ENTROPY OF FIRST RETURN PARTITIONS
OF A MARKOV CHAIN

by

E. M. Klimko and James Yackel*

Department of Statistics
Division of Mathematical Sciences
Mimeograph Series No. 175
December 1968

*The work of the second author was supported in part by National Science Foundation Grant GP7631.
ENTROPY OF FIRST RETURN PARTITIONS
OF A MARKOV CHAIN

by

E. M. Klimko and James Yackel*

Abstract

We consider the first return time distributions for each state in a Markov chain and show that finiteness of entropy of these distributions is a class property for both recurrent and transient classes.

1. Introduction.

In this note, we answer affirmatively the question raised in [2] concerning the finiteness of entropy for the first return time distributions of Markov chains as a class property. The interest of our result lies in the null recurrent and transient classes since it is known that the finite mean return time of a positive recurrent state implies that the first return distribution has finite entropy. On the other hand, it is easy to construct Markov chains whose first return distribution to a given state has infinite entropy; indeed, it is possible to construct a chain with any given first return distribution to a fixed state, c.f. [1] p. 64.

In section 2, we derive some bounds on entropy which are applied in section 3 to prove our probabilistic result.

*The work of the second author was supported in part by National Science Foundation Grant GP 7631.
2. Preliminaries.

Let \((\Omega, \mathcal{F}, \mu)\) be a \(\sigma\)-finite measure space. To a partition \(G = \{A_i\}_{i=0}^\infty\) of a set \(A, \mu(A) < \infty\), is associated a sequence \(f = \{f_i\}_{i=0}^\infty\) with \(f_i = \mu(A_i)\) \(i = 0, 1, \cdots\). The entropy of \(f\) is the entropy of \(G\)

\[
(1) \quad H(f) = H(G) = - \sum_{i=1}^{\infty} f_i \log f_i .
\]

(The base of the logarithm is usually taken to be 2; \(0 \log 0 = 0\); there are no difficulties in definition (1) since at most a finite number of terms can be negative). The norm \(|f| = \Sigma f_i\); the convolution of \(f\) and \(g\) is \(f \ast g\), i.e., \((f \ast g)_n = \sum_{i=0}^{n} f_{n-i} g_i\) and \(f^{\ast k}\) is the \(k\)-fold convolution of \(f\) with itself.

Lemma 1. Let \(f, g\) be sequences. Then there is a constant \(C\), depending only on \(|f|, |g|\) and the base of the logarithm such that

\[
(2) \quad \max(H(f), H(g)) - C \leq H(f + g) \leq H(f) + h(g),
\]

in particular

\[
H(f + g) < \infty \text{ if and only if } H(f) < \infty \text{ and } H(g) < \infty.
\]

Proof. The function \(- \log x\) is decreasing and \(- x \log x\) is increasing for \(x \in [0, 1/e]\). For each \(n,\)

\[-(f_n + g_n) \log(f_n + g_n) = -f_n \log(f_n + g_n) - g_n \log(f_n + g_n) \leq -f_n \log f_n - g_n \log g_n ,
\]

while for \(n\) sufficiently large, \(f_n + g_n \in [0, 1/e]\) and

\[- \max(f_n, g_n) \log \max(f_n, g_n) \leq -(f_n + g_n) \log(f_n + g_n).
\]
Lemma 2. If \(f \) and \(g \) are sequences, then

\[
\max_{i_0, j_0} (f_{i_0} H(g), g_{j_0} H(f)) - C \leq H(f \ast g) \leq |f| H(g) + |g| H(f).
\]

where \(f_{i_0}, g_{j_0} \) are arbitrary non-zero elements of \(f, g \). In particular, we conclude \(H(f \ast g) < \infty \) if and only if \(H(f) < \infty \) and \(H(g) < \infty \).

Proof. By the monotonicity of the logarithm function,

\[
H(f \ast g) = - \sum_{n=0}^{\infty} \left(\sum_{i=0}^{n} f_{i} g_{n-i} \right) \log \left(\sum_{i=0}^{n} f_{i} g_{n-i} \right)
\]

\[
\leq \sum_{n=0}^{\infty} \left(\sum_{i=0}^{n} f_{i} g_{n-i} \log f_{i} g_{n-i} \right).
\]

Now interchanging the order of summation yields

\[
- \sum_{i=0}^{\infty} \sum_{n=1}^{\infty} f_{i} g_{n-i} \left(\log f_{i} + \log g_{n-i} \right) = |g| H(f) + |f| H(g).
\]

The lower bound is obtained by noting that for \(i_0, n \) sufficiently large,

\[
\sum_{i_0}^{n} f_{i} g_{n-i} \log \left(\sum_{i=0}^{n} f_{i} g_{n-i} \right) \geq - f_{i_0} g_{n-i_0} \log f_{i_0} g_{n-i_0}
\]

\[
\geq - f_{i_0} g_{n-i_0} \log g_{n-i_0}
\]

which summed on \(n \) gives us \(f_{i_0} H(g) - C \). We similarly can obtain a bound involving \(H(f) \).
Lemma 3. If we consider the k-fold convolution of \(f, f^{*k} \), then

\[
(4) \quad H(f^{*k}) \leq k|f|^{k-1}H(f).
\]

Proof. We prove (4) by induction, noting that for \(k=1 \) we have equality. If (4) holds for some positive integer \(k \), it follows from Lemma 2 that

\[
H(f^{*(k+1)}) = H(f*f^{*k}) \leq |f|^{k}H(f) + |f|H(f^{*k})
= (k+1)|f|^{k}H(f).
\]

Lemma 4. If \(|f| < 1 \), then \(H(f) < \infty \) implies

\[
H(\sum_{k=0}^{\infty} f^{*k}) \leq \frac{H(f)}{(1-|f|)^2} < \infty.
\]

Proof. The result follows from (2), (4) and \((k+1)^{k-1} = (1-a)^{-2} \).

3. Main Result.

We now apply the preceding lemmas to obtain the following proposition.

(We follow the standard notation and terminology of [1]).

Proposition. The finiteness of the entropy of first return distributions\(f_{kk} = \{f_{kk}^{n}\}_{n=1}^{\infty} \) is a class property for Markov chains.

Proof. Let the states \(i \) and \(j \) communicate. It is easily verified probabilistically that for any two states \(h, k \)

\[
f_{kk}^{n} = f_{kk}^{n} + (f_{kh}^{*}f_{hk}^{*})(n) = f_{kk}^{n} + (f_{kh}^{*}(\sum_{m=0}^{\infty} f_{hh}^{*m})f_{hk})(n).
\]
If $H(f_{ij}) < \infty$, our lemmas imply that (i) $H(j f_{ii}) < \infty$, (ii) $H(i f_{ij}) < \infty$, (iii) $H(f_{ij}) < \infty$ and (iv) $H(j f_{ij}) < \infty$. Since i and j communicate, we assert that $|j f_{ii}| < 1$. From Lemma 4 we conclude that

$$H\left(\sum_{m=0}^{\infty} j f_{ii}^m \right) < \infty.$$

This together with (ii) and (iv) implies

$$H(j f_{ji} \ast \left(\sum_{m=0}^{\infty} j f_{ii}^m \ast i f_{ij} \right)) < \infty,$$

which together with (iii) completes the proof.
References
