u \leq R \\ 0 & \text{otherwise} \end{cases} \]

In both cases we assume that the angle the needle makes with a fixed vector
in the plane of the circle is uniformly distributed on [0,2\pi]

We shall find the probability distribution of the number of intersections
of the needle with the circumference of the circle. In case A these probab-

(*) The research of this author was partly supported by ONR contract NONR 1100(26)
at Purdue University. Reproduction in whole or in part is permitted for any
purpose of the United States Government.

(**) This author is the recipient of an XR David Ross grant from the Purdue Research
Foundation.
ities are expressed in terms of elliptic integrals of the 1st and 2nd kinds. On the other hand the results for case B are expressed in terms of elementary functions only. In appendix 1 a table of these probabilities is given for certain $d|R$ ratios.

2. **Derivation of the Probabilities.**

We define the random variable Z as the number of intersections of the needle with the circumference of the circle. It is clear, that for $d > 2R$, $P[Z=2]=1$, so we need only consider the case $0 < d \leq 2R$. There are 2 main sub-cases to consider (a) $R \leq d \leq 2R$ and (b) $0 < d \leq R$. We shall deal with the case (a) first.

(a) $R \leq d \leq 2R$. We shall break this case down into two further sub-cases depending on the distance from 0 to M. Let $p_i(u)$ be the conditional probability $P[Z=i|U = u]$, $i = 0, 1, 2$ then:

(i) $0 < u \leq d-R$. Under these assumptions we always have exactly two intersections, so that:

$$p_0(u) = p_1(u) = 0$$

$$p_2(u) = 1$$

(ii) $d-R < u \leq R$. Referring to fig. 1 for notation we have:

\[
\begin{align*}
 p_0(u) &= 0 \\
 p_1(u) &= 2 - 2\Psi/\pi \\
 p_2(u) &= 2\Psi/\pi - 1 \\
 R^2 &= u^2 + d^2 - 2ud \cos(\pi-\Psi)
\end{align*}
\]

On expressing Ψ in terms of u, d and R and substituting we get

\[
\begin{align*}
 p_0(u) &= 0 \\
 p_1(u) &= 2 - 2/\pi \arccos \left(\frac{R^2-d^2-u^2}{2ud} \right) \\
 p_2(u) &= 2/\pi \arccos \left(\frac{R^2-d^2-u^2}{2ud} \right) - 1
\end{align*}
\]
\(P_A[Z = i] \) denotes the probability of \(i \) intersections in case A. Similarly for \(P_B[Z = i] \). It follows that for \(R \leq d \leq 2R \) we have:

\[
\begin{align*}
P_A[Z=0] &= 0, \\
P_A[Z=1] &= \int_0^R \left[\frac{2 - \frac{2}{\pi} \arccos \left(\frac{R^2 - d^2 - u^2}{2ud} \right) }{R} \right] \, du, \\
P_A[Z=2] &= \int_0^R \left[\frac{2}{\pi} \arccos \left(\frac{R^2 - d^2 - u^2}{2ud} \right) - 1 \right] \, du.
\end{align*}
\]

In case B we have

\[
\begin{align*}
P_B[Z=0] &= 0, \\
P_B[Z=1] &= \int_0^R \left[\frac{2 - \frac{2}{\pi} \arccos \left(\frac{R^2 - d^2 - u^2}{2ud} \right) }{R^2} \right] \, 2udu, \\
P_B[Z=2] &= \int_0^R \left[\frac{2}{\pi} \arccos \left(\frac{R^2 - d^2 - u^2}{2ud} \right) - 1 \right] \, 2udu.
\end{align*}
\]

