Further contributions to some inequalities for normal distributions and their applications to simultaneous confidence bounds

By C. G. Khatri

Purdue University and Indian Statistical Institute

Department of Statistics
Division of Mathematical Sciences
Mimeograph Series No. 143
February 1938
Further contributions to some inequalities for normal distributions and their applications to simultaneous confidence bounds

By C. G. Khatri

Purdue University and Indian Statistical Institute

1. Introduction and summary. Let \(\mathbf{x} = (x_1, \ldots, x_p)' \) be distributed as multivariate normal with zero means and covariance matrix \(V(x) \) and this will be denoted by \(\mathbf{x} \sim N(0, V(x)) \). Dunn's conjecture [3], namely.

\[
(1) \quad P \left[|x_i| \leq c_i, \ i = 1, 2, \ldots, p \right] \geq \prod_{i=1}^{p} P \left[|x_i| \leq c_i \right]
\]

was established by Khatri [4], Sidak [5] and Scott [5] by using different approaches. Moreover, Khatri [4] conjectured that

\[
(2) \quad P \left[|x_i| \geq c_i, \ i = 1, 2, \ldots, p \right] \geq \prod_{i=1}^{p} P \left[|x_i| \geq c_i \right]
\]

and the proof of (2) given by Scott [5] is incorrect. The purpose of this paper is to generalize (1) and (2) in the case of convex and symmetric regions about the origin. The generalized results are mentioned as under:

Let \(\mathbf{x}' = (y_1', y_2', \ldots, y_q') \) where \(y_i' = (x_{p_1}+\ldots+x_{p_i-1}l, \ldots, x_{p_i}+\ldots+x_p) \), \(i = 1, 2, \ldots, q \) with \(\sum_{i=1}^{q} p_i = p \). Moreover, let \(\mathcal{S}_1(y_i) \) be a convex and symmetric region in \(y_i \) about the origin in \(p \)-dimensional space with \(-\infty < x_j < \infty \), \(j = 1, 2, \ldots, p_1+p_2+\ldots+p_i-1, p_1+p_2+\ldots+p_i+1, \ldots, p \). Let \(\mathcal{S}_i(y_i) \) be the complementary region of \(\mathcal{S}_1(y_i) \). Then, we have

\[
(3) \quad P \left(\bigcap_{i=1}^{q} \mathcal{S}_i(y_i) \right) \geq \prod_{i=1}^{q} P(\mathcal{S}_i(y_i))
\]

and

\[
(4) \quad P \left(\bigcap_{i=1}^{q} \mathcal{S}_1(y_i) \right) \geq \prod_{i=1}^{q} P(\mathcal{S}_1(y_i))
\]
Some applications of these results are given on simultaneous confidence intervals. All the results mentioned by Knatri [4] are now valid omitting the structure L.

2. Inequalities for multivariate normal distributions.

The following lemmas will be used in establishing (3) and (4).

Lemma 1. Let $x \sim N(0, V(x))$, $x^{(2)} = (x_2, x_3, \ldots, x_p)$ and let $\mathcal{D}_1(x_1)$ and $\mathcal{D}_2(x^{(2)})$ be two convex and symmetric regions in x_1 and $x^{(2)}$ respectively about the origin in p-dimensional space containing axes due to other variates. Then,

$$P(\mathcal{D}_1(x_1) \cap \mathcal{D}_2(x^{(2)})) \geq P(\mathcal{D}_1(x_1)) P(\mathcal{D}_2(x^{(2)})) .$$

For proof, refer Knatri [4].

Lemma 2. Let $x: p \times 1 \sim N(0, V(x))$ and $z: p \times 1 \sim N(0, V(z))$. Then, if $V(x) - V(z)$ is positive semi-definite,

$$P(\mathcal{D}(z)) \geq P(\mathcal{D}(x))$$

where $\mathcal{D}(z)$ is a convex and symmetric region in z about the origin.

