On an Asymptotic Representation of the Distribution
of the Characteristic Roots of SS^{-1}

by

Tseng C. Chang *

Department of Statistics
Division of Mathematical Sciences
Mimeograph Series No. 165
July 1968

* This research was supported by the National Science Foundation Grant No. GP-7663.
On an Asymptotic Representation of the Distribution
of the Characteristic Roots of $S_1S_2^{-1}
\sim 1$ by
Tseng C. Chang *

1. Introduction and Summary. Let $S_1 : pxp$ $(i = 1, 2)$ be independently
distributed as Wishart (n_1', p, Σ_1'). Let the characteristic roots of $S_1S_2^{-1}$
and S_2^{-1} be denoted by λ_i $(i = 1, 2, \ldots, p)$ and λ_i $(i = 1, 2, \ldots, p)$
respectively such that $\lambda_1 > \lambda_2 > \ldots > \lambda_p > 0$ and $\lambda_1 > \lambda_2 > \ldots > \lambda_p > 0$.
Then the distribution of $\lambda_1, \ldots, \lambda_p$ can be expressed in the form (Khatri [8])

\[(1.1) \quad C|A|^{-(\frac{3}{2}n_1 + \frac{3}{2}n_2 - p - 1)} \alpha_p (L) \int_{O(p)} |L_p + \Lambda|^{-1} \left(\frac{1}{2} \right)^{(n_1 + n_2)} (H'\bar{H}) \]

where

\[C = 2^{-p} \pi^{p(p-1)/4} \frac{1}{p} \prod_{i=1}^{p} \Gamma \left(\frac{1}{2} \right) \Gamma_p \left(\frac{3}{2}n_1 + \frac{3}{2}n_2 \right) \left\{ \Gamma_p (\frac{1}{2}) \Gamma_p \left(\frac{3}{2}n_1 \right) \right\}^{-1} , \]

\[\Gamma_p (t) = \pi \prod_{j=1}^{p} \Gamma \left(t - \frac{1}{2} j + \frac{1}{2} \right) , \quad \alpha_p (L) = \prod_{i < j} (\lambda_j - \lambda_i) , \]

$L = \text{diag} (\lambda_1, \ldots, \lambda_p)$, $\Lambda = \text{diag} (\lambda_1', \ldots, \lambda_p')$ and $(H'\bar{H})$ is the invariant
measure on the group $O(p)$. However, this form is not convenient for
further development. Also, since

\[(1.2) \quad I = \int_{O(p)} |L_p + \Lambda|^{-1} \left(\frac{1}{2} \right)^{(n_1 + n_2)} (H'\bar{H}) = \sum_{k=0}^{p} \binom{p}{k} \frac{c' \prod_{i=1}^{p} \Gamma (\frac{i}{2})}{\prod_{i=1}^{p} \Gamma (\frac{i}{2})} \]

where

\[c' = 2^{p} \pi^{p(p+1)/4} \prod_{i=1}^{p} \Gamma (\frac{i}{2}) \]

* This research was supported by the National Science Foundation Grant
No. GP-7663.
and the zonal polynomial $C_k(T)$ of any $p 	imes p$ symmetric matrix T is defined in James [7], the use of (1.2) in (1.1) gives a power series expansion, but the convergence of this series is very slow. In the one sample case G. A. Anderson [1] has obtained a gamma type asymptotic expansion for the distribution of the characteristic roots of the estimated covariance matrix. In this paper we obtain a beta type asymptotic representation of the roots distribution of $S_1 S_2^{-1}$ involving linkage factors between sample roots and corresponding population roots. A study is also made of the approximation to the distribution of ν_1, \ldots, ν_p where

$$\nu_i = \ell_i / (1 + \ell_i), \quad (i = 1, 2, \ldots, p).$$

If the roots are distinct the limiting distribution as n_2 tends to infinity has the same form as that of Anderson [1]. If, moreover, n_1 is assumed also large, then it agrees with Girshick's result [4].

2. The asymptotic representation of I. The procedure used to find the expansion of (1.2) is an extension of the method sketched below for the case $p = 2$. In the asymptotic theory it is necessary to assume $\ell_1 > \ell_2 > \ldots > \ell_p > 0$ and $\lambda_1 > \lambda_2 > \ldots > \lambda_p > 0$. For the simplification of notations we let $A = \lambda^{-1}$, i.e. $a_i = 1/\lambda_i$ (i = 1, \ldots, p), $0 < a_1 < a_2 < \ldots < a_p < \infty$, and $n = n_1 + n_2$. Thus for $p = 2$, let $0^+(2) = \{A \in 2(2); |A| = \pm 1\}$ then

$$(2.1) \quad I = 2 \int_{0^+(2)} |T|^{-2} A^{-2} H P H' \frac{n}{2} (H' dH).$$

Now let $H = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$, $-\pi < \theta \leq \pi$, so that $(H' dH) = d\theta$ and
\begin{equation}
I = 4 \left[\prod_{i=1}^{2} (1 + a_{i} \ell_{i}) \right] \left[1 + \frac{1}{2} c_{12} (1 - \cos 2\theta) \right]^{-\frac{1}{2}} \theta^{\frac{n}{2}} d\theta
\end{equation}

where
\[
c_{12} = \frac{(a_{2} - a_{1})(\ell_{1} - \ell_{2})}{(1 + a_{1} \ell_{1})(1 + a_{2} \ell_{2})}.
\]