Simplifying these expressions we get

\[
\begin{align*}
P_A[Z=0] &= 0, \\
P_A[Z=1] &= 4 - \frac{2d}{R} - \frac{2}{\pi R} \int_{d-R}^R \arccos \left(\frac{R^2 - d^2 - u^2}{2ud} \right) \, du, \\
P_A[Z=2] &= \frac{2d}{R} - 3 + \frac{2}{\pi R} \int_{d-R}^R \arccos \left(\frac{R^2 - d^2 - u^2}{2ud} \right) \, du, \\
P_B[Z=0] &= 0, \\
P_B[Z=1] &= \frac{2d}{R^2} (2R-d) - \frac{4}{\pi R^2} \int_{d-R}^R u \arccos \left(\frac{R^2 - d^2 - u^2}{2ud} \right) \, du, \\
P_B[Z=2] &= 1 - \frac{2d}{R^2} (2R-d) + \frac{4}{\pi R^2} \int_{d-R}^R u \arccos \left(\frac{R^2 - d^2 - u^2}{2ud} \right) \, du.
\end{align*}
\]

We will leave the evaluation of the above integrals to Section 3.
(b) $0 < d < R$. We break this case down into three sub-cases depending on the distance from 0 to M.

(i) $0 < u < R - d$. Under these conditions no intersections are possible so we have

$$p_0(u) = 1$$
$$p_1(u) = p_2(u) = 0.$$

(ii) $R - d < u < \sqrt{R^2 - d^2}$. Now only zero or one intersections are possible.

Referring to fig. 2 we see that:

$$p_0(u) = 1 - 2\psi/\pi$$
$$p_1(u) = 2\psi/\pi$$
$$p_2(u) = 0$$
$$\psi = \arccos\left(\frac{R^2 - d^2 - u^2}{2ud}\right)$$

(iii) $\sqrt{R^2 - d^2} < u < R$. Only one or two intersections are possible and, referring to fig. 3, we see that:

$$p_0(u) = 0$$
$$p_1(u) = 2 - 2\psi/\pi$$
$$p_2(u) = 2\psi/\pi - 1$$
As for case (a) we obtain

\[
P_A[Z=0] = \frac{\sqrt{R^2-d^2}}{R} - 2 \pi R \int_{R-d}^{\sqrt{R^2-d^2}} \arccos \left(\frac{R^2-d^2-u^2}{2ud} \right) \, du,
\]

\[
P_A[Z=1] = 2 - 2 \frac{\sqrt{R^2-d^2}}{R} + \frac{2}{\pi R} \int_{R-d}^{\sqrt{R^2-d^2}} \arccos \left(\frac{R^2-d^2-u^2}{2ud} \right) \, du
\]

\[- \frac{2}{\pi R} \int_{\sqrt{R^2-d^2}}^{R} \arccos \left(\frac{R^2-d^2-u^2}{2ud} \right) \, du,
\]

\[
P_A[Z=2] = \frac{\sqrt{R^2-d^2}}{R} - 1 + \frac{2}{\pi R} \int_{R-d}^{\sqrt{R^2-d^2}} \arccos \left(\frac{R^2-d^2-u^2}{2ud} \right) \, du.
\]

\[
P_B[Z=0] = \frac{R^2-d^2}{R^2} - 4 \frac{\sqrt{R^2-d^2}}{\pi R^2} \int_{R-d}^{\sqrt{R^2-d^2}} u \arccos \left(\frac{R^2-d^2-u^2}{2ud} \right) \, du,
\]

\[
P_B[Z=1] = 2 - \frac{2}{R^2} (R^2-d^2) + \frac{4}{\pi R^2} \int_{R-d}^{\sqrt{R^2-d^2}} u \arccos \left(\frac{R^2-d^2-u^2}{2ud} \right) \, du
\]

\[- \frac{4}{\pi R^2} \int_{\sqrt{R^2-d^2}}^{R} u \arccos \left(\frac{R^2-d^2-u^2}{2ud} \right) \, du,
\]

\[
P_B[Z=2] = \frac{1}{R^2} (R^2-d^2) - 1 + \frac{4}{\pi R^2} \int_{R-d}^{\sqrt{R^2-d^2}} u \arccos \left(\frac{R^2-d^2-u^2}{2ud} \right) \, du.
\]

