On the distributions of some functions of the roots of a covariance matrix and non-central Wilks' Λ^*

by

K. C. Sreedharan Pillai and Sabri Al-Ani

Department of Statistics
Division of Mathematical Sciences
Mimeograph Series No. 125
October, 1967

* This research was supported by the National Science Foundation, Grant No. GP-7663.
On the distributions of some functions of the roots
of a covariance matrix and non-central Wilks' Λ^*

by

K. C. Sreedharan Pillai and Sabri Al-Ani

Purdue University

1. Introduction and Summary. Let $\sim \chi(p \times n)$ be a matrix variate with columns independently distributed as $N(0, \Sigma)$. Then the distribution of the latent roots, $0 \leq w_1 \leq \ldots \leq w_p < \infty$, of $\sim \chi \sim' \Sigma$ are first considered in this paper for deriving the distributions of the ratios of individual roots w_i/w_j ($i < j = 2, \ldots, p$). In particular, the distributions of such ratios are derived for $p = 2, 3$ and 4. The use of these ratios in testing the hypothesis $\delta \Sigma_1 = \Sigma_2$, $\delta > 0$ unknown, has been pointed out where Σ_1 and Σ_2 are the covariance matrices of two p-variate normal populations. Further, when $\Sigma = I_p$, the distribution of the sum of the two smallest roots is studied for $p = 3, 4$ and 5. This latter criterion is useful for various tests of hypotheses, for example, those regarding the number of independent linear equations satisfied by the means, μ_i, $i = 1, \ldots, p$, $t = 1, \ldots, N$ in N p-variate normal populations with a common covariance matrix. ([1],[10]).

Further, the non-central distribution of Wilks' Λ criterion has been obtained for $p = 2, 3$ and 4. In this connection a lemma has been proved using some results on Mellin transform.

2. Distribution of ratios of the roots of a covariance matrix. The distribution of the latent roots, $0 < w_1 \leq w_2 \leq \ldots \leq w_p < \infty$, of $\sim \chi \sim'$ depends only upon the latent roots of Σ and can be given in the form (James [6])

* This research was supported by the National Science Foundation Grant No. GP-7663.
\[(2.1) \quad K(p,n) |\Sigma|^{-\frac{1}{2}n} W^m \prod_{i>j} (w_i - w_j) \int_{\mathcal{O}(p)} \exp(-\frac{1}{2} \text{tr} \Sigma^{-1} \tilde{W} \tilde{W}^t) \, d(\tilde{\Sigma}), \]

where the integral is taken over the orthogonal group of \((p \times p)\) orthogonal matrices \(\tilde{\Sigma}; \quad m = \frac{1}{2}(n-p-1)\) and \(K(p,n) = \frac{\pi^{\frac{p^2}{2}}}{2^{\frac{3}{4}pn}} \Gamma_p(\frac{1}{2n}) \Gamma_p(\frac{1}{2p})\) and \(\tilde{W} = \text{diag}(v_1, \ldots, v_p)\).

It may be shown that (2.1) can be written in the form James [6]

\[(2.2) \quad K(p,n) |\Sigma|^{-\frac{1}{2}n} W^m \{\exp(-\frac{1}{2} \text{tr} \tilde{W}) \prod_{i>j} (v_i - v_j) \}_o \mathcal{F}_o(\frac{1}{2}(I_p - \Sigma^{-1}), \tilde{W}), \]

where

\[
\mathcal{F}_p^{a_1, \ldots, a_p; \ b_1, \ldots, b_q; \ S, T} = \sum_{k=0}^{\infty} \frac{\Gamma(\sum_{k} (a_{p_k}) \prod_{k=1}^{p} \Gamma_k(b_{p_k}) C_k(S) C_k(T)}{\prod_{k=1}^{p} \Gamma_k(b_{p_k}) C_k(\mathcal{F}_p)k!} \]

where \(a_1, \ldots, a_p, b_1, \ldots, b_q\) are real or complex constants and the multivariate coefficient \((a)_k\) is given by

\[
(a)_k = \prod_{i=1}^{p} (a - \frac{1}{2}(i-1))_k, \]

where

\[
(a)_k = a(a+1)\ldots(a+k-1), \]
partition \(\kappa \) of \(k \) is such that \(\kappa = (k_1, k_2, \ldots, k_p) \), \(k_1 \geq k_2 \geq \ldots \geq k_p \geq 0 \), \(k_1 + k_2 + \ldots + k_p = k \) and the zonal polynomials, \(C_\kappa(S) \), are expressible in terms of elementary symmetric functions (esf) of the latent roots of \(S \).

James [6].

It may be pointed out that the form (2.2) can also be viewed as a limiting form of the non-central distribution of the latent roots Khatri [4] associated with the test of the hypothesis: \(\Sigma_1 = \Sigma_2 \), where \(\Sigma_1 \) and \(\Sigma_2 \) are the covariance matrices of two \(p \)-variate normal populations, when \(n_2 \to \infty \), where \(n_2 \) is the size of the sample from the second population. Now, if we wish to test instead the null hypothesis \(\delta \Sigma_1 = \Sigma_2 \), \(\delta > 0 \) unknown, the ratios of the latent roots would be of interest as test criteria. In this context, in the limiting form (2.2), \(\Sigma \) should be replaced by \(\delta \Sigma_1 \Sigma_2^{-1} \).

