Schedule and Textbooks Information


Fall 2017 Schedule and Textbook Information for STAT 225

DISCLAIMER:

We believe the information about textbooks to be accurate, but the Purdue University Bookstores are the official source of information on textbooks. Please check with them for verification before purchasing texts for a specific academic semester or session.

STAT 225 - Texbook(s) for Fall 2017

CRN Title Author ISBN Version Req/Opt
14718Introduction to ProbabilityMark Ward9780716771098First EditionY
29134Introduction to ProbabilityMark Ward9780716771098First EditionY
29135Introduction to ProbabilityMark Ward9780716771098First EditionY
29137Introduction to ProbabilityMark Ward9780716771098First EditionY
29139Introduction to ProbabilityMark Ward9780716771098First EditionY
29141Introduction to ProbabilityMark Ward9780716771098First EditionY
29142Introduction to ProbabilityMark Ward9780716771098First EditionY
29143Introduction to ProbabilityMark Ward9780716771098First EditionY
63557Introduction to ProbabilityMark Ward9780716771098First EditionY
64291Introduction to ProbabilityMark Ward9780716771098First EditionY
68770Introduction to ProbabilityMark Ward9780716771098First EditionY
68771Introduction to ProbabilityMark Ward9780716771098First EditionY


STAT 225 - Schedule information for Fall 2017

CRN Section Instructor Day Time Room
29139041Eric GerberMWF09:30-10:20amREC 114
29142061Hui SunMWF08:30-09:20amREC 302
68770095Celeste FurtnerMWF1:30-2:20pmUNIV 003
14718098Qi WangMWF11:30am-12:20pmREC 113
29137031Will EaganMWF12:30-1:20pmREC 113
29141071Timothy ReeseMWF2:30-3:20pmUNIV 003
29143081Hyoeun LeeMWF4:30-5:20pmUNIV 003
29135091Jiapeng LiuMWF12:30-1:20pmUNIV 003
68771096Hyoeun LeeMWF3:30-4:20pmUNIV 003
29134011Jiapeng LiuMWF11:30am-12:20pmUNIV 003
64291094Eric GerberMWF10:30-11:20amREC 114

STAT 225 - Course Outline

A. Sets and Events
B. Basic Probability, Sampling Models
C. Conditional Probability; Bayes Rule; Independence
D. Random Variables; Discrete and Continuous Distributions; Mass, Density and Distribution Functions; Transformations
E. Descriptive Measures for Distributions: Mean, Median and Quantities.
F. Expected Values; Variance and Standard Deviation; Mean and Variance of Sums of Random Variables
G. Special Discrete Distributions: Binomial, Hypergeometric, Poisson, Geometric, Negative Binomial and their Uses
H. Exponential Distribution; Reliability
I. Normal Distributions and Applications; Central Limit Theorem
J. Review
K. Exams