A Martingale Convergence Theorem of Ward's Type

by

Y. S. Chow

Purdue University

Department of Statistics
Division of Mathematical Sciences
Mimeograph Series Number 12
March 1964
A MARTINGALE CONVERGENCE THEOREM OF WARD'S TYPE

BY

Y. S. Chow

Introduction. The martingale convergence theorems were first utilized by Doob [2; p. 343] in giving a new proof of the Lebesgue differentiation theorem of functions of bounded variation on a real line. Later Chow [1] gave a proof of the Lebesgue differentiation theorem of interval functions of bounded variation by applying convergence theorems of partially ordered martingales. In 1959, Ward's differentiation theorem [3; p. 137, p. 141], among other things, have been generalized by Rutowitz [7] to cell functions by introducing the concept of the p-bordering property. In this paper, by following Doob's approach in [3], we are able to obtain a convergence theorem [Theorem I], which includes some martingale convergence theorems and extends a theorem of Rutowitz [7; Theorem II] to non-atomic basis. Theorem IV puts the above cited Ward's theorem into Martingale setting.

1. Definitions and notation.

Suppose that \((\Omega, \mathcal{F}, P)\) is a complete measure space with \(P(\Omega) = 1\). A stochastic basis \((\mathcal{F}_\delta, \Delta)\) is a net, where \(\Delta\) is a directed set, \(\mathcal{F}_\delta\) is a sub-\(\sigma\)-algebra of \(\mathcal{F}\) for each \(\delta \in \Delta\), and \(\mathcal{F}_\delta \subseteq \mathcal{F}_{\delta'}\), if \(\delta < \delta'\). A stochastic process \((x_\delta, \mathcal{F}_\delta, \Delta)\) is a triple, where \((\mathcal{F}_\delta, \Delta)\) is a stochastic basis and \(x_\delta\) is an \(\mathcal{F}_\delta\)-measurable function. \(P^*\) is the outer measure induced by \(P\) and the integral \(\int_A x\) will mean \(\int_A x dP\). For a set \(A\), the \(\mathcal{F}_\delta\)-cover of \(A\) is denoted by \(A_\delta^*\) and the \(\mathcal{F}\)-cover by \(A^*\). \(A-B\) will be the proper difference of sets \(A\) and \(B\), and \(I(A)\) the indicator (or characteristic) function of the set \(A\). The function \(x_\delta\) is sometimes written as \(x(\delta)\). ||x||_q is the \(L_q\)-norm of \(x\). For sets \(A\) and \(B\), \(A \in \mathcal{F}_\delta B\), if \(A \subseteq B\) and \(A \in \mathcal{F}_\delta\).

Definition 1. A stochastic basis is said to satisfy the Vitali condition
V_q for $1 \leq q \leq \infty$, if for every $\epsilon > 0$, every set A and every net (K_δ, Δ) of \mathcal{F}_δ-sets such that $\limsup_{\Delta} K_\delta \not\subset A$ a.e., there exist $\delta_i > \delta$ for any given δ, and \mathcal{F}_δ-sets $L_1 \subset K_{\delta_i}$ so that

$$P^*(A-B) < \epsilon$$

where $B = \bigcup_{\delta_i} L_1$, and that

$$\left\{ \sum_{\delta_i} \mathcal{I}(L_1) - \mathcal{I}(\phi) \right\}_q < \epsilon.$$

The conditions V_1 and V_∞ are called respectively the weak and the strong Vitali conditions. If Δ is a countable linearly ordered set, then any stochastic basis $(\mathcal{F}_\delta, \Delta)$ satisfies V_∞. The ordinary differentiation basis satisfies the strong Vitali condition V_∞ (See [1] or [4; p.209], in [1] V_∞ has been denoted by V_0), and the strong differentiation basis has the property V_1 (see [4; p.210]).

A stochastic basis is said to satisfy the Vitali condition V_q^*, if it satisfies the conditions of Definition 1, replacing \limsup by ess lim sup and A by A^*. Both definitions of V_q and V_q^* are due to Krickeberg ([5], [6]). He denotes V_q and V_q^* by V_q^* and V_q^*.

Definition 2. Let $b > 0$, $1 \leq q \leq \infty$ and $V = \{ \sup |x(\delta)| < b \}$.

