On Optimal Stopping Rules for \(s_n/n \)

by

Y.S. Chow and Herbert Robbins

Purdue University and Columbia University

Department of Statistics
Division of Mathematical Sciences
Purdue University
Mimeograph Series No. 16
May, 1964
On Optimal Stopping Rules for s_n/n

by

Y.S. Chow and Herbert Robbins

Purdue University and Columbia University

1. Introduction. Let

(1) x_1, x_2, \ldots

be a sequence of independent, identically distributed random variables on a probability space (Ω, \mathcal{F}, P) with

(2) $P(x_1 = 1) = P(x_1 = -1) = 1/2,$

and let $s_n = x_1 + \ldots + x_n$. Let $i = 0, \pm 1, \ldots$ and $j = 0, 1, \ldots$ be two fixed integers. Assume that we observe the sequence (1) term by term and can decide to stop at any point; if we stop with x_n we receive the reward $(i + s_n)/(j + n)$. What stopping rule will maximize our expected reward?

Formally, a stopping rule t of (1) is any positive integer valued random variable such that the event $t = n$ is in \mathcal{F}_n ($n \geq 1$) where \mathcal{F}_n is the Borel field generated by x_1, \ldots, x_n. Let T denote the class of all stopping rules; for any t in T, s_t is a well-defined random variable, and we set

(3) $v_j(i|t) = E\left(\frac{i + s_t}{j + t}\right)$, $v_j(i) = \sup_{t \in T} v_j(i|t)$.

It is by no means obvious that for given i and j there exists a stopping rule $\tau_j(i)$ in T such that

(4) $v_j(i|\tau_j(i)) = v_j(i) = \max_{t \in T} v_j(i|t)$;
such a stopping rule of (1) will be called optimal for the reward sequence

\[\frac{i+s_1}{j+1}, \frac{i+s_2}{j+2}, \ldots. \]

Theorem 1 below asserts that for every \(i = 0, 1, \ldots \) and \(j = 0, 1, \ldots \) there exists an optimal stopping rule \(\tau_j(i) \) for the reward sequence (5).

We remark that for any \(t \) in \(T \) and any \(i = 0, 1, \ldots \) and \(j = 0, 1, \ldots \) the random variable

\[\tau' = \begin{cases} t & \text{if } i+s_t \geq 1, \\ \text{first } n > t \text{ such that } i+s_n = 1 & \text{if } i+s_t < 0 \end{cases} \]

is in \(T \) and

\[\tau'_t \geq 1, \quad 0 < \mathbb{E}\left(\frac{i+s_{\tau'_t}}{j+t}\right) \geq \mathbb{E}\left(\frac{i+s_t}{j+t}\right). \]

It follows that

\[\tau_j(i) = \sup_{\tau \in T} \mathbb{E}\left[\frac{(i+s_{\tau})^+}{j+t}\right], \]

where by definition \(a^+ = \max(0, a) \).

2. Reduction of the problem to the study of bounded stopping rules. For any fixed \(N = 1, 2, \ldots \) let \(T_N \) denote the class of all \(t \) in \(T \) such \(t \leq N \). By the usual backward induction (see e.g. [1]) it may be shown that in \(T_N \) there exists a minimal optimal stopping rule of (1) for the reward sequence

\[\tau'_t \geq 1, \quad 0 < \mathbb{E}\left(\frac{(i+s_1)^+}{j+1}\right), \quad \mathbb{E}\left(\frac{(i+s_2)^+}{j+2}\right), \ldots; \]

that is, an element \(\tau_j^N(i) \) of \(T_N \) such that, setting
\begin{align}
\tag{2} w_j(i|t) &= E \left[\frac{(i+s_t)^+}{j+t} \right],
\end{align}

we have

\begin{align}
\tag{3} w_j(i|\tau_N^j(i)) &= \max_{t \in T_N} w_j(i|t),
\end{align}

and such that if \(\tilde{t} \) is any element of \(T_N \) for which

\begin{align}
\tag{4} w_j(i|\tilde{t}) &= \max_{t \in T_N} w_j(i|t),
\end{align}

then \(\tau_N^j(i) \leq \tilde{t} \). The sequence \(\tau_N^j(i), \tau_N^{j,2}(i), \ldots \) is such that as \(N \to \infty \),

\begin{align}
1 \leq \tau_N^j(i) \leq \tau_N^{j,2}(i) \leq \ldots \quad \rightarrow \quad \tau^{*}_N(i) \leq \infty,
\end{align}