For proof, refer Anderson [1].

Theorem 1. Let $x \sim N(0, V(x))$, $x' = (x_1', \ldots, x_q')$, $y_i' = (x_{i1} + \ldots + x_{i2}, \ldots, x_{ip} + \ldots + x_{i2})$ and $\mathcal{D}_i(x_{i1})$ be convex and symmetric region in x_{i1} about the origin in p-dimensional space containing axes due to other variates, for $i = 1, 2, \ldots, q$. Then

$$P \left[\bigcap_{i=1}^{q} \mathcal{D}_i(x_{i1}) \right] \geq P(\mathcal{D}_1(x_{i1})) P(\bigcap_{i=2}^{q} \mathcal{D}_i(x_{i1})) \geq \prod_{i=1}^{q} P(\mathcal{D}_i(x_{i1})) .$$
Proof. When any \((q-1)\) values of \(p_i, i=1,2,\ldots,q\) are at the most one, then theorem 1 is established by Knatri [14] or theorem 1 is equivalent to lemma 1. Here, we assume that \(p_i > 1, i = 1,2,\ldots,q\). First of all, we shall consider the case when \(V(x)\) is positive definite. Without loss of generality, we can write \(V(x) = AA'\) where \(A = (A_{i,j})\) is nonsingular, \(A_{i,i'} = \sim\) for \(i > i', i,i' = 1,2,\ldots,q\). Let \(A^{-1} x = \sim\) and \(\sim' = (\sim_1', \ldots, \sim_q')\) with \(\sim_i' = (\sim_{p_i+1'}\ldots+\sim_{p_{i-1}+1'}, \ldots, \sim_{p_i'}\ldots+\sim_{p_1'})\). Then, it is easy to see that
\[
\sim_i' = \sum_{j=1}^q A_{i,j} \sim_j
\]
for \(i = 1,2,\ldots,q\).

and \(\sim \sim N(0, I_p)\) or \(\sim_i \sim N(0, I_{p_i})\), \(i = 1,2,\ldots,q\). It is easy to see that theorem 1 will be established for \(V(x)\) to be positive definite if we can establish
\[
(5) \quad \left[\bigwedge_{i=1}^q \mathcal{E}_i \left(\sum_{j=i}^q A_{i,j} \sim_j \right) \mid \sim \sim Q \right] \geq S
\]

\[
P \left[\mathcal{E}_1(\sim_1') \right] P \left[\bigwedge_{j=2}^q \mathcal{E}_i \left(\sum_{j=i}^q A_{i,j} \sim_j \mid \sim \sim Q \right) \right]
\]

for every \((p_1+1)\)-flat \(Q\) containing \((Z_1, Z_2', \ldots, Z_{p_1}')\)-axes.

Let us take such a \((p_1+1)\)-flat \(Q\) and let us suppose that this is determined by the set of linearly independent equations given by
\[
P_{-1} \sum_{j=1}^{p_1} k_j Z_j + p_1 = 0 \quad \text{for} \quad k = 1,2,\ldots,P_{-1} - 1
\]
where without loss of generality, take \(\sum_{j=1}^{p-p_1} l_{kj}^2 = 1 \) and \(\sum_{j=1}^{p-p_1} \sum_{j'} l_{kj}^j l_{k'j} = 0 \) for \(k \neq k' \). Let \(L_1 = (l_{kj}) \): \((p-p_1-1) \times (p-p_1)\). Then, we can complete \(L_1 \) by a vector \(\lambda \) such that \(L' = (\lambda \ L_1') \) is an orthogonal matrix. Now use the transformation

\[
L(x_1', \ldots, x_q') = (v_1, v_2, \ldots, v_{p-p_1})'.
\]