Now, let \(l_i = w_i / \omega_p \), \(i = 1, \ldots, p-1 \), then the distribution of \(\lambda_1, \ldots, \lambda_p, \omega_p \) can be written in the form

\[
(2.3) \quad K(p,n) |\Sigma|^{-\frac{3n}{2}} w_p^{\frac{3n-1}{2}} |L|^{\frac{1}{2}} |L|^{-\frac{1}{2}} \prod_{i>j} (\lambda_i - \lambda_j) \exp \left(\frac{-1}{2} \omega_p trL \right) = \frac{w_p^k}{2^kk!} \sum_{\kappa} \frac{C_\kappa(I_p - \Sigma^{-1}) C_\kappa(L_1)}{C_\kappa(I_p)}
\]

where

\[
\Sigma = \text{diag}(\lambda_1, \ldots, \lambda_{p-1}) \quad \text{and} \quad L_1 = \text{diag}(\lambda_1, \ldots, \lambda_{p-1}, 1).
\]

Integrating (2.3) with respect to \(\omega_p \), then the distribution of \(\lambda_1, \ldots, \lambda_{p-1} \) is of the form

\[
\int_{\omega_p} K(p,n) |\Sigma|^{-\frac{3n}{2}} w_p^{\frac{3n-1}{2}} |L|^{\frac{1}{2}} |L|^{-\frac{1}{2}} \prod_{i>j} (\lambda_i - \lambda_j) \exp \left(\frac{-1}{2} \omega_p trL \right) \]
(2.4) \[K_1(p,n) \left| \Sigma \right|^{-\frac{3n}{2}} \left| \Sigma \right|^{-m} \left| I - L \right|_{i>j}^{\Pi} (\ell_1 - \ell_j) \]

\[
\left[\sum_{k=0}^{\infty} \frac{\Gamma(3pn+k)}{k!} \sum_{k} \frac{C_k(L_p - \Sigma^{-1}) C_k(L_1)}{C_k(L_p)(\text{tr}L_1)^{3pn+k}} \right],
\]

where \(K_1(p,n) = 2^{\frac{3}{2}pn} K(p,n) \).

Case i. Let \(p = 2 \) in (2.4), then the distribution of \(\ell = w_1 / w_2 \) is of the form

\[
(2.5) \quad K_1(2,n) \left| \Sigma \right|^{-\frac{3n}{2}} \ell^{\frac{1}{2}(n-3)}(1-\ell) \left[\sum_{k=0}^{\infty} \frac{\Gamma(n+k)}{k!(1+\ell)^{n+k}} \sum_{k} \frac{C_k(L_p)/\Sigma^{1}}{C_k(L_p)} \right].
\]

Case ii. Putting \(p = 3 \) in (2.4) and by the use of the results of Khatri and Pillai [5], the distribution of \(\ell_1, \ell_2 \) can be written in the form

\[
(2.6) \quad K_1(3,n) \left| \Sigma \right|^{-\frac{3n}{2}} (\ell_1 \ell_2)^{\frac{1}{2}(n-4)} (\ell_2 - \ell_1)(1-\ell_1)(1-\ell_2)
\]

\[
\left[\sum_{k=0}^{\infty} \frac{\Gamma(a_k)}{k!} \sum_{k} \frac{C_k(L_p - \Sigma^{-1}) C_k(L_1)}{C_k(L_p)} \sum_{i=0}^{\infty} \sum_{\eta} b_{\eta,k} C_{\eta}(0 \ell_1) \right],
\]

\[
\left[\sum_{r=0}^{\infty} (-a_k)^r (1+\ell_2)^{-r-a_k} \right],
\]

where \(a_k = (3n/2) + k \), \(b_{\eta,k} \) are the constants defined [7], and \(\eta \) is the partition of \(i \) into not more than \(p \) elements.
It may be noted that the distribution of ℓ_1 and of ℓ_2 can be found by writing $C(0, \ell_2) = \sum_{i_1 + i_2 = i} a_{i_1, i_2} \ell_1^{i_1} \ell_2^{i_2}$ and expanding $(1 + \ell_2)^{-r-a_k}$ then integrating ℓ_2 and ℓ_1 respectively.

Let $r_1 = \ell_1/\ell_2$ so the distribution of r_1, ℓ_2 can be written in the form

\begin{equation}
K(3, n) |\Sigma|^{-\frac{3n}{2}} r_1^{\frac{1}{2}(n-4)} (1-r_1) \left[\sum_{k=0}^{\infty} \frac{\Gamma(a_k)}{k!} \sum_{\kappa} C_k(I-\Sigma^{-1}) \sum_{i=0}^{\infty} \sum_{\eta} b_{\eta, \kappa} C(0, 1) \sum_{r=0}^{\infty} \sum_{h=0}^{\infty} (-a_k)^{r} r_1^{h} r_1^{n-2+i+r+h}(1-\ell_2)(1-r_1 \ell_2) \right].
\end{equation}

Integrating (2.7) with respect to ℓ_2, the distribution of r_1 can be written in the form

\begin{equation}
K(3, n) |\Sigma|^{-\frac{3n}{2}} r_1^{\frac{1}{2}(n-4)} (1-r_1) \left[\sum_{k=0}^{\infty} \frac{\Gamma(a_k)}{k!} \sum_{\kappa} C_k(I-\Sigma^{-1}) \sum_{i=0}^{\infty} \sum_{\eta} b_{\eta, \kappa} C(0, 1) \sum_{r=0}^{\infty} \sum_{h=0}^{\infty} (-a_k)^{r} r_1^{h} \{b(a_1, 2) - r_1 b(a_1+1, 2)\} \right]
\end{equation}

where $a_1 = n-1+i+r+h$.