3. Evaluation of the integrals.

Let \(I = \int_{a}^{b} \arccos \left(\frac{R^2-d^2-u^2}{2ud} \right) \, du. \)
On integrating by parts we get

\[I = u \arccos \left(\frac{R^2 - d^2 - u^2}{2ud} \right) \bigg|_a^b - \int_a^b \frac{(R^2 - d^2 - u^2) \, du}{\sqrt{u^2 - (R-d)^2} \left[(R+d)^2 - u^2 \right]} \]

Let \(I_1 \) denote the remaining integral. By means of the substitution \(u = (R+d) \cos \phi \), we obtain

\[I_1 = -\int_{a_1}^{b_1} \frac{[(R^2 - d^2) + (R+d)^2 \cos^2 \phi] \, d\phi}{\sqrt{4Rd - (R+d)^2 \sin^2 \phi}} \]

For the moment we do not bother to express \(a_1 \) and \(b_1 \) in terms of \(a \) and \(b \). Now, let \((R+d) \sin \phi = 2 \sqrt{Rd} \sin \theta \), we obtain

\[I_1 = -\frac{2R}{R+d} \int_{a_2}^{b_2} \frac{[(R+d) - 2d \sin^2 \theta] \, d\theta}{\sqrt{1 - k^2 \sin^2 \theta}} \]

where \(k^2 = \frac{4Rd}{(R+d)^2} \)

Upon rewriting this expression we get

\[I_1 = -2R \int_{a_2}^{b_2} \frac{d\theta}{\sqrt{1-k^2 \sin^2 \theta}} + \frac{4R}{R+d} \int_{a_2}^{b_2} \frac{\sin^2 \theta d\theta}{\sqrt{1-k^2 \sin^2 \theta}}. \]

Setting:

\[F(n|k) = \int_0^n \frac{d\theta}{\sqrt{1-k^2 \sin^2 \theta}} \]

\[E(n|k) = \int_0^n \sqrt{1-k^2 \sin^2 \theta} \, d\theta \]
where $F(\eta|k)$ is the elliptic integral of the 1st kind and $E(\eta|k)$ is the
elliptic integral of the 2nd kind and observing that

$$
\int_{a_2}^{b_2} \frac{\sin^2 \theta d\theta}{\sqrt{1-k^2 \sin^2 \theta}} = \frac{1}{k^2} \int_{a_2}^{b_2} \frac{[1-(1-k^2 \sin^2 \theta)] d\theta}{\sqrt{1-k^2 \sin^2 \theta}}
$$

$$
= \frac{1}{k^2} [F(b_2|k) - F(a_2|k) - E(b_2|k) + E(a_2|k)]
$$

we obtain,

$$
I = u \arccos \left(\frac{R^2-d^2-u^2}{2ud} \right) \bigg|_a^b - \left\{ (d-R)[F(b_2|k) - F(a_2|k)] \\
- (d+R)[E(b_2|k) - E(a_2|k)] \right\}
$$

To express a_2 and b_2 in terms of a and b we must express θ in terms of u.

Following through the substitutions we get

$$
\theta = \arcsin \sqrt{\frac{(R+d)^2-u^2}{4Rd}}.
$$

So we can easily find a_2 and b_2 in terms of a and b. We leave off doing
this until later.

Let

$$
I' = \int_a^b u \arccos \left(\frac{R^2-d^2-u^2}{2ud} \right) du.
$$

On integrating by parts we obtain

$$
I' = \frac{u^2}{2} \arccos \left(\frac{R^2-d^2-u^2}{2ud} \right) \bigg|_a^b - \frac{1}{2} I_1'
$$
where\[I_1' = \int_{a}^{b} \frac{u(R^2-d^2-u^2)}{\sqrt{u^2 - (R-d)^2} \cdot [(R+d)^2-u^2]}\, du\]

By the substitutions, \(u = (R+d) \cos \phi\), followed by \((R+d) \sin \phi = 2\sqrt{Rd} \sin \theta\), we obtain

\[I_1' = -2R^2(b_2-a_2) - 2Rd \sin \theta \cos \theta \bigg|_{\theta=a_2}^{b_2}\]

Hence we have

\[I' = \frac{u^2}{2} \arccos \left(\frac{R^2-d^2-u^2}{2ud} \right) \bigg|_{u=a}^{b} + R^2(b_2-a_2) + Rd \sin \theta \cos \theta \bigg|_{\theta=a_2}^{b_2}\]

We gather together in table 1 the values of \((a,b)\) and \((a_2,b_2)\) we need to evaluate the integrals involved.