Then it is obvious that the \((p_1+1)\)-flat \(Q \) will have the coordinate system given by \((w_1', v_1, v_i = 0 \text{ for } i = 2, \ldots, p-p_1)\) and \(v_1 \sim N(O, I) \) and \(w_i \sim N(O_1 \sim_{p-1}) \) and they are independently distributed. Hence, using this system of coordinates in the left side of (5), we get

\[
(5) \quad I(Q) = P \left[\bigcap_{i=1}^{q} g_i \left(\sum_{j=1}^{p} A_{ij} w_j \bigg| Z \in Q \right) \right] = P \left[\bigcap_{i=2}^{q} g_i (\tilde{A}_1 w_1 + \tilde{\delta}_i v_1) \bigg| \bigcap_{j=2}^{q} g_j (\tilde{A}_j v_1) \right]
\]

where if \(\lambda' = (\lambda_2', \lambda_3', \ldots, \lambda_q') \) with \(\lambda_i' : p_1 \times 1, \delta_i = \sum_{j=1}^{q} A_{ij} \lambda_j \) for \(i = 2, 3, \ldots, q \) and \(\tilde{\delta}_i = \sum_{j=2}^{q} A_{ij} \lambda_j \). Since \(\delta_i, i = 2, \ldots, q \) are fixed vector and \(g_i (\delta_i v_1), i = 2, 3, \ldots, q \) are convex and symmetric in \(\delta_i v_1 \) about the origin and hence \(g_i (v_1) = \bigcap_{i=2}^{q} g_i (\delta_i v_1) \) is convex and symmetric in \(v_1 \) about the origin. Then, using this in (6) and then lemma 1, we get

\[
(7) \quad I(Q) \geq P \left[g_1 (\tilde{A}_1 w_1 + \tilde{\delta}_1 v_1) \right] P(g(v_1) = \bigcap_{i=2}^{q} g_i (\delta_i v_1)).
\]

Note that

\[
(8) \quad P \left(\bigcap_{i=2}^{q} g_i (\delta_i v_1) \right) = P \left(\bigcap_{i=2}^{q} g_i \left(\sum_{j=1}^{p} A_{ij} w_j \bigg| Z \in Q \right) \right)
\]

and by using lemma 2,
\[(9) \quad P\left[\mathcal{A}_i(\mathbf{A}_1 \mathbf{W}_1 + \delta_1 \mathbf{v}_1) \right] \geq P\left[\mathcal{A}_i(\mathbf{v}_1) \right] \]

for \(V(\mathbf{y}_1) - V(\mathbf{A}_1 \mathbf{W}_1 + \delta_1 \mathbf{v}_1) = \sum_{j=1}^{q} A_{1j} A_{1j}^t - (\mathbf{A}_1 \mathbf{A}_1^t + \delta_1 \delta_1^t) = \sum_{j=2}^{q} \frac{A_{1j}}{\sqrt{p_j}} \frac{A_{1j}^t}{\sqrt{p_j}} \frac{A_{1j}^t}{\sqrt{p_j}} \frac{A_{1j}}{\sqrt{p_j}} \) is positive semi-definite.

Using (8) and (9) in (7), we get (5). Thus, theorem 1 is established when \(V(\mathbf{x}) \) is nonsingular.

Let \(V(\mathbf{x}) \) be positive semi-definite. Let \(\mathbf{u}: \mathbb{R} \times \mathbb{R} \sim N(\mathbf{Q}, \mathbf{I}_p) \) and let \(\mathbf{u} \) and \(\mathbf{x} \) be independently distributed. Then \(\mathbf{x} + \mathbf{u} = \tilde{\mathbf{z}} \sim N(\mathbf{Q}, \mathbf{I}_p + V(\mathbf{x})) \) and \(V(\mathbf{x}) + \mathbf{I}_p \) is positive definite. Hence from the result for positive definite covariance matrix, we get

\[(10) \quad P\left[\bigcap_{i=1}^{q} \mathcal{A}_i(\mathbf{t}_i) \right] \geq \prod_{i=1}^{q} P\left[\mathcal{A}_i(\mathbf{t}_i) \right]. \]

Taking limits as \(n \to \infty \), we get the result for the singular case, for

\[\lim_{n \to \infty} P\left[\mathcal{A}(\mathbf{t}_i) \right] = P\left[\mathcal{A}(\mathbf{y}_1) \right] \]

if \(\mathcal{A}(\mathbf{y}) \) is a convex and symmetric region in \(\mathbf{y} \) about the origin.