Case iii. Let $p = q$ in (2.4), then the distribution of ℓ_1, ℓ_2, ℓ_3 can be written in the form

\begin{equation}
K(4, n) |\Sigma|^{-\frac{3n}{2}} \prod_{i=1}^{3} \{\ell_i^{\frac{1}{2}(n-5)}(1-\ell_i)\} \prod_{i>j} (\ell_i - \ell_j) \left[\sum_{k=0}^{\infty} \frac{\Gamma(2n+k)}{k! (1+\ell_1+\ell_2+\ell_3)^{2n+k}} \sum_{\kappa} C_k(I-\Sigma^{-1}) \sum_{i=0}^{\infty} \sum_{\eta} b_{\kappa, \eta} C(0, \Sigma) \right],
\end{equation}
where \(L = \text{diag}(\lambda_1, \lambda_2, \lambda_3) \).

Now, let \(r_i = \frac{\lambda_i}{\lambda_3}, \ i = 1, 2 \) and integrate \(\lambda_3 \) from 0 to 1, then the distribution of \(r_1, r_2 \) can be written in the form

\[
(2.10) \quad K_1^{(4, n)} \sum n \frac{1}{2n} (r_1^2 r_2)^{\frac{1}{2}(n-5)} (1-r_1)(1-r_2)(r_2-r_1) \left[\sum_{k=0}^{\infty} \frac{\Gamma(2n+k)}{k!} \sum_{n} \right.
\]

\[
\frac{c_k(I_p - E^{-1})}{c_k(I_p)} \sum_{i=0}^{k} \sum_{\eta} b_{\kappa, \eta} c_{\eta}(R_1) \sum_{r=0}^{\infty} \frac{(-2n-k)(r_1+r_2)^{r}}{r} \sum_{h=0}^{\infty} \frac{(-2n-k-r)}{h}
\]

\[
\{ \beta(b, 2) - (r_1+r_2) \beta(b+1, 2) + r_1 r_2 \beta(b+2, 2) \}\n\]

where \(b = \frac{3}{2}(n-1)+i+h+r \) and \(R_1 = \text{diag}(r_1, r_2, 1) \). Now, we can find the distribution of \(r_1 \) or \(r_2 \) by expressing \((r_1+r_2)^{r} \) in terms of zonal polynomials of \(R = \text{diag}(r_1, r_2) \) and using the method outlined in Pillai and Al-Ani [6] and integrating with respect to \(r_2 \) or \(r_1 \) such that \(0 < r_1 \leq r_2 < 1 \).

Now, let \(r'_1 = \frac{r_1}{r_2} \), then the distribution of \(r'_1 \) can be written in the form

\[
(2.11) \quad K_1^{(4, n)} \sum n \frac{1}{2n} r'_1^{\frac{1}{2}(n-5)} (1-r'_1) \left[\sum_{k=0}^{\infty} \frac{\Gamma(2n+k)}{k!} \sum_{n} \frac{c_k(I_p - E^{-1})}{c_k(I_p)} \sum_{i=0}^{k} \sum_{\eta} \right.
\]

\[
b_{\kappa, \eta} \sum_{t=0}^{i} \sum_{\tau} b_{\tau}^t c_{\tau} r'_1 \sum_{r=0}^{\infty} \frac{(-2n-k)(r'_1+1)^{r}}{r} \sum_{h=0}^{\infty} \frac{(-2n-k-r)}{h}
\]

\[
\{ \beta(b, 2) \beta(c, 2) + r'_1 \left[\beta(c+2, 2) \beta(b+2, 2) - \beta(c+1, 2) \beta(b, 2) \right]
\]

\[+ (r'_1) \beta(b+1, 2) \right] (r'_1 \beta(c+2, 2) - \beta(c+1, 2)) - r'_1 \beta(b+2, 2) \beta(c+3, 2) \}
where \(c = n-2+t+r \) and the constants \(b'_{i,i+1} \) and \(\tau \) are defined in [8].

3. The distribution of the sum of the two smallest roots. Let \(\Sigma = \mathbf{I}_p \) in (2.2) and transform \(g_i = \frac{1}{2} w_i, i = 1, \ldots, p \), we get the joint density of \(g_1, \ldots, g_p \) in the form

\[
K_1(p,n) \prod_{i=1}^{p} \left(\frac{m}{g_i e^{-g_i}} \right) \prod_{i>j} (g_i - g_j), \quad 0 < g_1 \leq g_2 \leq \ldots \leq g_p < \infty.
\]

In this section we will derive the distribution of \(M_1 = g_1 + g_2 \) for \(p = 3 \) and 4.