$(x_\delta, \mathcal{F}_\delta, \Delta)$ is said to satisfy the condition $(A,b)_q$, if for every $\delta_0 \in \Delta$

there exists $0 < c < \infty$ such that for any given $\delta_0, \delta_1, \ldots, \delta_m$ in $\Delta(\delta > \delta_0)$

and $L_i \in V_{\delta_i}, \mathcal{F}_{\delta_i}$, there are $\eta \in (\delta_i, i = 1, 2, \ldots, m)$ and \mathcal{F}_{η}-measurable functions $y' = y'(\eta), y'' = y''(\eta)$ with $||y'||_q \leq c, ||y''||_q \leq c$ so that there exist $n_i, 1 = n_i, \eta_1, \ldots, \eta_{k_i} = \eta$ and \mathcal{F}_{η_i}-measurable functions $x_i = x_i(\eta), x_i'' = x_i''(\eta)$ satisfying for $i = 1, 2, \ldots, n$ and $j = n + 1, \ldots, m$

$$x_i''' = x_i(\eta) = x_i''' \text{ in } V, \ x_i' \leq \text{inf } L_1, \ x_i'' \geq c \text{ in } L_j,$$

$$\int_{L_1} x_i(\delta_1) \leq \int_{L_1} y' + \int_{L_1 - A_1} x_i'',$$

$$\int_{L_1} x_i(\delta_1) \leq \int_{L_1 + A_1} y'' - \int_{L_1 - A_1} x_i''.$$
\[
\sum_{i} x^{(i)} = \sum_{j} y^{(j)} + \sum_{j} x^{(j)}
\]

where \(A_{i} = \{k \leq k_{i} \mid x_{i,k} < b\} \) and \(B_{j} = \{k \leq k_{j} \mid x_{j,k} \leq -b\} \).

Definition 3. A stochastic process \((\mathbf{x}_{0}, \mathcal{F}_{0}, \Delta)\) is a martingale, if \((\mathcal{F}_{0}, \Delta)\) is a stochastic basis, \(x_{0}\) is integrable, and if for \(n \leq \mathbf{3}\)

\[x(n, \mathcal{F}_{0}) = x_{0}, \text{ a.e., where } x(n, \mathcal{F}_{0}) = \text{Radon-Nikodym derivative of the integral of } x_{0} \text{ relative to } \mathcal{F}_{0}. \]

If \((\mathbf{x}_{0}, \mathcal{F}_{0}, \Delta)\) is a martingale and \(\sup_{\Delta} ||x_{0}||_{q} < k < \infty\), then the condition \((A; b)_{q}\) is satisfied for every \(b > 0\), by taking \(\eta \geq \delta_{i}\)

\(i = 1, 2, \ldots, m\), \(y' = y' \cdot x(\eta), \eta_{1,2} = \eta, x_{i} = \min \{x(\eta), b\}, x_{i}' = \max \{x(\eta), -b\}, \) and \(c = \max \{b, k\}\).

2. Martingale convergence theorems

Theorem 1. If \(1 \leq q < \infty, p^{-1} + q^{-1} = 1\) and \((\mathbf{x}_{0}, \mathcal{F}_{0}, \Delta)\) is a stochastic process satisfying the Vitali condition \(V_{q}\), then \(x_{0}\) converges a.e. where \(\sup_{\Delta} |x_{0}| < b\), provided \((A; b)_{p}\) is satisfied for some \(b > 0\).

Proof. Suppose that it is false and \(\delta_{0} \in \Delta\). Then there exist two real numbers \(a < d\) and a set \(V\) with \(P^{*}(V) > 0\) such that

\[
\sup_{\Delta} |x_{0}| < b, \limsup_{\Delta} x_{0} > d > a > \liminf_{\Delta} x_{0}
\]
on \(V\). Put

\[
K_{0} = V^{*}(x_{0} > d).
\]

Then \(\limsup K_{0} \supset V\). By the Vitali condition \(V_{q}\), for \(1 > \varepsilon > 0\) there exist \(\delta_{i} > \delta_{0}\) and \(L_{i} \in K_{0} \mathcal{F}_{0}, i = 1, \ldots, n\), such that

\[
\mathbb{P}^{*}(I - A) < \varepsilon, \left|\left|\sum_{1}^{n} I(L_{i}) - I(A)\right|\right|_{q} < \varepsilon,
\]

where \(A = \bigcup_{1}^{n} L_{i}\). Put
\[(2.4) \quad H_0 = AV^*_0 \quad (x_0 < \varepsilon). \]