Theorem 2. Under the notations of theorem 1, we have

\[P\left(\bigcap_{i=1}^{q} \mathcal{A}_i(\mathbf{y}_1) \right) \geq P(\mathcal{A}_1(\mathbf{y}_1)) P\left(\bigcap_{i=2}^{q} \mathcal{A}_i(\mathbf{y}_1) \right) \geq \prod_{i=1}^{q} P(\mathcal{A}_i(\mathbf{y}_1)), \]

where \(\mathcal{A}(\mathbf{y}) \) is the complement of \(\mathcal{A}(\mathbf{y}) \).
Proof. Let us consider the case when \(V(x) \) is positive definite and we proceed in the same manner as in theorem 1 in considering

\[
P(S_1(y_1) \cap \bigcup_{i=2}^{q} S_i(y_i))
\]

Using the same arguments as those in theorem 1, we get

\[
(11) \quad P(S_1(\sum_{j=1}^{q} A_{1j} \tilde{w}_j) \cap \bigcup_{i=2}^{q} S_i(\sum_{j=1}^{q} A_{ij} \tilde{w}_j))|Z \in Q
\]

\[
= P(S_1(A_{11} \tilde{w}_1 + \delta_{1} v_1) \cap \bigcup_{i=2}^{q} S_i(v_i))
\]

Now \(\bigcup_{i=2}^{q} S_i(v_i) \iff |v_1| \leq \alpha \) for some \(\alpha > 0 \). Hence, using this in (11) and using theorem 1, we get

\[
(12) \quad P(S_1(\sum_{j=1}^{q} A_{1j} \tilde{w}_j) \cap \bigcup_{i=2}^{q} S_i(\sum_{j=1}^{q} A_{ij} \tilde{w}_j))|Z \in Q
\]

\[
\geq P(S_1(A_{11} \tilde{w}_1 + \delta_{1} v_1)) P(|v_1| \leq \alpha)
\]

and using \(P(|v_1| \leq \alpha) = P(S_1(v_1)) = P(\bigcup_{i=2}^{q} S_i(v_i)) = P(\bigcup_{i=2}^{q} S_i(\sum_{j=1}^{q} A_{ij} \tilde{w}_j))|Z \in Q \) and \(P(S_1(A_{11} \tilde{w}_1 + \delta_{1} v_1)) \geq P(S_1(y_1)) \), we get

\[
(13) \quad P(S_1(\sum_{j=1}^{q} A_{1j} \tilde{w}_j) \cap \bigcup_{i=2}^{q} S_i(\sum_{j=1}^{q} A_{ij} \tilde{w}_j))|Z \in Q
\]

\[
\geq P(S_1(y_1)) P(\bigcup_{i=2}^{q} S_i(\sum_{j=1}^{q} A_{ij} \tilde{w}_j)|Z \in Q)
\]

Then (13) gives us

\[
(14) \quad P(S_1(y_1) \cap \bigcup_{i=2}^{q} S_i(y_i)) \geq P(S_1(y_1)) P(\bigcup_{i=2}^{q} S_i(y_i))
\]
We note that if R_1 and R_2 be two regions, then

$$P(R_1) = P(R_1 \cap R_2) + P(R_1 \cap \overline{R_2}) .$$

Moreover, we have

$$\left\{ \bigcup_{i=2}^q R_i(x_i) \right\} = \bigcap_{i=2}^q \overline{R_i(y_i)} .$$