<table>
<thead>
<tr>
<th>(u)</th>
<th>(d-R)</th>
<th>(R-d)</th>
<th>(\sqrt{R^2-d^2})</th>
<th>(R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\theta)</td>
<td>(\pi/2)</td>
<td>(\pi/2)</td>
<td>(\arcsin \sqrt{\frac{1+\gamma}{2}})</td>
<td>(\arcsin \sqrt{\frac{2+\gamma}{4}})</td>
</tr>
</tbody>
</table>

where \(\gamma = \frac{d}{R}\).

Let \(\theta_1 = \pi/2\), \(\theta_2 = \arcsin \sqrt{\frac{1+\gamma}{2}}\) and \(\theta_3 = \arcsin \sqrt{\frac{2+\gamma}{4}}\)
Case A

(i) \[\int_{d-R}^{R} \arccos \left(\frac{R^2 - d^2 - u^2}{2ud} \right) \, du \]

\[= 2\pi R - \pi d - R \arccos \left(\frac{\gamma}{2} \right) - \left\{ (d-R)[F(\theta_3 | k) - F(\theta_1 | k)] - (d+R)[E(\theta_3 | k) - E(\theta_1 | k)] \right\} \]

(ii) \[\int_{R-d}^{\sqrt{R^2 - d^2}} \arccos \left(\frac{R^2 - d^2 - u^2}{2ud} \right) \, du. \]

\[= \frac{\pi}{2} \sqrt{R^2 - d^2} - \left\{ (d-R)[F(\theta_2 | k) - F(\theta_1 | k)] - (d+R)[E(\theta_2 | k) - E(\theta_1 | k)] \right\} \]

(iii) \[\int_{R}^{\sqrt{R^2 - d^2}} \arccos \left(\frac{R^2 - d^2 - u^2}{2ud} \right) \, du \]

\[= \pi R - R \arccos \left(\frac{\gamma}{2} \right) - \frac{\pi}{2} \sqrt{R^2 - d^2} - \left\{ (d-R)[F(\theta_3 | k) - F(\theta_2 | k)] - (d+R)[E(\theta_3 | k) - E(\theta_2 | k)] \right\} \]

Case B

(i) \[\int_{d-R}^{R_u} \arccos \left(\frac{R^2 - d^2 - u^2}{2ud} \right) \, du \]

\[= \frac{\gamma}{2} \left[2dR - d^2 - R^2 \right] - \frac{R^2}{2} \arccos \left(\frac{\gamma}{2} \right) + R^2 \arcsin \sqrt{\frac{2+\gamma}{4}} + \frac{Rd}{4} \sqrt{4-\gamma^2} \]
(ii) \[\int_{R-d}^{\sqrt{R^2-d^2}} u \arccos \left(\frac{R^2-d^2-u^2}{2ud} \right) du. \]

\[= R^2 \arcsin \sqrt{\frac{1+\gamma}{2}} + \frac{Rd}{2} \sqrt{1-\gamma^2} - \frac{\pi}{4} (R^2+d^2) \]

(iii) \[\int_{\sqrt{R^2-d^2}}^{R} u \arccos \frac{R^2-d^2-u^2}{2ud} du \]

\[= \frac{\pi}{4} (R^2+d^2) + \frac{Rd}{2} \left(\frac{1}{2} \sqrt{4-\gamma^2} - \sqrt{1-\gamma^2} \right) - \frac{R^2}{2} \arccos \left(\frac{\gamma}{2} \right) \]

\[+ R^2 (\arcsin \sqrt{\frac{2+\gamma}{4}} - \arcsin \sqrt{\frac{1+\gamma}{2}}). \]

