A Martingale Version of a Theorem of Marcinkiewicz and Zygmund*

by

Y. S. Chow

Department of Statistics
Division of Mathematical Sciences
Mimeograph Series Number 104
March, 1967

*This research was supported by the National Science Foundation under Grant GP-06073.
A Martingale Version of a Theorem of
Marcinkiewicz and Zygmund

by

Y. S. Chow

Purdue University

1. Introduction. Suppose that \((x_n, n \geq 1)\) is an orthonormal sequence of independent random variables and \((a_n, n \geq 1)\) is a sequence of real numbers. Marcinkiewicz and Zygmund [5] proved that if \(P[\sum a_k x_k \text{ converges}] = 1\), \(\sum a_k^2 < \infty\). Recently, Gundy [3] extends their theorem to martingales as follows:

Let \((d_n, n \geq 1)\) be a sequence of martingale differences with \(E(d_n^2 | \mathcal{F}_{n-1}) = 1\) a.e. and \(P(|d_n| > \lambda |\mathcal{F}_{n-1}) \geq \gamma \text{ a.e. for some positive constants } \lambda \text{ and } \gamma\), and let \((v_n, \mathcal{F}_{n-1}, n \geq 1)\) be a stochastic sequence, i.e., \(v_n\) is an \(\mathcal{F}_n\)-measurable random variable for each \(n\). Then \(\sum v_k^2 < \infty\) a.e. on the set \([\sum v_k d_k \text{ converges}].\)

Let \(x_1, x_2, \ldots\) be independent, identically distributed random variables and \((a_m, n \geq 1, n \geq 1)\) be a double sequence of real numbers such that \(\lim_n a_{m,n} = a_m\) for each \(n\). In [6], Zygmund proved that if \(\sum_{k=1}^{\infty} a_{m,k} x_k = T_m\) a.e. and \(P[\sup_m |T_m| < \infty] = 1\), then \(\sum a_k^2 < \infty\).

In this note, by stopping rules, we will extend Marcinkiewicz and Zygmund's theorem in a different direction and at the same time generalize Zygmund's theorem.

2. Main theorem. In this section, as well as in the following one, we will assume that \((d_k, \mathcal{F}_k, k \geq 1)\) is a sequence of martingale differences with \(E(d_k^2 | \mathcal{F}_{k-1}) = 1\) (\(\mathcal{F}_0 = \{\phi, \Omega\}\)), \((a_{m,n}, m \geq 1, n \geq 1)\) is a double sequence.

*This research was supported by the National Science Foundation under Grant GF-06073.
of real numbers with $\lim_{m} a_{m,n} = a_n$ for each $n \geq 1$, and that $s_{m,n} = \sum_{k=1}^{n} a_{m,k} d_k$.

Theorem 1. Let

(1) $\inf_n E|d_n| \geq \delta > 0$,

(2) $\lim_{K \to \infty} P[\sup_n |s_{m,n}| \geq K] = 0$ uniformly in m,

(3) $\sup_{m,n} |s_{m,n}| \leq M < \infty$.

Then $\sum a_k^2 < \infty$.

Proof. For $K > \max(M, 2\delta^{-1})$ and $m = 1, 2, \ldots$, put $b_n = b_n(m) = a_{m,n}$,

$s_n = s_{m,n} = \sum_{k=1}^{n} b_k x_k$, and

(4) $t = t(m) = \inf \{ n \geq 1 : s_n^2 > K^2 \}$.

For $j = 1, 2, \ldots$, put $\tau = \min(t, j)$. It is easy to see that (for example, see [1])

(5) $E S^2_\tau = E \sum_{k=1}^{\tau} b_k^2 E(d_k^2|s_{k-1}) \geq P[t=\infty] \sum_{k=1}^{\tau} b_k^2$.