The integrand has a maximum of unity at \(\theta = 0 \) and then decreases to \(1 + \frac{1}{2} c_{12} \) at \(\theta = \pm \frac{\pi}{2} \). Write (2.2) as

\begin{equation}
4 \left(\prod_{i=1}^{2} (1 + a_{i} \ell_{i}) \right) \left[\frac{1}{2} \frac{\pi}{2} \right] \exp \left[-\frac{1}{2} \frac{\pi}{2} \log \left(1 + c_{12} (1 - \cos 2\theta) \right) \right] d\theta
\end{equation}

Since the integral is mostly concentrated in a small neighborhood of the origin, for large \(n \) we can expand the argument of the exponential function and \(\cos 2\theta \) in the usual power series and set the limit to be \(\pm \infty \) (see Erdélyi [3]). Thus for large degrees of freedom \(I \) is approximately

\begin{equation}
4 \left[\prod_{i=1}^{2} (1 + a_{i} \ell_{i}) \right] \left[\frac{1}{2} \frac{\pi}{2} \right] \exp \left\{ -\frac{n}{2} c_{12} \theta^{2} \right\} d\theta, \left\{ 1 + o \left(\frac{1}{n} \right) \right\}
\end{equation}

or

\begin{equation}
I \sim 4 \left[\prod_{i=1}^{2} (1 + a_{i} \ell_{i}) \right] \left[\frac{1}{2} \frac{\pi}{2} \right] \exp \left\{ \frac{1}{2} \theta \right\} \left\{ 1 + o \left(\frac{1}{n} \right) \right\}
\end{equation}
Lemma 1. Let A and L are defined as before then $f(H) = |I_p + A H L H'|$

$H \in O(p)$ attains its identical minimum value $|I_p + AL|$ when H is of the form

\begin{equation}
H = \begin{pmatrix}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{pmatrix}.
\end{equation}

Proof:

$$df = d|I_p + A H L H'|$$

$$= d|I_p + \frac{1}{2} H L H' A^\frac{1}{2}|$$

$$= \text{tr} \left(I_p + \frac{1}{2} H L H' A^\frac{1}{2} \right)^{-1} \left(\frac{1}{2} d H L H' A^\frac{1}{2} + \frac{1}{2} H L d H' A^\frac{1}{2} \right)$$

$$= 2 \text{tr} L H' A^\frac{1}{2} \left(I_p + \frac{1}{2} H L H' A^\frac{1}{2} \right)^{-1} A^\frac{1}{2} H' d H.$$

Note that $H' d H$ is a skew symmetric matrix therefore, $df = 0$ implies that $L H': A^\frac{1}{2} (I_p + \frac{1}{2} H L H' A^\frac{1}{2})^{-1} A^\frac{1}{2} H$ is a symmetric matrix. But $H' A^\frac{1}{2} \left(I_p + \frac{1}{2} H L H' A^\frac{1}{2} \right)^{-1} A^\frac{1}{2} H$ is itself a symmetric matrix and L is a diagonal matrix with distinct positive roots,

so $H': A^\frac{1}{2} \left(I_p + \frac{1}{2} H L H' A^\frac{1}{2} \right)^{-1} A^\frac{1}{2} H$ has to be a diagonal matrix, say D.

Thus $I_p = A^\frac{1}{2} H (L - D^{-1}) H' A^\frac{1}{2}$. This can happen only if H is of the form with ± 1 in one position in a column or a row and zero in other positions.

After substituting those stationary values into $f(H)$ we obtain a general form

\begin{equation}
\Pi_{i=1}^{p} \left(1 + a_i k_{i} \right),
\end{equation}

where k_{i} is any permutation of $k_{i}(i = 1, \ldots, p)$. It is easy to see that (2.5) attains its minimum value when $k_{i} = k_{i}(i = 1, 2, \ldots, p)$. Or $f(H)$ attains its identical minimum value $|I_p + A L|$ when H is of the form of (2.4).
The above lemma enables us to claim that, for large \(n \), the integrand of \(I \) is negligible except for small neighborhoods about each of these matrices of (2.4) and \(I \) consists of identical contributions from each of these neighborhoods so that

