Concentration Inequalities, Oracles, and Applications

A. DasGupta

Outline: Week 2

1) Statement of newer versions of Hoeffding inequality: Eaton, Prohorov, Pinsker, possibly others;

2) Proof that moment inequalities provide sharper bounds than Chernoff’s method (proof has a gap); example;

3) Cramér-Chernoff theorem for convolutions on \mathcal{R} in iid case; normal example;

4) Generalization to convolutions on \mathcal{R}^d; geometric interpretation of \mathcal{R}^d result;

5) a) Introducing concentration inequalities for general functions of bounded Lipschitz norm in multivariate normal case; application to maximum of a Gaussian vector; potential application to false discovery;
 b) Glivenko-Cantelli theorem and DKW inequality in \mathcal{R}; best constant;
 c) generalization to higher dimensions via shattering coefficients;
 d) application to testing for goodness of fit in \mathcal{R}^d; weak limits of test statistics; computing their critical values;

6) Introducing the methods of derivation of Gaussian concentration inequalities for bounded Lipschitz norm functions; the first methods, Borell and Sudakov.