Case 1. Put \(p = 3 \) in (3.1) and let \(M = \ell_1 + \ell_2, \quad G = \ell_1 \ell_2 \), where \(\ell_i = g_i / g_3, i = 1,2 \). Then the joint distribution of \(M \) and \(g_3 \) can be written in the form

\[
K_1(3,n) \frac{e^{-g_3(1+M)}}{g_3^{3m+5}} \int_0^{M^2/4} e^{-G(1+G)} dG, \quad 0 < M \leq 1.
\]

Further, transform \(M_1 = g_3 M \) and we get

\[
K_2(3,n) \frac{g_3^{m+2} M_{1}^{2m+2}}{\left[(g_3 - M_1/2)^2 - K_1^2 / (4(m+2)) \right]} e^{-g_3^{3+M_1}},
\]

where

\[
K_2(p,n) = K_1(p,n) / \left\{ (m+1)2^{2m+2} \right\}.
\]

Now integrating \(g_3 \) from \(M_1 \) to \(\infty \) we get for \(0 < M \leq 1 \)
\[
K_2(3,n) e^{-M_1} M_1^{2m+2} \left[a_0 I(M_1, \infty; m+3) + a_1 M_1 I(M_1, \infty; m+2) + a_2 M_1^2 I(M_1, \infty; m+1) \right],
\]

where \(a_0 = 1, \ a_1 = -1, \ a_2 = (m+1)/(4(m+2)) \) and \(I(x_1,x_2; q) = \int_{x_1}^{x_2} e^{-x} x^q dx \).

Now we consider the case when \(1 \leq M \leq 2 \). Let \(L_i^i = 1-L_i^i, i=1,2 \) such that \(M' = 2-M, \ G' = (1-M+G) \), then the distribution of \(\xi_3 \) and \(M' \) can be written in the form

\[
(3.4) \quad K_1(3,n) e^{-\xi_3(3-M')} \xi_3^{3m+5} \left[\frac{(1-M'/2)^{2m+2}}{(m+1)} - \frac{(1-M'/2)^2}{m+2} + \frac{(1-M')^{m+2}}{(m+1)(m+2)} \right].
\]

Integrate (3.4) with respect to \(\xi_3 \) from \(M_1/2 \) to \(M_1 \) and combine the result with (3.3), then the distribution of \(M_1 \) can be written in the form

\[
(3.5) \quad K_2(3,n) e^{-M_1} M_1^{2m+2} \sum_{i=0}^{2} a_i M_1^i I(M_1/2, \infty; m+3-i) \\
+ 2^{2m+2(m+2)-1} \int_{M_1/2}^{M_1} \xi_3^{2m+2(M_1-\xi_3)^{m+2}} e^{-\xi_3 \xi_3} d\xi_3, \\
0 < M_1 < \infty.
\]

Case ii. Put \(p = 4 \) in (3.1) and integrate \(\xi_k \), then the distribution of \(\xi_3 \) and \(M \) is given by
\[(3.6) \quad K_2(4,n) e^{g_3(2+M)} M^{2m+2} \sum_{r=0}^{m+2} (r+1) g_3^{4m+7-r} \]

\[\left[(a-bM) \left\{ \frac{(1-M/2)^2-M^2}{4(m+2)} \right\} + a_2CM^2 \left\{ \frac{(1-M/2)^2-M^2}{4(m+3)} \right\} \right], \]

where \(a = \frac{(m+2)!}{(m+2-r)!}, b = \frac{(m+1)!}{(m+1-r)!} \) and \(0 < M \leq 1, C = m! / (m-r)! \).

As before transform \(M_1 = g_3 M \), and integrate \(g_3 \), then the distribution of \(M_1 \), for \(0 < M \leq 1 \), takes the form

\[(3.7) \quad 2^{-2m+5} K_2(4,n) e^{M_1} \sum_{r=0}^{m+2} (r+1) \left\{ M_1^{2m+2} \sum_{i=0}^{3} 2^{r+i} \right\} \frac{M_1^i}{a_1^i} I(2M_1, \infty; 2m+5-r-i) + a_2CM_1^{2m+4} \sum_{i=0}^{2} 2^{r+i+2} \frac{M_1^i}{b_1} I(2M_1, \infty; 2m+3-r-i)}, \quad 0 \leq M \leq 1, \]

where \(a_0' = a, a_1' = -(a+b), a_2' = a(m+1)/\{(m+2)4\} + b, a_3' = -b(m+1)/4(m+2), b_0 = 1, b_1 = -1 \) and \(b_2 = (m+2)/4(m+3) \). Now, when \(1 \leq M \leq 2 \), as before, transform to \(M' \) and \(G' \) and integrate out \(G' \), and further transform to \(M = 2-M' \) and \(M_1 = g_3 M \) and integrate out \(g_3 \) between \(M_1/2 \) and \(M_1 \) and combining the result with (3.7) we get
\[2^{-m} K_2(4, n) e^{-M_1} \sum_{r=0}^{m+2} (r+1) \left[M_1^{2m+2} \sum_{i=0}^{4} 2^{r+i-m-7} c_i \right. \]

\[M_1^i I(M_1, \infty; 2m-r+i+5) + (m+2)^{-1} \left((a-c) \sum_{i=0}^{m+2} (m+2)^i (-1)^i \right. \]

\[g(r,i+1) + (c-b) \sum_{i=0}^{m+2} (m+2)^i (-1)^i g(r,i) - c(m+3)^{-1} \]

\[\sum_{i=0}^{m+3} (m+3)^i (-1)^i 2g(r,i) \quad 0 < M_1 < \infty \]