\[
I = e^P \int_{N(I)} \left| X_p + A \frac{X_p^{1/2} X_p^2}{2} \right|^{n/2} (X_p^{1/2} d X_p),
\]

where \(N(I) \) is a neighborhood of the identity matrix on the orthogonal manifold. Since any proper orthogonal matrix can be written as the exponential of a skew symmetric matrix we transform \(I \) under

\[
H = \exp S, \quad S \text{ a } pxp \text{ skew symmetric matrix},
\]

so that \(N(I) \rightarrow N(S = 0) \). The Jacobian of this transformation has been computed by G. A. Anderson [1],

\[
J = 1 + \frac{B - 2}{24} \text{ tr } S^2 + \frac{8 - B}{4 \times 6!} \text{ tr } S^4 + \ldots.
\]

Direct substitution of (2.7) into (2.6) yields

\[
\left| X_p + A \frac{X_p^{1/2} X_p^2}{2} \right|^{-n/2}
\]

\[
= \left| X_p + A \frac{X_p^{1/2} X_p^2}{2} \right|^{-n/2} \left| X_p + A \frac{X_p^{1/2} X_p^2}{2} \right|^{-1} \left(X_p + A \frac{X_p^{1/2} X_p^2}{2} \right) \left(X_p + A \frac{X_p^{1/2} X_p^2}{2} \right)^{-1}
\]

\[
= \left| X_p + A \frac{X_p^{1/2} X_p^2}{2} \right|^{-n/2} \left(X_p + A \frac{X_p^{1/2} X_p^2}{2} \right) \left(X_p + A \frac{X_p^{1/2} X_p^2}{2} \right)^{-1}
\]

\[
= \left| X_p + A \frac{X_p^{1/2} X_p^2}{2} \right|^{-n/2} \left(X_p + A \frac{X_p^{1/2} X_p^2}{2} \right) \left(X_p + A \frac{X_p^{1/2} X_p^2}{2} \right)^{-1}
\]

\[
\left| X_p + A \frac{X_p^{1/2} X_p^2}{2} \right|^{-n/2}.
\]
Lemma 2. For any p x p matrix \mathcal{B} and its characteristic roots $b_i (i = 1 \ldots p)$, if
\[
\max_{1 \leq i \leq p} |b_i| < 1 \quad \text{then}
\]
\[
|\mathcal{I}_p + \mathcal{B}|^{-\frac{n}{2}} = \exp \left\{ -\frac{n}{2} \text{tr} \left(\mathcal{B} - \frac{\mathcal{B}^2}{2} + \frac{\mathcal{B}^3}{3} \ldots \right) \right\}.
\]

Proof:

\[
|\mathcal{I}_p + \mathcal{B}|^{-\frac{n}{2}} = \exp \left\{ -\frac{n}{2} \log \prod_{i=1}^{p} (1 + b_i) \right\}.
\]

If
\[
\max_{1 \leq i \leq p} |b_i| < 1 \quad \text{then}
\]
\[
|\mathcal{I}_p + \mathcal{B}|^{-\frac{n}{2}} = \exp \left\{ -\frac{n}{2} \text{tr} \left(\mathcal{B} - \frac{\mathcal{B}^2}{2} + \frac{\mathcal{B}^3}{3} \ldots \right) \right\}.
\]

Apply lemma 2 to (2.9) and the maximum characteristic roots of
\[
(I_p + A L)^{-1}(A S L - A L S + \ldots)
\]
can be assumed to be less than unity.

Since we are only interested in the first term we need to investigate the group of terms up to order of S^2 which is denoted by $\{S^2\}$. Let
\[
\mathcal{B} = (I + A L)^{-1},
\]
then
\[
\text{tr} \left\{ S^2 \right\} = \text{tr} \left[\mathcal{B} (A LS^2 - A S L S) \right]
\]
\[
- \frac{1}{2} \begin{pmatrix}
SALSRLALS + RASLRLALS - RASLRLALS \\
- RALSRLALS
\end{pmatrix}.
\]

After simplification (2.12) reduces to

\[
\text{tr} \left[\mathcal{B} (A LS^2 - A S L S) - (LS - SL)RLSRA \right]
\]

or
\[
\text{tr} \left\{ S^2 \right\} = \sum_{i < j}^{p} C_{ij} s_i^2 s_j^2
\]
\[(2.14) \quad c_{ij} = (a_j - \bar{a}_j)(l_i - \bar{l}_j)\left(1 + a_j l_i\right)\left(1 + a_j l_j\right).\]

Direct substitution into (2.1) yields
\[(2.15) \quad I = 2^p p \prod_{i=1}^{p} (1 + a_i l_i)^{-\frac{n_i}{2}} \sqrt{\frac{2\pi}{\Sigma C_{ij} s_{ij}}} \exp\left\{-\frac{n_i}{2} \Sigma C_{ij} s_{ij}^2\right\} \prod_{i<j} s_{ij} \left\{1 + 0\left(\frac{i}{n}\right)\right\}.\]

For large \(n\) the limits for each \(s_{ij}\) can be put to \(\pm \infty\). We finally have the following theorem.