\begin{align}
\tag{5} 0 \leq w_j(i|\tau_N^j(i)) \leq w_j(i|\tau_N^{j,2}(i)) \leq \ldots \quad \rightarrow \quad \sup_{t \in T} w_j(i|t) = v_j(i),
\end{align}

the last equality following from (1.8). It is shown in [1] that there exists an optimal element in \(T \) for the reward sequence (1.5) if and only if

\begin{align}
\tag{6} \tau^{*}_N(i) &= \lim_{N \to \infty} \tau_N^j(i)
\end{align}

is in \(T \) that is, if and only if

\begin{align}
\tag{7} P(\tau^{*}_N(i) < \infty) &= 1
\end{align}

and when (7) holds \(\tau^{*}_N(i) \) is the minimal element of \(T \) which satisfies (1.4).

The remainder of the present paper is devoted to proving that (7) holds.
3. The constants \(a_n^N(i) \) and \(a_n(i) \). In order to study the nature of the optimal bounded stopping rules \(\zeta_j^N(i) \) of Section 2 we proceed as follows. Define for \(n = 1, 2, \ldots \) and \(i = 0, \pm 1, \ldots \) the constants

\[
b_N^N(i) = \frac{i + \frac{}{N}}{N},
\]

(1)

\[
b_N^N(i) = \max \left(\frac{i + b_N^{N+1}(i+1) + b_N^{N-1}(i-1)}{2} \right) \quad (n = 1, 2, \ldots, N-1).
\]

Then

(2)

\[
b_n^N(i) = \max \left(\frac{i + \sup_{t \in T_{N-n}} E\left[\frac{(i+s_t)^+}{n+t} \right]}{n} \right) \quad (n = 1, 2, \ldots, N-1),
\]

and

(3)

\[
\zeta_j^N(i) = \text{first } n \geq 1 \text{ such that } b_j^{N+1}(i+s_n) = \frac{(i+s_n)^+}{j+N},
\]

In view of (2) and (3) it is convenient to introduce the constants \(a_n^N(i) \) defined for \(N = 1, 2, \ldots; i = 0, \pm 1, \ldots; n = 1, 2, \ldots, N \) by

(4)

\[
a_n^N(i) = b_n^N(i) - \frac{i + \frac{}{N}}{N};
\]

then (3) becomes

(5)

\[
\zeta_j^N(i) = \text{first } n \geq 1 \text{ such that } a_j^{N+1}(i+s_n) = 0.
\]

From (5) and (1) it follows that the constants \(a_n^N(i) \) satisfy the recursion relations
\[a_n^N(1) = 0 \quad (\text{all } i), \]

\[a_n^N(i) = \left[\frac{a_{n+1}^N(i+1) + a_{n+1}^N(i-1)}{2} + \frac{(i+1)^+ + (i-1)^+}{2(n+1)} - \frac{i^+}{n} \right] \quad (n = 1, 2, \ldots, N-1) \]

from which they may be successively computed for \(n = N, N-1, \ldots, 1 \).

Moreover, from (2) and (4) we have

\[a_n^N(i) = \sup_{t \in T_{N-n}} E^+ \left[\frac{(i+s_t)^+}{n+t} - \frac{i^+}{n} \right] \quad (n = 1, 2, \ldots, N-1) \]

and

\[\sup_{t \in T_N} E \left[\frac{(i+s_t)^+}{j+t} \right] = \frac{1}{2} \left[a_{j+1}^N(i+1) + a_{j+1}^N(i-1) + \frac{(i+1)^+ + (i-1)^+}{j+1} \right]. \]

For any \(i = 0, 1, \ldots \) and \(n = 1, 2, \ldots \) we have

\[0 = a_n^N(i) \leq a_n^{n+1}(i) \leq \ldots, \]

and letting \(N \to \infty \) we obtain constants

\[a_n(i) = \lim_{N \to \infty} a_n^N(i) \]

such that

\[a_n^N(i) \uparrow a_n(i) = \sup_{t \in T} E^+ \left[\frac{(i+s_t)^+}{n+t} - \frac{i^+}{n} \right], \]

while for \(j = 0, 1, \ldots \)

\[\sup_{t \in T} E \left[\frac{(i+s_t)^+}{j+t} \right] = \sup_{t \in T} E \left(\frac{i+s_t}{j+t} \right) = v_j(i) = \frac{1}{2} \left[\frac{(i+1)^+ + (i-1)^+}{j+1} + a_{j+1}(i+1) + a_{j+1}(i-1) \right]; \]

moreover \(\zeta_j^N(i) \uparrow \zeta_j^*(i) \) where
Thus (2.7) holds if and only if

\[
(13) \quad P(a_{j+n(i+s_n)} = 0 \text{ for some } n \geq 1) = 1.
\]