On the other hand,
\[E S_t^2 = \int [t > j] S_j^2 + \int [t \leq j, b_t^2 d_t^2 \leq K^4] S_t^2 + \]
\[+ \int [t \leq j, b_t^2 d_t^2 > K^4] (S_{t-1}^2 + 2 S_{t-1} b_t d_t + b_t^2 d_t^2) \]
\[\leq (K + K^2)^2 + \int [t \leq j, b_t^2 d_t^2 > K^4] (2 S_{t-1} b_t d_t + b_t^2 d_t^2) \]
\[\leq (K + K^2)^2 + (1 + 2K^{-1}) \int [t \leq j, b_t^2 d_t^2 > K^4] b_t^2 d_t^2. \]

Hence

\[(6) \quad (K + K^2)^2 \geq \sum_{k=1}^{\infty} b_k^2 \{P[t = \infty] - (1 + 2K^{-1}) \int [t = k, b_k^2 d_k^2 > K^4] d_k^2\}.\]

Since \(E d_k^2 = 1 \) and \(K > \max (M, 2 \delta^{-1}) \), we have

\[\int [b_k^2 d_k^2 > K^4] |d_k| \leq |b_k| K^{-2} \int [b_k^2 d_k^2 > K^4] d_k^2 \leq \delta/2, \]
\[\int [b_k^2 d_k^2 > K^4] d_k^2 = 1 - \int [b_k^2 d_k^2 \leq K^4] d_k^2 \leq 1 - (E|d_k| - \int [b_k^2 d_k^2 > K^4] |d_k|)^2 \]
\[\leq 1 - \delta^2/4. \]
Choose \(K \) so large that \((1+2K^{-1})(1-\delta^2/4) \leq 1-\delta^2/8\). Then

\[
(K+K^2)^2 \geq \sum_{k=1}^{j} b_k^2 \left[P[t = \infty] - (1+2K^{-1})(1-\delta^2/4)\right]
\]

\[
\geq \sum_{k=1}^{j} b_k^2 (P[t = \infty] - 1 + \delta^2/8).
\]

The condition (2) implies that \(P[t = \infty] > 1-\delta^2/16 \) for all \(m = 1,2,\ldots \), if \(K \geq K_0 \) for some \(K_0 \). Let \(K = K_0 \). Then

\[
(K+K^2)^2 \geq (\delta^2/16) \sum_{k=1}^{j} a_k^2 = (\delta^2/16) \sum_{k=1}^{j} \sum_{m,k} a_{m,k}^2.
\]

Therefore \((K+K^2)^2 \geq (\delta^2/16) \sum_{k=1}^{\infty} a_k^2 \), which completes the proof.

3. Some corollaries.

Corollary 1. If there exist positive constants \(\lambda \) and \(\gamma \) such that

\[
P(|d_k| > \lambda \sum_{k=1}^{j} a_k^2) \geq \gamma \quad \text{a.e.,}
\]

then \(\sum_k a_k^2 < \infty \), provided that (2) is satisfied.

Proof. Obviously (9) implies (1). To prove (3), assume that there exists a subsequence \(k_m \) such that \(|a_{n_k,m}| > m \) for \(m = 1,2,\ldots \). By Lévy's martingale version (for example, see [2], p. 324) of the Borel-Cantelli lemma, (9) implies that
(10) \(\Pr[|d_{k_m}| > \lambda \text{ i.o.}] = 1 \).

Hence

\[
\Pr[|a_{n_{k_m}, k_m}| > m \lambda \text{ i.o.}] = 1,
\]

which contradicts (2). Therefore (2) and (9) imply (3).

Corollary 2. Let \(a_{m,n} = a_n \) for all \(m \geq 1 \) and \(n \geq 1 \). If

(11) \(\Pr[\sum a_k d_k \text{ converges}] = 1 \),

then \(\sum a_k^2 < \infty \), provided that (1) is satisfied.