Using these in (14), we get

$$P\left(\bigcup_{i=2}^q R_i(x_i) \cap \bigcap_{i=2}^q \overline{R_i(y_i)} \right) \leq P(R_1(y_1)) P\left(\bigcap_{i=2}^q \overline{R_i(y_i)} \right) .$$

(15)

and this implies

$$P\left(\bigcap_{i=1}^q \overline{R_i(y_i)} \right) \geq P(R_1(y_1)) P\left(\bigcap_{i=2}^q \overline{R_i(y_i)} \right) .$$

(16)

Thus, theorem 2 is proved when $V(x)$ is positive definite. When $V(x)$ is singular, we can argue in the same manner as in theorem 1. This completes the proof of theorem 2.

Corollary 1. Let $x_j \sim N(0, V(x_j))$, $j = 1, 2, \ldots, n$ and let them be independent.

Let $\mathcal{D}_i = \mathcal{D}_i(y_{1i}, y_{2i}, \ldots, y_{ni})$ be convex and separately symmetric in $y_{1i}, y_{2i}, \ldots, y_{ni}$ about the origin for $i = 1, 2, \ldots, q$ and let $\overline{\mathcal{D}_i}$ be the complement of \mathcal{D}_i. Then

$$P\left(\bigcap_{i=1}^q \mathcal{D}_i \right) \geq \prod_{i=1}^q P(\mathcal{D}_i) \quad \text{and} \quad P\left(\bigcap_{i=1}^q \overline{\mathcal{D}_i} \right) \geq \prod_{i=1}^q P(\overline{\mathcal{D}_i}) .$$

(For the definition of separately symmetric, see Knatri [4].)

Proof. We shall only indicate the proof for one case as under:

Let $w_{ij} \sim N(0, V(w_{ij}))$, $j = 1, 2, \ldots, n$ and $i = 1, 2, \ldots, q$ and let them be independent and independent of x_1, x_2, \ldots, x_n. By theorem 1, it is easy to see that
(17) \[P\left[\bigcap_{i=1}^{q} \mathcal{D}_i (\tilde{y}_{i1}, \ldots, \tilde{y}_{in}) \mid \tilde{x}_1, \ldots, \tilde{x}_{n-1} \right] \]
\[\geq P\left[\bigcap_{i=1}^{q} \mathcal{D}_i (\tilde{y}_{i1}, \ldots, \tilde{y}_{in-1}) \mid \tilde{x}_1, \ldots, \tilde{x}_{n-1} \right] \]

because \(\mathcal{D}_i (y_{i1}, \ldots, y_{in}) \) is convex and symmetric in \(y_{in} \) about the origin when \(y_{i1}, \ldots, y_{in-1} \) are fixed. From (17), we get

(18) \[P\left[\bigcap_{i=1}^{q} \mathcal{D}_i (\tilde{y}_{i1}, \ldots, \tilde{y}_{in}) \right] \geq P\left[\bigcap_{i=1}^{q} \mathcal{D}_i (\tilde{w}_{i1}, \ldots, \tilde{w}_{in}) \right]. \]

Proceeding in the same manner for \(x_{n-1}, x_{n-2}, \ldots, x_1 \), we get the final result as

(19) \[P\left[\bigcap_{i=1}^{q} \mathcal{D}_i \right] \geq P\left[\bigcap_{i=1}^{q} \mathcal{D}_i (w_{i1}, \ldots, w_{in}) \right] = \prod_{i=1}^{q} P(\mathcal{D}_i) \]

This proves the first part of corollary 1. The second part can be proved in the same manner.