In the next section we shall prove (lemma 4) that there exists a positive integer \(n_0 \) such that \(n \geq n_0 \) and \(i > 13 \sqrt{n} \) together imply that \(a_n(i) = 0 \). Hence

\[
(14) \quad P(a_{j+n(i+s_n)} = 0 \text{ for some } n \geq 1) \geq P(s_n > 13 \sqrt{n-1} \text{ for some } n \geq n_0).
\]

The law of the iterated logarithm implies that the latter probability is 1 and this establishes (13); hence \(\mathcal{I}_j^*(i) \) defined by (12) is in \(T \) and is optimal for the reward sequence (1.5). We thus have the following

Theorem 1. For the sequence (1.1) with the distribution (1.2) and the reward sequence (1.5) there exists an optimal stopping rule \(\mathcal{I}_j^*(i) \) defined by (12); the expected reward in using \(\mathcal{I}_j^*(i) \) is

\[
(15) \quad v_j(i) = \max_{t \in T} E \left(\frac{i+t}{j+t} \right) = \frac{1}{2} \left[\frac{(i+1)^+ + (i-1)^+}{j+1} + a_{j+1}(i+1) + a_{j-1}(i-1) \right]
\]

\((i = 0, \pm 1, \ldots ; j = 0, 1, \ldots)\). The constants \(a_n(i) = \lim_{n \to \infty} a_n^N(i) \) which occur in (12) and (15) are determined by (7).
4. **Lemmas.**

Lemma 1. \(a_n(0) \leq \frac{1}{\sqrt{n}} \) \((n = 1, 2, \ldots) \).

Proof. From (3.7) we have

\[
\begin{align*}
\left(a_n^N(i+1) + a_n^N(i-1) \right) \frac{n+1}{2} + \frac{1}{2(n+1)} \quad (i \leq -1), \\
\left(a_n^N(i+1) + a_n^N(i-1) \right) \frac{n+1}{2} - \frac{i}{n(n+1)} \quad (i = 0), \\
\left(a_n^N(i+1) + a_n^N(i-1) \right) \frac{n+1}{2} + \frac{a_n^N(i+1) + a_n^N(i-1)}{2} \quad (i \geq 1)
\end{align*}
\]

Hence

\[
a_n^N(0) = \frac{a_n^N(1) + a_n^N(-1)}{2} + \frac{1}{2(n+1)} \leq \frac{1}{2} \left[a_n^N(2) + 2a_n^N(0) + a_n^N(-2) \right] + \frac{1}{2(n+1)} \leq \frac{1}{2} \left[a_n^N(3) + 3a_n^N(1) + 3a_n^N(-1) + a_n^N(-3) \right] + \frac{1}{2(n+1)} + \frac{(2)}{2^3(n+1)}
\]

\[
\leq \cdots \leq \sum_{k=0}^{\infty} \frac{(2k)}{2^{2k+1}(n+2k+1)}
\]

since \(a_n^N(i) = 0 \). By Stirling's formula

\[
\left(\begin{array}{c} 2k \\ k \end{array} \right) < \frac{2^{2k}}{\sqrt{2k}}
\]

and

\[
\left(\begin{array}{c} 2k \\ k \end{array} \right) < \frac{2^{2k}}{\sqrt{2k}}
\]
\[\sum_{k=n}^{\infty} \frac{1}{2\sqrt{k\pi} (n+2k+1)} \leq \frac{1}{2\sqrt{\pi}} \int_{r-\frac{1}{2}}^{\infty} \frac{x}{\sqrt{x} (n+2x+1)} dx = \frac{1}{\sqrt{2\pi(n+1)}} \left(\frac{\pi}{2} - \tan^{-1} \sqrt{\frac{2r-1}{n+1}} \right). \]

Hence

\[a_n(0) = \lim_{N \to \infty} a_n^N(0) \leq \sum_{k=0}^{\infty} \frac{2^k}{2k+1(n+2k+1)} + \frac{1}{\sqrt{2\pi(n+1)}} \left(\frac{\pi}{2} - \tan^{-1} \sqrt{\frac{2r-1}{n+1}} \right). \]