4. Main Results. Using the results of section 3 we can write expressions for \(P_A[Z=1], P_B[Z=1] \)

Case A

(i) \[0 < \gamma \leq 1 \]

\[P_A[Z=0] = \frac{2}{\pi} \left\{ (1-\gamma) \left[F(\theta_1 | k) - F(\theta_2 | k) \right] + (1+\gamma) \left[E(\theta_1 | k) - E(\theta_2 | k) \right] \right\} \]

\[P_A[Z=1] = \frac{2}{\pi} \arccos \frac{\gamma}{2} \]

\[- \frac{2}{\pi} \left\{ (1-\gamma) \left[F(\theta_1 | k) - F(\theta_2 | k) \right] + (1+\gamma) \left[E(\theta_1 | k) - E(\theta_2 | k) \right] \right\} \]

\[+ \frac{2}{\pi} \left\{ (1-\gamma) \left[F(\theta_2 | k) - F(\theta_3 | k) \right] + (1+\gamma) \left[E(\theta_2 | k) - E(\theta_3 | k) \right] \right\} \]
\[P_A[Z=2] = 1 - \frac{2}{\pi} \arccos \left(\frac{\gamma}{2} \right) \]
\[- \frac{2}{\pi} \left\{ (1-\gamma) [F(\theta_2|k) - F(\theta_3|k)] - (1+\gamma) [E(\theta_2|k) - E(\theta_3|k)] \right\} \]

(ii) \[1 \leq \gamma \leq 2 \]
\[P_A[Z=0] = 0 \]
\[P_A[Z=1] = \frac{2}{\pi} \arccos \left(\frac{\gamma}{2} \right) \]
\[- \frac{2}{\pi} \left\{ (\gamma-1) [F(\theta_1|k) - F(\theta_3|k)] - (\gamma+1) [E(\theta_1|k) - E(\theta_3|k)] \right\} \]

\[P_A[Z=2] = 1 - \frac{2}{\pi} \arccos \left(\frac{\gamma}{2} \right) \]
\[+ \frac{2}{\pi} \left\{ (\gamma-1) [F(\theta_1|k) - F(\theta_3|k)] - (\gamma+1) [E(\theta_1|k) - E(\theta_3|k)] \right\} \]

Since we can write \(k \) in terms of \(\gamma \), viz \(k^2 = 4\gamma(1+\gamma)^2 \), each of these expressions can be computed as functions of the single variable \(\gamma \).

Case B

(i) \[0 < \gamma \leq 1 \]
\[P_B[Z=0] = 2 - \frac{2\gamma}{\pi} \sqrt{1-\gamma^2} - \frac{4}{\pi} \arcsin \sqrt{\frac{1+\gamma}{2}} \]
\[P_B[Z=1] = \frac{4}{\pi} \sqrt{1-\gamma^2} - \frac{\gamma}{4} \sqrt{4-\gamma^2} - 2 + \frac{2}{\pi} \arccos \left(\frac{\gamma}{2} \right) \]
\[+ \frac{8}{\pi} \arcsin \sqrt{\frac{1+\gamma}{2}} - \frac{4}{\pi} \arcsin \sqrt{\frac{2+\gamma}{4}} \]
\[P_B[Z=2] = 1 + \frac{2\gamma}{\pi} \left(\frac{1}{2} \sqrt{4-\gamma^2} - \sqrt{1-\gamma^2} \right) - \frac{2}{\pi} \arccos \left(\frac{\gamma}{2} \right) \]
\[+ \frac{4}{\pi} \arcsin \sqrt{\frac{2+\gamma}{4}} - \frac{4}{\pi} \arcsin \sqrt{\frac{1+\gamma}{2}} \]