Corollary 2. Let \(x_{j} \sim N(0, V(x_{j})), j=1,2,\ldots,n \) and be independent. Let us suppose that \(V(x_{j}) = (A_{ii}, j), A_{ii}, j = \sigma^2_{i,j} I_{\alpha_i} \) for \(\alpha_i = 1, 2, \ldots, r \)

and \(\sum_{\alpha_i} x_{i,j}^2 \) for \(i = 1, 2, \ldots, r \)

\(y_{j, t, j} = (Z_{1,t} + \ldots + t_{t, t-1} + 1, \ldots, Z_{r_{t, t-1} + 2} + \ldots + r_t), t = 1, 2, \ldots, q, \sum_{t=1}^{q} r_t = r \) and

\(\mathcal{D}_t = \mathcal{D}_t (y_{1,t}, \ldots, y_{n,t}) \) about the origin for \(t = 1, 2, \ldots, q \). Then,
\[P_\text{\(t=1\)} = x_1 \geq \prod_{t=1}^{q} P(x_t) \text{ and } P_\text{\(t=1\)} = x_1 \geq \prod_{t=1}^{q} P(x_t) \]

This follows from corollary 1.

Note: In corollaries 1 and 2, if some observations are missing on \(y_1\) or \(y_2\), \ldots or \(y_q\), we have to omit these from the convex and symmetric regions \(A_i\), \(i = 1, 2, \ldots, q\). E.g. Suppose on \(y_1\), the only observations available are \(y_{1,j}\), \(j = 1, 2, \ldots, n_1\) \((n_1 < n)\). Then, \(A_1 = (y_{1,1}, \ldots, y_{1,n_1})\) is convex and symmetric region in \(y_{1,1}, \ldots, y_{1,n_1}\) about the origin.

3. **Direct applications.**

(3.1) Confidence bounds for means.

Let us suppose that \(x_j \sim N(\xi_j, \sigma^2)\) for \(j = 1, 2, \ldots, n\) and let them be independent. Let us assume that \(V(x) = (A_{ii})\), \(A_{ii} = \sigma_i^2 \sim \sigma_i^2\), \(i = 1, 2, \ldots, r\) and \(\xi' = (\xi_1', \xi_2', \ldots, \xi_r')\), with \(\xi_i: x_i \sim 1\).

Let \(X_j = (y_{1,j}, \ldots, y_{r,j})\), \(y_i: x_i \sim 1\), \(\overline{y}_i = \frac{1}{n} \sum_{j=1}^{n} y_{i,j}\) and

\[S_{ii} = \sum_{j=1}^{n} y_{i,j} - n \overline{y}_i \overline{y}_i \]. Then, by corollary 2, it is easy to see that

\[(20) \quad \prod_{i=1}^{r} \left[(\overline{y}_i - \xi_i') (\overline{y}_i - \xi_i) \right] \leq C_i S_{ii}, \quad i = 1, 2, \ldots, r \]

because \(\overline{y}_i\) and \(S_{ii}\) are independently distributed and \(S_{ii} = \sum_{j=1}^{n} z_{i,j} z_{i,j}\) with \((\overline{y}_i, \ldots, \overline{y}_i)' \sim N(\xi, \sigma^2)\) and \(Z_{ij} = (z_{i,j}, \ldots, z_{i,j})' \sim N(0, \sigma^2)\).
Now it is easy to see that $n(n-1)(\bar{\xi}_i - \xi_i)'(\bar{\xi}_i - \xi_i)/s_{ii}'$ is distributed as $F_{\alpha_i, (n-1)\alpha_i}$ with α_i and $(n-1)\alpha_i$ degrees of freedom for $i = 1, 2, \ldots, r$. Hence, we can find c_1, c_2, \ldots, c_r such that

$$F_{\alpha_i, (n-1)\alpha_i} \left[(\bar{\xi}_i - \xi_i)'(\bar{\xi}_i - \xi_i)/s_{ii}' \leq c_i s_{ii}' \right] = 1 - \alpha .$$

One choice of choosing c_1, c_2, \ldots, c_r is to take

$$F_{\alpha_i, (n-1)\alpha_i} \left[(\bar{\xi}_i - \xi_i)'(\bar{\xi}_i - \xi_i)/s_{ii}' \leq c_i s_{ii}' \right] = (1 - \alpha)^{1/r} .$$