For \(r = 1 \) this gives

\[a_n(0) \leq \frac{1}{2(n+1)} + \frac{1}{\sqrt{2n}} \leq \frac{1}{\sqrt{n}}. \]

Lemma 2. For \(n = 1, 2, \ldots \)

\[0 < a_n(-2) \leq a_n(-1) \leq a_n(0) \geq a_n(1) \geq a_n(2) \geq \ldots \geq 0, \]

\[a_{n+1}(i) \geq \frac{n+1}{n+2} a_n(i) \quad \text{(all \(i \))}. \]

Proof. For \(i \leq 0 \) we have from (3.10) and (1.7)

\[a_n(i) = \sup_{t \in T} E\left[\frac{(i+s_i)^+}{n+t} \right] > 0; \]

Hence

\[a_n(i) \geq \sup_{t \in T} E\left[\frac{(i-1+s_i)^+}{n+t} \right] = a_n(i-1). \]

For \(i \geq 0 \) we have
\begin{equation}
\begin{align*}
(11) \quad a_n(i) &= \sup_{t \in T} E \left[\frac{i+s_t}{n+t} - \frac{i}{n} \right] = \sup_{t \in T} E \left[\frac{ns_t - it}{n(n+t)} \right] \\
&\geq \sup_{t \in T} E \left[\frac{ns_t - (i+l)t}{n(n+t)} \right] = a_n(i+l) \geq 0.
\end{align*}
\end{equation}

(12) \quad \frac{n+2}{n+1} a_{n+1}^N(i) \geq a_n^N(i) \quad (\text{all } i);

(3) will follow from (12) on letting \(N \to \infty \). (12) is true trivially for \(n = N \)

since \(a_N^N(1) = 0 \). Assume now that (12) holds; for \(i \neq 0 \) we have by (1),

\begin{equation}
\begin{align*}
(13) \quad \frac{n+1}{n} a_n^{N+1}(i) &= \frac{n+1}{n} \left[\frac{a_n^{N+1}(i+1) + a_n^{N+1}(i-1)}{2} - \frac{i^+}{n(n+1)} \right] \\
&\geq \frac{n+1}{n} \left[\frac{a_n^N(i+1) + a_n^N(i-1)}{2} - \frac{i^+}{n(n+1)} \right] \\
&\geq \left[\frac{a_n^N(i+1) + a_n^N(i-1)}{2} - \frac{i^+}{(n-1)n} \right] = a_n^{N-1}(1).
\end{align*}
\end{equation}

The case \(i = 0 \) is treated similarly. Thus (12) holds with \(n \) replaced by \(n-1 \),

and hence (12) holds for all \(n=N, N-1, \ldots, 2, 1 \).

\textbf{Lemma 3}. Let \(i \) and \(j \) be non-negative integers such that \(a_n(i+j) > 0 \).

Let \(\zeta_0 \) denote the first integer \(m \geq 1 \) such that \(s_m = j+1 \). Then for any
given \(t \) in \(T \) there exists a \(\zeta \) in \(T \) such that

\begin{equation}
\begin{align*}
(14) \quad \zeta \geq t, \quad \zeta \geq \zeta_0, \quad E\left(\frac{i+s_{\zeta}}{n+\zeta} \right) \geq E\left(\frac{i+s_t}{n+t} \right).
\end{align*}
\end{equation}
Proof. We have from (3.10) and (3.11) for $i \geq 0$,

$$a_n(i) = \left[\sup_{t \in T} \mathbb{E} \left(\frac{i + s_t}{n+t} - \frac{i}{n} \right)^+ \right].$$

By (7) and (8) the inequality $a_n(i+j) > 0$ implies that for every positive integer m and every integer $k \leq j$,

$$a_{n+m}(i+k) > 0,$$

and hence that there exists a stopping rule $t_{m,k}$ of the sequence x_{m+1}, x_{m+2}, \ldots such that

$$\mathbb{E}\left(\frac{i + k + x_{m+1} + x_{m+2} + \ldots + x_{m+t_{m,k}}}{n+m+t_{m,k}} \right) > \frac{i+k}{n+m}.$$

Let A be the event $\{ t < \mathcal{Z}_0 \}$, and define

$$t_1(\omega) = \begin{cases} t(\omega) & \text{if } \omega \notin A, \\ t(\omega) + t_{m,k}(\omega) & \text{if } \omega \in A, \quad t(\omega) = m, \quad s_t(\omega) = k \\ (m = 1, 2, \ldots; k \leq j). \end{cases}$$