By \(V_q \) again, for \(\delta_0' > \delta_1' \geq 1, \ldots, n \), there exist \(\delta_j > \delta_0' \) and \(L_j \in H_{\delta_j} \) for \(j = n+1, \ldots, m \), such that

\[(2.5) \quad P^*(AV - B) < \varepsilon, \quad \bigg| \sum_{m+1}^n P(L_j) - I(E) \bigg|_q < \varepsilon, \]

where \(B = \bigcup_{n+1}^m L_j \). By the condition \((A,b)_p \), there exist \(c, \eta, y', y'' \), \(x'_i \)

\(\eta_i, k \quad (i = 1, \ldots, n; \quad k = 1, \ldots, k_i) \) satisfying the conditions in \((A,b)_p \). For each \(i = 1, \ldots, n \), let \(s_i \) be the first \(k \leq k_i \) such that \(x(s_i, k) \geq b \) if there is one, and \(s_i = \infty \) otherwise. Then for \(i = 1, \ldots, n \)

\[(2.6) \quad \int_{L_i} x^{(s_i)} \leq \int_{L_i} (s_i < \infty) y' + \int_{L_i} (s_i = \infty) x'_i, \]

\[\quad \sum_{i=1}^n P(L_i) \leq \sum_{i=1}^n \int_{L_i} (s_i < \infty) y' + \sum_{i=1}^n \int_{L_i} (s_i = \infty) x'_i. \]

Choose \(\delta_0 \) so large such that \(P(V^*_0 - V^*_\delta) < \varepsilon \) for \(\delta > \delta_0 \). Then

\[\sum_{i=1}^n \int_{L_i} (s_i = \infty) x'_i \leq c \sum_{i=1}^n P(L_i (s_i = \infty) - V^*_\eta) \quad - \quad c P(U L_i (s_i = \infty) - V^*_\eta) \]

\[\quad + \quad c P(U L_i (s_i = \infty) - V^*_\eta) \]

\[\leq c \left(\sum_{i=1}^n P(L_i) - P(A) \right) + c P(U L_i (s_i = \infty) - V^*_\eta) \]

\[\leq c \varepsilon + c P(A - V^*_\eta) \leq c \varepsilon + c P(V^*_0 - V^*_\eta) < 2c \varepsilon. \]

Hence

\[(2.7) \quad \sum_{i=1}^n \int_{L_i} (s_i = \infty) x'_i < 2c \varepsilon. \]
Since $q < \infty$, we can assume that δ_0 is so large that $P(V_{\delta_0}^* - V_{\delta}^*) < \varepsilon^q$ for every $\delta > \delta_0$. Then

$$
(2.8) \quad \int_{V_{\delta_0}^*}^{V_{\delta}^*} |y'| \leq ||y'||_p \leq c \varepsilon.
$$

Put $D = \bigcup_{1}^{n} L_i(s_i < \infty)$. Since $V_{\eta}^* \subset (s_i = \infty)$ for each i and $D \subset A \subset V_{\delta_0}^*$,

$$
\int_{D} y' \leq \int_{A \setminus V_{\eta}^*} |y'| \leq \int_{V_{\delta_0}^*}^{V_{\eta}^*} |y'| \leq c \varepsilon.
$$

By (2.3),

$$
\sum_{1}^{n} \int_{L_i} (s_i < \infty) y' - \int_{D} y' \leq ||\sum_{1}^{n} I(L_i) - I(A)||_q ||y'||_p < c \varepsilon.
$$

Hence

$$
(2.9) \quad \sum_{1}^{n} \int_{L_i} (s_i < \infty) y' < 2c \varepsilon.
$$

From (2.9), (2.7) and (2.6),

$$
(2.10) \quad d \sum_{1}^{n} P(L_i) \leq 4c \varepsilon + \sum_{1}^{n} \int_{L_i V_{\eta}^*} x_i'.
$$

Similarly,

$$
(2.11) \quad a \sum_{n+1}^{m} P(L_j) \geq -4c \varepsilon + \sum_{n+1}^{m} \int_{L_j V_{\eta}^*} x_j'.
$$

Put $L_i^i = L_i$ and $L_i^i = L_i \setminus \bigcup_{1}^{i-1} L_i^i$ for $i = 2, \ldots, n$ and $L_{n+1} = L_{n+1}$ and