Using (21) in (20), we can find simultaneous confidence bounds on ξ_i, $i = 1, 2, \ldots, r$ with confidence greater than $(1 - \alpha)$ as

$$s_{ii}' \bar{\xi}_i - \left(\sum_{i=1}^{2} a_i a_i' \right)^{1/2} \leq \xi_i \leq s_{ii}' \bar{\xi}_i + \left(\sum_{i=1}^{2} a_i a_i' \right)^{1/2}$$

for all $i = 1, 2, \ldots, r$ and for all non-null vectors $a_i : a_i x 1, i = 1, 2, \ldots, r$.

(3.2) One sided confidence bounds on variances.

Let us suppose that $\bar{x} = (y_1', \ldots, y_q')' \sim N(0, V(x))$ and let us have n independent observations on \bar{x}. Out of these n observations, it is found that n_i observations are missing on y_i, $i = 1, 2, \ldots, q$. Let $V(x) = (\sum_{i=1}^q S_i)$, and $\sum_{i=1}^q S_i$, the sample sum of squares matrix due to available observations on y_i, $i = 1, 2, \ldots, q$.

If $\sum_{i=1}^q \max_{\sum_{i=1}^q S_i} (A_i^{-1}) \leq c_i$, then $\sum_{i=1}^q S_i$ is section-wise convex and separately symmetric in available observations about the origin (see DasGupta, Mudholkar and Anderson [2]). Hence, by corollary 1, we get

$$F_{\sum_{i=1}^q \sum_{i=1}^q S_i} \left[\bigcap_{i=1}^q P(S_i) \right] \geq \prod_{i=1}^q P(S_i) \text{ and } F_{\sum_{i=1}^q \sum_{i=1}^q S_i} \left[\bigcap_{i=1}^q \bar{S}_i \right] \geq \prod_{i=1}^q P(\bar{S}_i) .$$
In order to obtain the lower bounds on the parameters A_{ii}, $i = 1,2,\ldots,q$, we use the first part of (22). Let us choose c_1, c_2, \ldots, c_q such that

$$\prod_{i=1}^{q} \mathbb{P}[\max_{\tilde{A}_{ii}} (A_{ii}^{-1} S_i) \leq c_i] = 1 - \alpha.$$ \hspace{1cm} (24)

Using (24) in the first part of (23), we get simultaneous lower bounds on \tilde{A}_{ii}, $i = 1,2,\ldots,q$ with confidence greater than or equal to $(1 - \alpha)$ as

$$\tilde{a}_i' \tilde{A}_{ii} \tilde{a}_i \geq \tilde{a}_i' S_i \tilde{a}_i / c_i, \quad i = 1,2,\ldots,q$$ \hspace{1cm} (25)

for all non-null vectors $\tilde{a}_1, \tilde{a}_2, \ldots, \tilde{a}_q$.

Similarly, by choosing $c'_i, i = 1,2,\ldots,q$ from

$$\prod_{i=1}^{q} \mathbb{P}[\max_{\tilde{A}_{ii}} (A_{ii}^{-1} S_i) > c'_i] = 1 - \alpha,$$ \hspace{1cm} (26)

we find the simultaneous upper bounds on \tilde{A}_{ii}, $i = 1,2,\ldots,q$ with confidence greater than or equal to $(1 - \alpha)$ as

$$\tilde{a}_i' \tilde{A}_{ii} \tilde{a}_i \leq c'_i (\tilde{a}_i' S_i \tilde{a}_i), \quad i = 1,2,\ldots,q$$ \hspace{1cm} (27)

for all non-null vectors \tilde{a}_i, $i = 1,2,\ldots,q$.

By combining (25) and (27), we get the simultaneous confidence bounds on \tilde{A}_{ii}, $i = 1,2,\ldots,q$ with confidence greater than or equal to $(1 - \alpha)^2$.

- References -