Then t_1 is a stopping rule, $t_1 \geq t$, and $t_1(\omega) \geq t(\omega) + 1$ if $\omega \in A$. Moreover

$$\mathbb{E}\left(\frac{i + s_{t_1}}{n+t_1} \right) = \int_{\Omega-A} \frac{i+s_t}{n+t} \, dP + \sum_{m,k} \int_{t=m, s_t=k, t < \mathcal{Z}_0} \frac{i+s_{t+t_{m,k}}}{n+t+t_{m,k}} \, dP$$

$$\geq \int_{\Omega-A} \frac{i+s_t}{n+t} \, dP + \sum_{m,k} \int_{t=m, s_t=k, t < \mathcal{Z}_0} \frac{i+k}{n+m} \, dP = \mathbb{E}\left(\frac{i+s_t}{n+t} \right).$$
Set $t_0 = t$ and $A_0 = A$. By a repetition of the preceding argument we may define a sequence of stopping rules t_l,\

(20) $t = t_0 \leq t_1 \leq t_2 \leq \cdots$ \\

and events $A_l = \{ t_l < \omega_0 \}$ with\

(21) $A = A_0 \supset A_1 \supset A_2 \supset \cdots$ \\

such that\

(22) $t_{l+1}(\omega) = \begin{cases} t_l(\omega) & \text{if } \omega \not\in A_l, \\ t_l(\omega) + 1 & \text{if } \omega \in A_l \end{cases}$ \\

Set\

(23) $\omega = \lim_{l \to \infty} \omega_l$ \\

then $\{ \omega = \infty \} = \{ \omega_0 = \infty \}$, so that ω is in T, and $\omega \geq \omega_0$, $\omega \geq t$.

By the Lebesgue dominated convergence theorem,

(24) $E \left(\frac{i + s_\omega}{n + \omega} \right) = \lim_{l \to \infty} E \left(\frac{i + s_{\omega_l}}{n + \omega_l} \right) \geq E \left(\frac{i + s_t}{n + t} \right)$,

and the proof is complete.

Lemma 4. There exists a positive integer n_o such that $n \geq n_o$ and $i > 13 \sqrt{n}$ imply that $a_n(1) = 0$.

Proof. Let i be a positive integer such that $s_n(2i) > 0$, and let ω denote the first integer $m \geq 1$ such that $s_m = i$. Then $[2; \text{p. 87}]$ as $i \to \infty$,

(25) $P(\omega \geq i^2) \to \sqrt{ \frac{2}{\pi} } \int_0^1 e^{- \frac{u^2}{2}} du > \sqrt{ \frac{2}{\pi e} } > \frac{1}{3}$.
Hence there exists \(i_o > 0 \) such that

\[
E \left(\frac{\xi}{1^2 + \zeta} \right) > \frac{1}{6} \quad (i \geq i_o),
\]

and therefore

\[
E \left(\frac{\xi}{n + \zeta} \right) > \frac{1}{6} \quad (i \geq i_o, 1 \leq n \leq i^2).
\]

By (7), \(a_n(i) > 0 \), and hence by Lemma 3 (putting \(j = 1 \)) there exists a \(t \in T \) such that \(t \geq \zeta \) and

\[
E \left(\frac{i + t}{n + t} \right) > \frac{i}{n}.
\]

Hence by Lemma 1 and (11),

\[
\frac{1}{\sqrt{n}} \geq a_n(0) \geq E \left(\frac{s_t}{n + t} \right) = E \left(\frac{i + t}{n + t} \right) > \frac{i}{n} - E \left(\frac{i}{n + t} \right) = \frac{i}{n} E \left(\frac{t}{n + t} \right)
\]

\[
> \frac{i}{n} E \left(\frac{\xi}{n + \zeta} \right) > \frac{i}{6n} \quad (i \geq i_o, 1 \leq n \leq i^2).
\]

Assume now that \(a_n(j) > 0 \) for some \(j > 13 \sqrt{n} \) and \(n > n_o = i_o^2 \).

Then by (7),

\[
a_n \left(2 \left[\frac{i}{2} \right] \right) > 0, \quad \left[\frac{i}{2} \right]^2 \geq n \geq 1, \quad \left[\frac{i}{2} \right] \geq i_o.
\]

Hence, setting \(i = \left[\frac{i}{2} \right] \) in (29),

\[
\left[\frac{i}{2} \right] < 6 \sqrt{n},
\]

and therefore

\[
j < 12 \sqrt{n} + 1 \leq 13 \sqrt{n},
\]
a contradiction. The proof of Lemma 4, and hence of Theorem 1, is complete.