(ii) \quad 1 \leq \gamma \leq 2

\[P_B[Z=0] = 0 \]
\[P_B[Z=1] = 2 - \frac{\gamma}{\pi} \sqrt{4-\gamma^2} + \frac{2}{\pi} \arccos \left(\frac{\gamma}{2} \right) - \frac{4}{\pi} \arcsin \sqrt{\frac{2+\gamma}{4}} \]
\[P_B[Z=2] = \frac{\gamma}{\pi} \sqrt{4-\gamma^2} - 1 + \frac{4}{\pi} \arcsin \sqrt{\frac{2+\gamma}{4}} - \frac{2}{\pi} \arccos \left(\frac{\gamma}{2} \right) \]

The form of the above results was chosen to make their evaluation by computer easy. In appendix 1 we give numerical results for values of \(\gamma \) between 0 and 2.
5. Appendix 1.

Case A

<table>
<thead>
<tr>
<th>γ</th>
<th>$P_A[Z=0]$</th>
<th>$P_A[Z=1]$</th>
<th>$P_A[Z=2]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>.05</td>
<td>.96754373</td>
<td>.0324632</td>
<td>.00000995</td>
</tr>
<tr>
<td>.10</td>
<td>.93383333</td>
<td>.06606862</td>
<td>.00007986</td>
</tr>
<tr>
<td>.15</td>
<td>.89888809</td>
<td>.10087117</td>
<td>.00027074</td>
</tr>
<tr>
<td>.20</td>
<td>.86259978</td>
<td>.13675440</td>
<td>.00064582</td>
</tr>
<tr>
<td>.25</td>
<td>.82503203</td>
<td>.17369616</td>
<td>.00127181</td>
</tr>
<tr>
<td>.30</td>
<td>.78611941</td>
<td>.21166026</td>
<td>.00222033</td>
</tr>
<tr>
<td>.35</td>
<td>.74581616</td>
<td>.25061417</td>
<td>.00356967</td>
</tr>
<tr>
<td>.40</td>
<td>.70406431</td>
<td>.29052867</td>
<td>.00540703</td>
</tr>
<tr>
<td>.45</td>
<td>.66079114</td>
<td>.33137749</td>
<td>.00783138</td>
</tr>
<tr>
<td>.50</td>
<td>.61500559</td>
<td>.37313711</td>
<td>.01095730</td>
</tr>
<tr>
<td>.55</td>
<td>.56992931</td>
<td>.41578652</td>
<td>.01492038</td>
</tr>
<tr>
<td>.60</td>
<td>.52080808</td>
<td>.45930699</td>
<td>.01988494</td>
</tr>
<tr>
<td>.65</td>
<td>.47026235</td>
<td>.50368194</td>
<td>.02605571</td>
</tr>
<tr>
<td>.70</td>
<td>.41740686</td>
<td>.54889686</td>
<td>.03369629</td>
</tr>
<tr>
<td>.75</td>
<td>.36190060</td>
<td>.59493915</td>
<td>.04136026</td>
</tr>
<tr>
<td>.80</td>
<td>.30325380</td>
<td>.64179807</td>