where

\[g(r,i) = 2^{r-i-2} M_1^{m+3-i} I(M_1, 2M_1; 3m+2+i-6) \]

\[c_0 = 4a, \quad c_1 = -4(a+b), \quad c_2 = (c+a)(m+1)(m+2)^{-1} + 4b \]

\[c_3 = -(c+b)(m+1)(m+2)^{-1}, \text{ and } c_4 = c(m+1)/\{4(m+3)\} \]
Case iii. Put \(p = 5 \) in (3.1) and integrate \(g_5 \) and \(g_4 \), then the distribution of \(g_3 \) and \(M \) is given by

\[
(3.9) \quad K_2(5,n) e^{-g_3(3+M)} g_3^{3m+5} M^{2m+2} \sum_{r=0}^{6} \eta_r M^r g_3^{2m+7-i-j}
\]

where \(\eta_0 = K_{0,i,j}/(m+1) \), \(\eta_1 = (K_{1,i,j} - K_{0,i,j})/(m+1) \),

\[
\eta_2 = (K_{0,i,j} + K_{3,i,j})/4(m+2) + (K_{2,i,j} - K_{1,i,j})/(m+1),
\]

\[
\eta_3 = (K_{1,i,j} - K_{3,i,j} + K_{4,i,j})/4(m+2) - K_{2,i,j}/(m+1),
\]

\[
\eta_4 = (K_{2,i,j} - K_{4,i,j})/4(m+2) + (K_{3,i,j} + K_{5,i,j})/2^4(m+3),
\]

\[
\eta_5 = (K_{4,i,j} - K_{5,i,j})2^4(m+3), \text{ and } \eta_6 = K_{5,i,j}/2^6(m+4)
\]

and the \(K_{\ell,i,j} \) are defined by

\[
(3.10) \quad K_{\ell,i,j} = \sum_{j=0}^{\ell} \sum_{i=0}^{m+k} \frac{1}{(2+j+1)^{l-1-j} \ell_{6} \ell_{5}} \left[a_{\ell}^{(1)}(2m+7-i-\ell_{6} \ell_{5} - j) - a_{\ell}^{(2)}(2m+6-i-\ell_{6} \ell_{5} - j) + a_{\ell}^{(3)}(2m+5-i-\ell_{6} \ell_{5} - j) \right],
\]

where

\[
\ell_{6} = \begin{cases} \ell, & \text{for } \ell = 0, 1, \text{ and } 2, \\ \ell_{1}, & \text{for } \ell = 3, 4, \text{ and } 5,
\end{cases}
\]

and

\[
K = \begin{cases} 4 & \text{for } \ell = 0, 1, 3 \\ 3 & \text{for } \ell = 2, 4 \\ 2 & \text{for } \ell = 5
\end{cases}
\]

and
\[
a_0^{(1)} = (m+3)_{-i+1}, \quad a_0^{(2)} = -a_1^{(m+2)}_{-i+2}, \quad a_0^{(3)} = (m+2)_{-i+1} \\
a_1^{(1)} = a_0^{(2)}, \quad a_1^{(2)} = b_i^{(m+1)}_{-i+3}, \quad a_1^{(3)} = -c_i^{(m+1)}_{-i+1} \\
a_2^{(1)} = a_0^{(3)}, \quad a_2^{(2)} = -c_i^{(m+1)}_{-i+2}, \quad a_2^{(3)} = (m+1)_{-i+1} \\
a_3^{(1)} = d_i^{(m+1)}_{-i+3}, \quad a_3^{(2)} = -c_i^{(m)}_{-i+4}, \quad a_3^{(3)} = g_i^{(m)}_{-i+3} \\
a_4^{(1)} = a_2^{(2)}, \quad a_4^{(2)} = k_i^{(m)}_{-i+3}, \quad a_4^{(3)} = -l_i^{(m)}_{-i+2} \\
a_5^{(1)} = a_2^{(3)}, \quad a_5^{(2)} = a_4^{(3)}, \quad a_5^{(3)} = (m)_{-i+1} \\
\] (3.11)

and (a)_{-i+b} = a(a-1) \ldots (a-i+b+1); \ a_1 = 2, \ a_i = 2m+i-1, \ i \geq 2;
\[
b_1 = 4, \ b_2 = 4m+8 \quad \text{and} \quad b_i = (2m+7-i)(2m+5-i) + i-1 \quad \text{for} \quad i \geq 3;
\]
c_1 = 2, \ c_i = 2m+5-i \quad \text{for} \quad i \geq 2; \ d_1 = 2, \ d_2 = 2m+4 \quad \text{and} \quad d_i = (m+2)_{-i+2} +
\[
(m+3-i)_{-i+2} \quad \text{for} \quad i \geq 3; \ e_1 = 4, \ e_2 = 4m+6, \ e_3 = \sum_{i=0}^{3} (m+i)_{-i+2} \quad \text{and}
\]
e_i = \sum_{K=0}^{3} (m+2-i+K)(m+1)_K \quad \text{for} \quad i \geq 4; \ g_1 = 2, \ g_2 = 2m+2, \ g_i = (m+1)_{-i+2} +
\[
(m+2-i)_{-i+2} \quad \text{for} \quad i \geq 3; \ l_1 = 2, \ l_i = 2m-i+3, \ i \geq 2, \ k_1 = 4, \ k_2 = 4m + 4,
\]
k_i = 4m^2 + 16m - 4im + i^2 - 7i + 14 \quad \text{for} \quad i \geq 3.