Proof. Obviously (11) implies (2). We will prove that (1) and (11) imply that \(\lim_n a_n = 0 \). Assume that there exist \(\epsilon > 0 \) and a subsequence \(k_m \) such that \(|a_{k_m}| \geq \epsilon \) for \(m = 1, 2, \ldots \). Then (11) implies that \(\Pr[\lim_{m} d_{k_m} = 0] = 1 \). Since \(\mathbb{E} d_{k_m}^2 = 1 \) implies that \((d_k, k \geq 1) \) is uniformly integrable, we obtain \(\lim_{m} \mathbb{E}|d_{k_m}| = 0 \), which contradicts (1). Thus the proof is completed.

Corollary 2 reduces Gundy's condition (9) to condition (1), when the stochastic sequence \((v_n, v_{n-1}, \ldots, n \geq 1) \) is a sequence of constants.

Corollary 3. Let \(d_1, d_2, \ldots \) be orthonormal, independent random variables with zero median. If

(12) \(\Pr[\lim_n s_{m,n} = T_m] = 1 \),
\[
(13) \quad P\left[\sup_m |T_m| < \infty \right] = 1,
\]

and if (1) holds, then \(\sum a_k^2 < \infty \).

Proof. By Lévy's inequality (see, for example, [2], p. 106), (12) and (13) imply (2). Since \(d_n \) are independent and uniformly integrable, (1) implies (9) immediately. Therefore Corollary 3 follows from Corollary 1.

When \(P[d_n = \pm 1] = 1/2 \), Corollary 3 was proved by Zygmund [6].

4. Extension of a theorem of Kac and Steinhaus. Let \((d_k, \mathcal{F}_k, k \geq l) \) be an orthonormal sequence of martingale differences such that \((d_k^2, k \geq l) \) is uniformly integrable and let \(a_{m,n} \) and \(S_{m,n} \) be defined as in section 2.

Theorem 2. Under the conditions (2) and (3),

\[
(14) \quad \sum a_k^2 E(d_k^2 | \mathcal{F}_k-1) < \infty \quad \text{a.e.}
\]

Proof. For \(K > 0 \) and \(m,j = 1,2, \ldots \), define \(b_n, \tau \) and \(\tau \) as in section 2. Then, as before,

\[
(15) \quad ES^2_{\tau} = E \Sigma_{k=1}^{\tau} b_k^2 d_k^2 \geq \Sigma_{k=1}^{\tau} b_k^2 \int_{[t=\infty]} d_k^2 ,
\]

\[
(16) \quad ES^2_{\tau} \leq (K+K^2)^2 + (1+2K^{-1}) \Sigma_{k=1}^{\tau} b_k^2 \int_{[t=k]} d_k^2 .
\]

By (2) and the uniformly integrability of \((d_k^2, k \geq l) \), for all \(K \geq K_0 \) and
\[k \geq k_0, \text{ we have } \int_{[t=\infty]} d_k^2 > 1/2 \text{ and } \int_{[t=k]} d_k^2 < 1/4. \text{ Hence, as } j \to \infty,\]

\[\sum_{k=k_0}^{j} b_k^2 = O(1). \text{ Therefore} \]

\[O(1) = ES_T^2 = E \sum_{k=1}^{T} b_k^2 E(d_k^2|\mathcal{F}_{k-1}) \geq \int_{[t=\infty]} \sum_{k=1}^{j} b_k^2 E(d_k^2|\mathcal{F}_{k-1}). \]

Hence for all \(K \geq K_0, \)

\[\int_{[t=\infty]} \sum_{k=1}^{\infty} a_k^2 E(d_k^2|\mathcal{F}_{k-1}) < \infty. \]

Since (2) implies that \(\lim_{K \to \infty} P[t=\infty] = 1, (14) \) follows immediately.

When \(d_1, d_2, \ldots, \) are independent random variables and \(a_{m,n} = a_n \) for \(m, n = 1, 2, \ldots, \) Theorem 2 was proved by Kac and Steinhaus [4].
References