<td>.05494812</td>
</tr>
<tr>
<td>.85</td>
<td>.24071124</td>
<td>.68946471</td>
<td>.06982405</td>
</tr>
<tr>
<td>.90</td>
<td>.17296773</td>
<td>.73793192</td>
<td>.08910035</td>
</tr>
<tr>
<td>.95</td>
<td>.09722563</td>
<td>.78719435</td>
<td>.11558002</td>
</tr>
<tr>
<td>1.00</td>
<td>0.00000000</td>
<td>.83724842</td>
<td>.16275158</td>
</tr>
<tr>
<td>1.05</td>
<td>0.00000000</td>
<td>.69569417</td>
<td>.30430583</td>
</tr>
<tr>
<td>1.10</td>
<td>0.00000000</td>
<td>.59982852</td>
<td>.40017148</td>
</tr>
<tr>
<td>1.15</td>
<td>0.00000000</td>
<td>.52150496</td>
<td>.47849504</td>
</tr>
<tr>
<td>1.20</td>
<td>0.00000000</td>
<td>.45455431</td>
<td>.54544569</td>
</tr>
<tr>
<td>1.25</td>
<td>0.00000000</td>
<td>.39600312</td>
<td>.60399688</td>
</tr>
<tr>
<td>1.30</td>
<td>0.00000000</td>
<td>.34408960</td>
<td>.65591040</td>
</tr>
<tr>
<td>1.35</td>
<td>0.00000000</td>
<td>.29765214</td>
<td>.70234786</td>
</tr>
<tr>
<td>1.40</td>
<td>0.00000000</td>
<td>.25587355</td>
<td>.74412645</td>
</tr>
<tr>
<td>1.45</td>
<td>0.00000000</td>
<td>.21815443</td>
<td>.78184557</td>
</tr>
<tr>
<td>1.50</td>
<td>0.00000000</td>
<td>.18404314</td>
<td>.81595686</td>
</tr>
<tr>
<td>1.55</td>
<td>0.00000000</td>
<td>.15319436</td>
<td>.84680564</td>
</tr>
<tr>
<td>1.60</td>
<td>0.00000000</td>
<td>.12534336</td>
<td>.87465664</td>
</tr>
<tr>
<td>1.65</td>
<td>0.00000000</td>
<td>.10029004</td>
<td>.89970996</td>
</tr>
<tr>
<td>1.70</td>
<td>0.00000000</td>
<td>.07788974</td>
<td>.92211026</td>
</tr>
<tr>
<td>1.75</td>
<td>0.00000000</td>
<td>.05804967</td>
<td>.94195033</td>
</tr>
<tr>
<td>1.80</td>
<td>0.00000000</td>
<td>.04073172</td>
<td>.95926828</td>
</tr>
<tr>
<td>1.85</td>
<td>0.00000000</td>
<td>.02596528</td>
<td>.97403472</td>
</tr>
<tr>
<td>1.90</td>
<td>0.00000000</td>
<td>.01388237</td>
<td>.98611763</td>
</tr>
<tr>
<td>1.95</td>
<td>0.00000000</td>
<td>.00482434</td>
<td>.99517566</td>
</tr>
</tbody>
</table>
TABLE 3.