$L_j^j = L_j \setminus \bigcup_{n+1}^{j-1} L_j^j$ for $j = n+2, \ldots, m$. Define $z' = x_i'$ on each L_i^i and $z^j = x_j^j$ on each L_j^j. Then

$$
(2.12) \quad \sum_{1}^{n} \int_{L_i V_{\eta}^*} x_i' \leq \int_{A V_{\eta}^*} z' + c \left(\sum_{1}^{n} P(L_i) - P(A) \right) \leq \int_{A V_{\eta}^*} z' + c \varepsilon.
$$
Similarly,

\[(2.13)\]

\[\sum_{n=1}^{m} \int_{L_j} \eta^* \frac{\eta_j'}{\eta} \geq \int_{B_\eta^*} z'' \geq c \epsilon.\]

Hence

\[(2.14)\]

\[\int_{A\eta^*} z' - \int_{B\eta^*} z'' \leq c P[(A-B)\eta^*] \leq c P(A-B) \leq P^*\{A-B\} + \epsilon A - B < 2\epsilon.\]

From \((2.10)-(2.1k)\), we have

\[(2.15)\]

\[d \sum_{l=1}^{n} \ni \eta_l^* - a \sum_{n=1}^{m} \ni L_j < 12 \epsilon.\]

Thus we completed the proof.

Theorem 2. Let \((F_0, A)\) satisfy the Vitali condition \(V_q\) and \((x_0, F_0, A)\) be a martingale with \(\sup_{\Delta} ||x_0||_p < \infty\), where \(p > 1\) and \(p^{-1} + q^{-1} = 1\). Then \(x_0\) converges a.e.

Proof. For \(p = 1\), it follows immediately from Theorem 4.2 of [1] that \(\lim_{\Delta} x_0\) exists a.e., and for \(p > 1\) Theorem 1 states that \(\lim_{\Delta} x_0\) exists a.e. where both \(\limsup_{\Delta} x_0\) and \(\liminf_{\Delta} x_0\) are finite. Hence we need only to prove that under the conditions of Theorem 2, both \(\limsup_{\Delta} x_0\) and \(\liminf_{\Delta} x_0\) are finite a.e.

Assume that \(V = (\limsup_{\Delta} x_0 = \infty)\) and \(P^*(V) > a > 0\). Then by \(V_q\), for any \(0 < K < \infty, \epsilon > 0, \delta_0 \epsilon A,\) there exist \(\delta_1, \delta_2, \ldots, \delta_m\) and \(F_0\)-sets \(L_1 \subset [x_0 > K]\) such that \(\delta_1 > \delta_0\) and

\[(2.16)\]

\[P(A > a, ||\sum_{l=1}^{m} I(L_1) - I(A)||_q < \epsilon,\]

where \(A = \bigcup_{l=1}^{m} L_1\). Take \(\eta > \delta_1 (i = 1, 2, \ldots, m)\). Then
\[K_a \leq \sum_{l}^{m} \int_{L_1} x(\delta_1) = \sum_{l}^{m} \int_{L_1} x(\eta) \leq \|\sum_{l}^{m} I(l) - I(A)\|_q \|x(\eta)\|_p + \|x(\eta)\|_p \]

\[\leq (1 + \varepsilon) \|x(\eta)\|_p. \]

Hence we arrive at a contradiction and \(P(V) = 0 \). Similarly, \(P(\lim \inf_{\Delta} x_\delta = -\infty) = 0 \).

From the previous proofs, immediately we have:

Corollary 1. Both Theorems 1 and 2 hold, if we replace \(V_\mathcal{Q} \) by \(V_\mathcal{Q}^* \), sup by ess sup and convergence by essential convergence.

Corollary 1 completes a theorem due to Krickeberg [5, Theorem 3.5] on essential convergence of martingales of decreasing stochastic basis.

3. A convergence theorem of martingales generated by cell function.

Let \(\mathcal{G} \) be a family of \(\mathcal{F} \)-sets with positive measures. Each element in is called a cell. A partition of a set \(X \subset \Omega \) is a sequence of non-overlapping cells \(I_n \) with \(\bigcup_1^\infty I_n = X \) and any cell meets at most a finite number of \(I_n \).