As before transform \(M_1 = g_3 M \), and integrate \(g_3 \), then the dis-

\[
(3.12) \quad K_2(5,n) M_1^{2m+2} e^{-M_1} \sum_{r=0}^{6} \eta_r M_1^{3}(3M_1,\infty;3m+10-i-j-r)_{3m+10-i-j-r}.
\]
Now, when \(1 \leq M \leq 2 \), proceeding as before, and combining the result with (3.12) we get

\[
K_3(5,n)M_1^{m+2} e^{-M_1} \left[(3M_1)^m \sum_{r=0}^{6} 3^{i+j+r} \eta_{r}^r M_1^r \cdot I(3M_1/2,\infty;3m+10-i-j-r)
+ 2^{2m+2} \sum_{s=0}^{m+2} (-1)^s \sum_{r=0}^{2} p_{r}^r M_1^{r-s} 3^{s+i+j+r} I(3M_1/2,3M_1;4m+10+s-i-j-r) \right]
\]

where \(K_3(5,n) = K_2(5,n)/3^{4m+10} \),

\[
p_0 = K_{0,i,j}/(m+1)(m+2) - K_{3,i,j}/(m+2)(m+3) + K_{5,i,j}/(m+3)(m+4),
\]

\[
p_1 = K_{1,i,j}/(m+1)(m+2) + (K_{3,i,j} - K_{4,i,j})/(m+2)(m+3) - 2K_{5,i,j}/(m+3)(m+4)
\]

\[
p_2 = K_{2,i,j}/(m+1)(m+2) + K_{4,i,j}/(m+2)(m+3) + K_{5,i,j}/(m+3)(m+4).
\]

4. The Non-Central distribution of Wilks' Criterion. In this section we shall derive the non-central distribution of Wilks' criterion, namely

\[
\Lambda = W(p) = \prod_{i=1}^{p} (1-r_i) \text{ where } r_1, \ldots, r_p \text{ are the characteristic roots of}
\]

\[
|S_1 - r(S_1 + S_2)| = 0
\]

where \(S_1 \) is a \((p \times p)\) matrix distributed non-central Wishart with \(s \) degrees of freedom and a matrix of non-centrality parameters \(\Omega \) and \(S_2 \) has the Wishart distribution with \(t \) degrees of freedom, the covariance matrix in each case being \(\Sigma \). For this, first we state below a few results on Mellin transform and then prove a lemma.
Theorem 1. If \(s \) is any complex variate and \(f(x) \) is a function of a real variable \(x \), such that

\[
(4.1) \quad F(s) = \int_0^\infty x^{s-1} f(x) dx
\]

exists. Then, under certain conditions [3]

\[
(4.2) \quad f(x) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} x^{-s} F(s) ds.
\]

\(F(s) \) in (4.1) is called the Mellin transform of \(f(x) \) and \(f(x) \) in (4.2) is called the inverse Mellin transform of \(F(s) \). Now we state another theorem [3].

Theorem 2. If \(f_1(x) \) and \(f_2(x) \) are the inverse Mellin transform of \(F_1(s) \) and \(F_2(s) \) respectively, then the inverse Mellin transform of \(F_1(s) F_2(s) \) is given by

\[
(4.3) \quad \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} x^{-s} F_1(s) F_2(s) ds = \int_0^\infty f_1(u)f_2(x/u) \cdot \frac{du}{u}.
\]

Further we use theorem 2 to prove the following lemma.

Lemma 1. If \(s \) is a complex variate, \(a, b, c, d, m, n, p \) and \(\ell \) are reals then
\[I = \frac{1}{2\pi i} \int_{c-\infty}^{c+\infty} x^{-s} \frac{\Gamma(s+a) \Gamma(s+b) \Gamma(s+c) \Gamma(s+d)}{\Gamma(s+a+m) \Gamma(s+b+n) \Gamma(s+c+p) \Gamma(s+d+\ell)} \, ds \]

\[(4.4) = \frac{x^d (1-x)^{m+n+p+\ell-1}}{\Gamma(m+n+p)} \sum_{k=0}^{\infty} \frac{(d+\ell-a)_k}{k!} \sum_{r=0}^{\infty} \frac{(p)_r (b+n-c)_r}{r! (m+n+p)_r} (1-x)^{k+r} \]

\[\frac{\Gamma(m+n+p+k+r)}{\Gamma(m+n+p+\ell+k+r)} \]

\[_3F_2 \left(\begin{array}{c} a+m-b, n+p+r, m+n+p+k+r; m+n+p+r, m+n+p+\ell+k+r \end{array}; 1-x \right) \]

Proof: Let \(F_1(s) = \{ \Gamma(s+a) \Gamma(s+b) \Gamma(s+c)/\Gamma(s+a+m) \Gamma(s+b+n) \Gamma(s+c+p) \} \),
\(F_2(s) = \Gamma(s+d)/\Gamma(s+d+\ell) \), then

\[f_1(x) = x^a (1-x)^{m+n+p-1} \left[\Gamma(m+n+p) \right]^{-1} \sum_{r=0}^{\infty} \frac{(p)_r (b+n-c)_r}{r! (m+n+p)_r} (1-x)^r \]

(4.5)

\[_2F_1(a+m-b, n+p+r; m+n+p+r; 1-x) \]

\[x^d (1-x)^{\ell-1} \]

and \(f_2(x) = \frac{\Gamma(\ell)}{\Gamma(k)} \), \(0 < X < 1 \), [4].