<table>
<thead>
<tr>
<th>γ</th>
<th>$P_A[Z=0]$</th>
<th>$P_A[Z=1]$</th>
<th>$P_A[Z=2]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>.05</td>
<td>.93636456</td>
<td>.06361554</td>
<td>.00001990</td>
</tr>
<tr>
<td>.10</td>
<td>.87288857</td>
<td>.12695197</td>
<td>.0015945</td>
</tr>
<tr>
<td>.15</td>
<td>.80973270</td>
<td>.18972786</td>
<td>.00053943</td>
</tr>
<tr>
<td>.20</td>
<td>.74706008</td>
<td>.25165699</td>
<td>.00128293</td>
</tr>
<tr>
<td>.25</td>
<td>.68503764</td>
<td>.31244571</td>
<td>.00251664</td>
</tr>
<tr>
<td>.30</td>
<td>.62383766</td>
<td>.37179008</td>
<td>.00437226</td>
</tr>
<tr>
<td>.35</td>
<td>.56363948</td>
<td>.42957235</td>
<td>.00698817</td>
</tr>
<tr>
<td>.40</td>
<td>.50463158</td>
<td>.48485701</td>
<td>.01051142</td>
</tr>
<tr>
<td>.45</td>
<td>.44701412</td>
<td>.53788569</td>
<td>.01510019</td>
</tr>
<tr>
<td>.50</td>
<td>.39100222</td>
<td>.58807085</td>
<td>.02092693</td>
</tr>
<tr>
<td>.55</td>
<td>.33683013</td>
<td>.63498739</td>
<td>.02818248</td>
</tr>
<tr>
<td>.60</td>
<td>.28475698</td>
<td>.67816137</td>
<td>.03708165</td>
</tr>
<tr>
<td>.65</td>
<td>.23507481</td>
<td>.71705399</td>
<td>.04787119</td>
</tr>
<tr>
<td>.70</td>
<td>.18812040</td>
<td>.75103816</td>
<td>.06084144</td>
</tr>
<tr>
<td>.75</td>
<td>.14429361</td>
<td>.77936186</td>
<td>.07634453</td>
</tr>
<tr>
<td>.80</td>
<td>.10408804</td>
<td>.80108707</td>
<td>.09482489</td>
</tr>
<tr>
<td>.85</td>
<td>.06814744</td>
<td>.81497710</td>
<td>.11687546</td>
</tr>
<tr>
<td>.90</td>
<td>.03738607</td>
<td>.81925609</td>
<td>.14335783</td>
</tr>
<tr>
<td>.95</td>
<td>.01332001</td>
<td>.81094666</td>
<td>.17573333</td>
</tr>
<tr>
<td>1.00</td>
<td>.00000000</td>
<td>.78200446</td>
<td>.21799555</td>
</tr>
<tr>
<td>1.05</td>
<td>.00000000</td>
<td>.72734133</td>
<td>.27265867</td>
</tr>
<tr>
<td>1.10</td>
<td>.00000000</td>
<td>.67366026</td>
<td>.32633974</td>
</tr>
<tr>
<td>1.15</td>
<td>.00000000</td>
<td>.62102764</td>
<td>.37897236</td>
</tr>
<tr>
<td>1.20</td>
<td>.00000000</td>
<td>.56951396</td>
<td>.43048604</td>
</tr>
<tr>
<td>1.25</td>
<td>.00000000</td>
<td>.51919440</td>
<td>.48080560</td>
</tr>
<tr>
<td>1.30</td>
<td>.00000000</td>
<td>.47014963</td>
<td>.52985037</td>
</tr>
<tr>
<td>1.35</td>
<td>.00000000</td>
<td>.42246681</td>
<td>.57753319</td>
</tr>
<tr>
<td>1.40</td>
<td>.00000000</td>
<td>.37624081</td>
<td>.62375919</td>
</tr>
<tr>
<td>1.45</td>
<td>.00000000</td>
<td>.33157578</td>
<td>.6684222</td>
</tr>
<tr>
<td>1.50</td>
<td>.00000000</td>
<td>.28858723</td>
<td>.71141277</td>
</tr>
<tr>
<td>1.55</td>
<td>.00000000</td>
<td>.24740480</td>
<td>.75259520</td>
</tr>
<tr>
<td>1.60</td>
<td>.00000000</td>
<td>.20817608</td>
<td>.79182392</td>
</tr>
<tr>
<td>1.65</td>
<td>.00000000</td>
<td>.17107199</td>
<td>.82892801</td>
</tr>
<tr>
<td>1.70</td>
<td>.00000000</td>
<td>.13629488</td>
<td>.86370512</td>
</tr>
<tr>
<td>1.75</td>
<td>.00000000</td>
<td>.10409110</td>
<td>.89590890</td>
</tr>
<tr>
<td>1.80</td>
<td>.00000000</td>
<td>.07477215</td>
<td>.92522785</td>
</tr>
<tr>
<td>1.85</td>
<td>.00000000</td>
<td>.04875382</td>
<td>.95124618</td>
</tr>
<tr>
<td>1.90</td>
<td>.00000000</td>
<td>.02664002</td>
<td>.97335998</td>
</tr>
<tr>
<td>1.95</td>
<td>.00000000</td>
<td>.00945450</td>
<td>.99054550</td>
</tr>
</tbody>
</table>

The authors thank Mrs. P. Cohen and Mr. C. Henry for writing the computer programs.
GRAPH I
Buffon in the Round

Neuts, Marcel F. and Purdue, Peter

July, 1970

NONR 1100(26) and a
b. PROJECT NO.
David Ross Grant
c.
d.

Distribution of this document: is unlimited

Purdue University
Lafayette, Indiana

Office of Naval Research
Washington, D. C.

The distribution of the number of intersections of a needle and the circumference of a circle is studied under two distinct assumptions on the random manner in which the former is tossed on the circle.

Numerical results and graphs are also provided.