For a family \(\mathcal{G}_f \) of cells, each cell in \(\mathcal{G}_f \) is called a \(\mathcal{F} \)-cell. \(A(\mathcal{G}_f) \) will be the union of all \(\mathcal{G} \)-cells, \(\mathcal{G}^u \) the family of cells which are finite unions of \(\mathcal{G}_f \)-cells, and for a set \(X, \mathcal{G}^u X \) is the family of all \(\mathcal{G}_f \)-cells which are subsets of \(X \). A complex \(\mathcal{K} \) is a finite family of non-overlapping cells. For a complex \(\mathcal{K} \), define \(P(\mathcal{K}) = P(A(\mathcal{K})) \). For two families \(\mathcal{G} \) and \(\mathcal{H} \) of cells, if \(\mathcal{G} \subset \mathcal{H}^u \), we say that \(\mathcal{H} \) refines \(\mathcal{G} \), or \(\mathcal{H} \) is \(\mathcal{G} \)-fine, denoted by \(\mathcal{G} < \mathcal{H} \).

For two complexes \(\mathcal{K} \) and \(\mathcal{K}^b \), \(\mathcal{K}^b \) is said to be a bordering complex of \(\mathcal{K} \), if every \(\mathcal{K} \)-cell is contained in some \(\mathcal{K}^b \)-cell and no \(\mathcal{K}^b \)-cell is contained in \(\mathcal{K}^u \) (or equivalently \(A(\mathcal{K}) \)). For a cell \(I \), a partition \(\mathcal{J} \) of \(I \) is said to be \(p \)-bordering \((p > 1) \), if for each cell \(J \in \mathcal{J}^u \) and each complex \(\mathcal{K} \subset \mathcal{J}^u \) with \(A(\mathcal{K}) \neq J \), there exists a bordering complex \(\mathcal{K}^b \) of \(\mathcal{K} \) with \(\mathcal{K}^b \subset \mathcal{J}^u \) and \(P(\mathcal{K}^b) \leq p \ P(\mathcal{K}) \). \(\mathcal{J} \) will be said to have the \(p \)-bordering property, if to every cell \(I \) and every complex \(\mathcal{K} \) of subcells of \(I \), there corresponds a \(\mathcal{K} \)-fine \(p \)-bordering partition of \(I \).
Assume that the family Λ of all partitions λ of Ω forms a directed set with respect to the order \rightarrow (refinement). For each $\lambda \in \Lambda$, let \mathcal{F}_λ be the σ-algebra generated by the λ-cells.

Theorem 3. Let $(x_\lambda, \mathcal{F}_\lambda, \Lambda)$ be a martingale and \mathcal{I} have the p-ordering property with $1 < p < \infty$. Let B be an \mathcal{F}_{λ_0}-cell $V = \left[\sup_{\lambda > \lambda_0} |x_\lambda| < b \right]$ for $0 < b < \infty$, and $c = 2pb$. For any given $\lambda_1, \lambda_2, \ldots, \lambda_n, \ldots, \lambda_m$ in $\Lambda(\lambda > \lambda_1)$ and \mathcal{F}_{λ_1}-sets $I_1 \subset BV_{\lambda_1}$, there exists $\eta > \lambda_1$, $i = 1, 2, \ldots, m$ in Λ such that

$$\sum_{I_1} x(\lambda_1) \leq cP[I_1(x(\eta) > b)] + \sum_{I_1} x(\lambda_1) \leq \eta b] x(i)(\eta), i=1,\ldots,n,$$

$$\sum_{I_1} x(\lambda_1) \geq -cP[I_1(x(\eta) < -b)] + \sum_{I_1} x(\lambda_1) \geq -\eta b] x(i)(\eta), j=n+1,\ldots,m,$$

where

$$x(i)(\eta) = x(\eta) = x(j)(\eta), \text{ if } \omega \in I_1 \eta, IV \neq \emptyset,$$

$$i = 1, \ldots, n; j = n + 1, \ldots, m,$$

$$x(i)(\eta) = c = -x(j)(\eta), \text{ if } \omega \in I_1 \eta, IV = \emptyset, i=1,\ldots,n;$$

$$j = n + 1,\ldots,m.$$

Proof. We can and will assume that each I_1 is an \mathcal{F}_{λ_1}-cell. Let η' be a partition of Ω such that $\eta' > \lambda_1$, $i = 1, \ldots, n, \ldots, m$. Let $\mathcal{J} = \eta'B$. Then \mathcal{J} is a complex and $I_1 \subset \mathcal{J}^u$ for each $i = 1, \ldots, m$. By the p-ordering property of \mathcal{I}^l, there exists a \mathcal{J}-fine, p-ordering partition δ of B. Put $\eta = \eta'(\Omega - B) \cup \delta$. Then, $\eta \in \Lambda$ and $\eta > \eta' > \lambda_1$, $i = 1, \ldots, m$. For each $i = 1, \ldots, n$, let $K_1 = \left[I \mid I \subset \eta \lambda_1, IV = \emptyset \right]$. If $K_1 = \emptyset$, then
\[\int_{L_1} x(\lambda_1) = \int_{L_1} x(\eta) = \int_{L_1} \{ |x(\eta)| < b \} x(\eta) = \int_{L_1} \{ |x(\eta)| < b \} x^{(1)}(\eta) \]