5. Remarks.

1. If we define for \(n = 1, 2, \ldots \)

\[(1) \quad k_n = \text{smallest integer } k \text{ such that } a_n(k) = 0,\]

then from Lemma 2 it follows that

\[(2) \quad 0 < k_1 \leq k_2 \leq \ldots \]

and that

\[(3) \quad a_n(1) = 0 \text{ if and only if } i \geq k_n.\]

It is easily seen that

\[\mathcal{Z}_j^*(i) = \text{first } n \geq 1 \text{ such that } a_{j+n}(i+s_n) = 0\]

\[(4) \quad = \text{first } n \geq 1 \text{ such that } i+s_n = k_{j+n}.\]

Hence the stopping rules \(\mathcal{Z}_j^*(i) \) are completely defined by the sequence of positive integers \(k_n \). It is difficult to obtain an explicit formula for \(k_n \); by Lemma 4 we know that \(k_n = 0 (\sqrt{n}) \) as \(n \to \infty \). We note also that

\[(5) \quad \lim_{n \to \infty} k_n = \infty.\]

Otherwise we would have \(k_n < M \) for some finite positive integer \(M \) and every \(n = 1, 2, \ldots \). If so, let \(t = \text{first } m \geq 1 \text{ such that } s_m = M. \) Then since \(a_n(M) = 0, \)

\[(6) \quad E \left(\frac{M+t}{n+t} \right) \leq \frac{M}{n},\]
and hence

\[E \left(\frac{2M}{n+c} \right) \leq \frac{M}{n}, \quad E \left(\frac{n}{n+c} \right) \leq \frac{1}{2}. \]

But as \(n \to \infty \),

\[E \left(\frac{n}{n+c} \right) \to 1, \]

which contradicts (7).

2. We have from (3.15),

\[v_0(0) = \max_{t \in T} E \left(\frac{s_t^2}{t} \right) = \frac{1}{2} \left[1 + a_1(1) + a_1(-1) \right]. \]

Now by (4.15), since \(s_t \leq t \),

\[a_1(1) = \left[\sup_{t \in T} E \left(\frac{1+t}{1+t} \right) - 1 \right] = 0, \]

and by (4.6) and (4.7),

\[a_1(-1) \leq a_1(0) \leq \frac{1}{4} + \frac{1}{\sqrt{2}} < .96. \]

Hence

\[v_0(0) < .98. \]

This inequality is very crude and can be greatly improved by a more detailed analysis of the term \(a_1(-1) \), but it is interesting to note that even (12) is not easy to prove directly from the definition of \(v_0(0) \).
3. In this connection let us define

\[(13) \quad v_N = \max_{t \in T_N} E \left[\frac{s_t^+}{t} \right] ; \]

then as \(N \to \infty\)

\[(14) \quad v_N \uparrow v_0(0) = \max_{t \in T} \frac{s_t^+}{t} = \max_{t \in T} \frac{s_t}{t}. \]

Now for any fixed \(N = 1, 2, \ldots\) the value \(v_N\) can be computed by recursion; by (3.4) and (3.2),

\[(15) \quad v_N = \frac{1}{2} \left[b_N^N(1) + b_N^N(-1) \right] = \frac{1}{2} \left[1 + b_N^N(-1) \right] , \]

where by (3.1)

\[(16) \quad b_N^N(i) = \frac{i^+}{N} , \]

\[b_n^N(i) = \max \left(\frac{i^+}{n}, \frac{b_n^{n+1}(i+1) + b_n^{n+1}(i-1)}{2} \right) \quad (n = 1, 2, \ldots, N-1). \]

The computation of the \(b_n^N(i)\) is easily programmed for a high speed computer; the following results were kindly supplied to us by R. Bellman and S. Dreyfus:

\[v_{100} = .5815 \]
\[v_{200} = .5835 \]
\[v_{500} = .5845 \]
\[v_{1000} = .5850 \]

4. It would be interesting to see whether the existence of an optimal stopping rule for \(s_n/n\) can be proved for sequences \(x_1, x_2, \ldots\) with a more general distribution than (1.2). We have some preliminary extensions of Theorem 1 to more general cases but no definite results as yet.
References

[2]. W. Feller: An introduction to probability theory and its applications,