Now by the use of Theorem 2 we get

\[I = \frac{x^d}{\Gamma(\ell) \Gamma(m+n+p)} \int_X^1 u^{a-d-\ell} (1-u)^{m+n+p-1} \sum_{r=0}^{\infty} \frac{(p)_r (b+n-c)_r}{r! (m+n+p)_r} (1-u)^{k+r} \]

(4.6)

\[(1-u)^r _2F_1(a+m-b, n+p+r; m+n+p+r; 1-u) (U-X)^{\ell-1} \, du \]

Further, put \(u = 1 - (1-X)t \) in the above and by simplifying we have
\[
I = \frac{X^d (1 - X)^{m+n+p+\ell-1}}{\Gamma(\ell) \Gamma(m+p+n)} \int_0^1 \left(\sum_{k=0}^{\infty} \frac{(d+\ell-a)_k}{k!} \sum_{r=0}^{\infty} \frac{(p)_r(b+n-c)_r}{r!(m+n+p)_r} \right) \\
\sum_{i=0}^{\infty} \frac{(a+m-b)(m+p+r)_i}{i!(m+n+p+r)_i} (1 - X)^{k+i+r} t^{m+n+p+k+i+r-1} (1-t)^{\ell-1} dt .
\]

(4.7)

Now integrate (4.7) with respect to \(t \), then the lemma follows immediately.

The moments of the Wilks' Criterion has been given [2] in the following form.

\[
E[W^{(h)}] = \left[\Gamma_p(h+\frac{1}{2}t) \Gamma_p(v)/\Gamma_p(t/2) \Gamma_p(h+v) \right] \chi_1^2(h; h+v; -\Omega) ,
\]

where \(v = \frac{1}{2}(s+t) \), and \(\Gamma_p(u) = \prod_{i=1}^{p} (u-\frac{1}{2}(i-1)) \).

By using Kummar transformation then (4.8) can be written in the following form

\[
E[W^{(h)}] = \left[\Gamma_p(h+\frac{1}{2}t) \Gamma_p(v)/\Gamma_p(t/2) \Gamma_p(h+v) \right] e^{-tr\Omega} \chi_1^2(v; h+v; \Omega) .
\]

(4.9)

Case i. Put \(p = 2 \) in (4.9), then

\[
E[W^{(h)}] = \frac{\Gamma(2v-1)}{2^v \Gamma(t-1)} e^{-tr\Omega} \sum_{k=0}^{\infty} \sum_{K} \frac{(\nu)_k \chi_k(\Omega)}{k!} . \frac{\Gamma(r) \Gamma(r+\frac{1}{2})}{\Gamma(r+\frac{3}{2}+k_1+\frac{1}{2}) \Gamma(r+\frac{3}{2}+k_2)} ,
\]

(4.10)

where \(r = h+\frac{3}{2}t-\frac{3}{2} \) and \(k_1 > k_2 > 0, k_1 + k_2 = k \),

then
\[(4.11) \quad f(W^{(2)}) = \frac{\Gamma(2v-1)}{2^s \Gamma(t-1)} \exp(\text{tr} \cdot \Omega) \sum_{k=0}^{\infty} \sum_{K} \frac{(v)_K C_k(\Omega)}{K!} \cdot \]

\[\frac{1}{2\pi i} \oint_{c-i\infty}^{c+i\infty} \left[W^{(2)} \right]^{-h-1} \left[\Gamma(r) \Gamma(r+\frac{1}{2})/\Gamma(r+\frac{1}{2}s+k_2) \Gamma(r+\frac{1}{2}s+\frac{1}{2}+k_1) \right] dr . \]

Now, by the use of the results of Consul [4], we get the density function of \(W^{(2)} \) in the following form

\[(4.12) \quad f(W^{(2)}) = \frac{\Gamma(2v-1)}{2^s \Gamma(t-1)} [W^{(2)}]^{\frac{1}{2}(t-3)} \exp(\text{tr} \cdot \Omega) \cdot \sum_{k=0}^{\infty} \sum_{K} \frac{(v)_K C_k(\Omega)}{K! \Gamma(s+k)} \]

\[(1-W^{(2)})^{s+k-1} \quad _2F_1\left(\frac{3s+k_1}{2s+k_2}, \frac{1}{2}; s+k, 1-W^{(2)}\right). \]

Putting \(\Omega = Q \), then the central case can be written in the following form

\[(4.13) \quad f(W^{(2)}) = \frac{\Gamma(2v-1)}{2^s \Gamma(t-1) \Gamma(s)} [W^{(2)}]^{\frac{1}{2}} (1-W^{(2)})^{s-1} \quad _2F_1\left(s/2, (s-1)/2; s; 1-W^{(2)}\right). \]