Hence \(\lambda_1 = L_1 \), then since \(L_1 \subseteq V \)

\[\int_{L_1} x(\lambda_1) \leq \int_{L_1} x(\eta) \leq \int_{L_1} \{ |x(\eta)| \geq b \} + \int_{L_1} \{ |x(\eta)| < b \} x^{(1)}(\eta) \]

\[\leq \left(\int_{L_1} x(\eta) \geq b \right) + \int_{L_1} \{ |x(\eta)| < b \} x^{(1)}(\eta) = \mathbb{P}[L_1(x(\eta) \geq b)] + \]

\[+ \int_{L_1} \{ |x(\eta)| < b \} x^{(1)}(\eta) \]

Now assume that \(\lambda_1 \neq 0 \) and \(\lambda_2 \neq 0 \). Since \(A(\lambda_1) \neq L_1 \) is \(0 \) and \(|x(\eta)| \leq b \), by the \(0 \)-covering property of \(\delta \), there exists a complex \(\lambda_2 \subseteq \delta \) such that every \(\lambda_1 \)-cell is contained in some \(\lambda_2 \)-cell, \(IV \neq 0 \) for every \(\lambda_1 \)-cell \(I \), and that \(P(\lambda_1) \leq P(\lambda_1) \). Hence

\[\int A(\lambda_1) x(\eta) = \int A(\lambda_2) x(\eta) - \int A(\lambda_2) - A(\lambda_2) x(\eta) \]

\[\leq bP(\lambda_1) + b[\mathbb{P}(\lambda_1) - \mathbb{P}(\lambda_1)] \leq 2bP(\lambda_1) \leq cP(\lambda_1). \]

Therefore

\[\int_{L_1} x(\lambda_1) = \int_{L_1} x(\eta) = \int A(\lambda_1) x(\eta) + \int_{L_1} - A(\lambda_1) x(\eta) \]

\[\leq cP(\lambda_1) = \int_{L_1} - A(\lambda_1) x(\eta) \]

\[\leq cP \{ A(\lambda_1)(|x(\eta)| \geq b) \} + cP[A(\lambda_1)(|x(\eta)| < b)] + \]

\[+ \int_{L_1} A(\lambda_1) \{ |x(\eta)| < b \} x(\eta) \leq cP[L_1(|x(\eta)| < b)] \]
+ \int L_{\lambda} |x(\eta)| < b \} x^{(1)}(\eta).

Since by (3.4)

\int L_{\lambda} \{ x(\eta) \leq -b \} x^{(1)}(\eta) = c^2 \{ L_{\lambda} (x(\eta) \leq -b) \},

\int L_{\lambda} x(\lambda) \leq c^2 \{ L_{\lambda} (x(\eta) > b) \} + \int L_{\lambda} \{ x(\eta) < b \} x^{(1)}(\eta).

Similarly we can prove (3.2).

Theorem 4. Let \((x_{\lambda}, \bigvee_{\lambda}, \Lambda) \) be a martingale satisfying the weak Vitali condition \(V_{\Lambda} \) and \(\Lambda \) have the p-bordering property with \(1 < p < \infty \). Then \(x_{\Lambda} \) converges a.e. where \(\sup_{\omega} |x_{\lambda}| < \infty \).

Proof. Theorem 3 states that \((x_{\lambda}, \bigvee_{\lambda}, \Lambda) \) satisfies the condition \((A, b)_\infty \) for every \(b > 0 \). Therefore, Theorem 4 follows from Theorem 1 immediately.

Theorem 3 includes Theorem II of Rutovitz' [7], which in turn (See [7, p.29]) includes a theorem of Ward [8, p.141].
Acknowledgement. The author would like to express his gratitude to Professors K. Krickeberg, C. Y. Pang, and J. L. Doob, for many of their helpful suggestions and valuable discussions. He also wishes to thank the Institute of Mathematics of the University of Heidelberg and the University of Aarhus for their support and the use of their facilities.
References