Theorem: The asymptotic distribution of the roots, \(l_1 > l_2 \ldots > l_p > 0\), of \(S_{12}^{-1}\) for large degrees of freedom \(n = n_1 + n_2\) when the roots of \(\Sigma_{12}^{-1}\) are \(\lambda_1 > \lambda_2 \ldots > \lambda_p > 0\) and \(a_i = 1/\lambda_i (i = 1, \ldots p)\), is given by
\[(2.16) \quad c_{ij} = (\lambda_i) \prod_{i=1}^{p} \left[\left(l_i \frac{n_i}{2} (a_i)^{\frac{n_i}{2}} (1 + a_i l_i)^{-\frac{n_i}{2}}\right) \right] \prod_{i<j} s_{ij} \left\{1 + 0\left(\frac{i}{n}\right)\right\}^\frac{1}{2}.\]

The asymptotic formula shows that the distribution function of a group of adjacent roots is sensitive only to those other roots which are close to them.

3. **A Dual Expansion** cf. \(I\) and Some Remarks. If we let
\[\mathcal{I} = I_0(I_0 + I_1)^{-1}\]

in (1.1) i.e. \(w_i = \frac{\mathcal{I}_i}{(1 + \mathcal{I}_1)} (i = 1, 2, \ldots p)\) where \(\mathcal{I} = \text{diag}(w_1, \ldots w_p)\), then the joint distribution of \(w_i\)'s is given by
\[(3.1) \quad c_{ij} = \frac{\alpha_p(\mathcal{W})}{|\mathcal{W}|^{\frac{1}{2}}} \int_{\mathcal{W}} \left|I_{\mathcal{W}} - \mathcal{W}\right| \left|I_{\mathcal{W}}^+ - \mathcal{W}\right| \alpha_p(\mathcal{W})^2 |\mathcal{I}_0|^{\frac{1}{2}} |\mathcal{I}_0 + \mathcal{H}^+ L H^+|^{\frac{1}{2}} - \frac{n}{2} \quad \mathcal{W} = w_1 > w_2 > \ldots > w_p > 0.\]
Application of lemmas 1 and 2 to (3.1) yields its asymptotic representation

\[C[A] \frac{n_1}{2} |W| \left(I_p - W \right) \frac{1}{2(p-1)\frac{n_1}{2} - \frac{n_2}{2} - \frac{1}{2}(n_1 + n_2)} \]

\[\frac{p}{\prod_{i=1}^{p} (\sigma_i W_i)} \]

\[\frac{p}{\prod_{i<j} \frac{1}{2} (a_i - a_j) \left(W_i - W_j \right)} \]

where \(C_{ij} = \frac{(a_i - a_j) (W_i - W_j)}{[1 + (a_i - 1) W_i][1 + (a_j - 1) W_j]} \).

Now let us proceed to look at (2.16) once again. The asymptotic distribution of characteristic roots of \(S_1 S_2^{-1} \) given there can be rewritten as

\[F_1(A) \prod_{i<j} (\ell_i - \ell_j)^{\frac{1}{2}} \prod_{i=1}^{p} \left[\ell_i^{2(p-1)} \left(1 + a_i \ell_i \right) - \frac{n_2}{2} + \frac{n_i}{2} \right] \prod_{i=1}^{p} \text{d} \ell_i \]

where \(F_1(A) \) \((i = 1, 2, 3)\) depends on \(a_i \) but not on \(\ell_i \). If we make \(\xi_i = \ell_i/n_2 \) \((i = 1, 2, \ldots, p)\) and let \(n_2 \) tends to infinity then (3.3) reduces to the limiting form

\[F_2(A) \prod_{i=1}^{p} \xi_i^{\frac{1}{2}} \text{e}^{\frac{1}{2} \sum_{i=1}^{p} a_i \xi_i} \prod_{i<j} (\xi_i - \xi_j) \]

Moreover, let \(\ell_i^{*} = n_1 \xi_i \) \((i = 1, 2, \ldots, p)\), then (3.4) becomes

\[F_3(A) \prod_{i=1}^{p} \ell_i^{*}^{\frac{1}{2}(n_1 - p - 1)} \text{e}^{\frac{1}{2} \sum_{i=1}^{p} a_i \ell_i^{*}} \prod_{i<j} (\ell_i^{*} - \ell_j^{*}) \]

Note that \(\ell_i^{*} \)'s here are, in limiting sense, the characteristic roots of \(S_1^{*} S_2^{-1} \) where \(S_1^{*} \) is the covariance matrix of the first sample.
References