It may be pointed out that (4.13) can be reduced to

\[(4.14) \quad \frac{\Gamma(2v-1)}{2\Gamma(t-1) \Gamma(s)} [W^{(2)}]^{\frac{1}{2}(t-3)} (1-W^{(2)})^{s-1} \quad _2F_1\left(\frac{3s+k_1}{2s+k_2}, \frac{1}{2}; s+k, 1-W^{(2)}\right), \]

by observing that

\[(4.15) \quad _2F_1\left(s/2, (s-1)/2; s; 1-U\right) = 2^{s-1}/(1+U) \quad _{s-1} \quad ([11]). \]

Also the density function of \(W^{(2)} \) can be written in the following form

by the use of the results in [3].
\begin{equation}
\begin{aligned}
\text{Case ii.} \text{ Put } p = 3 \text{ in } (4.9), \text{ and by the use of } (4.2) \text{ the density function of } W^{(3)} \text{ can be written in the following form}

f(W^{(3)}) &= \frac{\Gamma_3(v)}{\Gamma_3(t/2)} \exp(\text{tr} - Q) \{W^{(2)}\}^{\frac{1}{2}(t-3)} \sum_{k=0}^{\infty} \sum_{k} \left(\frac{v_k}{k!} \frac{C_k(Q)}{\Gamma(s+2k)} \right) \sum_{r=0}^{s+2k-1} \binom{s+2k-1}{r} (-1)^r \left\{ W^{(2)} \right\}^{r/2}.

\int_{c-i\infty}^{c+i\infty} \frac{W^{(3)}}{\Gamma(r + \frac{3}{2}s + k)} \frac{\Gamma(r) \Gamma\left(r + \frac{1}{2}k_1\right) \Gamma\left(r + \frac{1}{2}k_2\right) \Gamma\left(r + \frac{1}{2}s + k + 1\right)}{r! \Gamma(3s/2 + k)} \,dr

\text{where } k_1 \geq k_2 \geq k_3 \geq 0, \ k_1 + k_2 + k_3 = k.

By (4.5), the density function of \(W^{(3)} \) can be written in the form

\begin{aligned}
f(W^{(3)}) &= \frac{\Gamma_3(v)}{\Gamma_3(t/2)} \exp(\text{tr} - Q) \left\{ W^{(3)} \right\}^{\frac{1}{2}(t-1)} (1 - W^{(3)})^{\frac{3}{2}s-1}.

\sum_{k=0}^{\infty} \sum_{k} \left(\frac{v_k}{k!} \frac{C_k(Q)}{\Gamma(3s/2 + k)} \right) \sum_{r=0}^{\infty} \frac{\left(\frac{1}{2}s + k_1 \right)_r \left(\frac{1}{2}(s-1) + k_2 \right)_r}{r! \Gamma\left(3s/2 + k + r\right)} (1 - W^{(3)})^{r+k}

2F_1\left(\frac{1}{2}(s-1) + k_3, s + k_1 + k_2 + r; 3s/2 + k + r; 1 - W^{(3)}\right).
\end{aligned}
\end{aligned}
\end{equation}
Case iii. Put \(p = 4 \) in (4.9) and by the use of (4.2) the density function of \(W^{(4)} \) can be written in the form

\[
(4.19) \quad f(w^{(4)}) = \frac{\Gamma_h(v)}{\Gamma_h(2t)} \exp(-\Omega) \{W^{(4)}\}_{\frac{1}{2}(t-5)} - \sum_{k=0}^{\infty} \sum_{\forall k} \frac{(v)_k \cdot C_k(\Omega)}{k!}.
\]

\[
\frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \frac{\Gamma(r) \Gamma(r+\frac{1}{2}) \Gamma(r+1) \Gamma(r+2) \{W^{(4)}\}_{r-1} \Omega}{\Gamma(r+\frac{3}{2}s+k_4) \Gamma(r+\frac{3}{2}s+1+k_3) \Gamma(r+\frac{3}{2}s+1+k_2) \Gamma(r+\frac{3}{2}s+\frac{3}{2}+k_1)} dr
\]

where \(k_4 \geq k_3 \geq k_2 \geq k_1 \geq 0 \), and \(\sum_{i=1}^{k} = k \).

By using lemma 1, the density function of \(W^{(4)} \) can be written in the form

\[
(4.20) \quad f(w^{(4)}) = \frac{\Gamma_h(v)}{\Gamma_h(2t)} \exp(-\Omega) \{w^{(4)}\}_{\frac{1}{2}(t-2)} (1 - W^{(4)})^{2s-1}
\]

\[
\sum_{k=0}^{\infty} \sum_{\forall k} \frac{(v)_k \cdot C_k(\Omega)}{k!} \sum_{j=0}^{\infty} \frac{(\frac{3}{2}(s+3)+k_1)_j}{j!} \sum_{r=0}^{\infty} \frac{(\frac{3}{2}(s+2)+k_1)_r}{r!} \Gamma(3s/2+k+j+k_1+r) \Gamma(3s/2+k+j+k_1+r)
\]

\[
\frac{1}{\Gamma(3s/2+k_1+r)} (1 - W^{(4)})^{k+j+r}
\]

\[
F_{\frac{3}{2}}(\frac{3}{2}(s-1)+k_4, s+k_2+k_3+r, 3s/2+k_1+j+r; 3s/2+k_1+r, 2s+j+k+r; 1 - W^{(4)}).
\]

It may be pointed out that the non-central distribution of Wilks' criterion could be found for more than \(p = 3 \) by extending lemma 1. However the distribution would be complicated.
References

